Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикальные реакции с карбонильными соединениями

    Природа и состав продуктов более глубокого окисления (карбонильных соединений, кислот, лактонов, сложных эфиров), полученных при различных условиях, заставляют (из-за отсутствия кинетических данных) предположить несколько схем радикальных последовательных реакций  [c.152]

    С ВЫХОДОМ 7% от образовавшихся кислот и карбонильных соединений соответственно. Как известно, при цепном окислении атаке подвергаются вторичные и третичные атомы углерода, а концевые метильные группы в реакцию не вступают [90]. Было показано, что в реакциях окисления некоторых парафинов и олефинов на твердых полупроводниковых и металлических катализаторах добавки ингибиторов, например гидрохинона, значительно замедляют скорость реакции. Сначала скорость реакции падает пропорционально добавке ингибитора, но, начиная в некоторого момента, она становится постоянной и не равной нулю, что однозначно доказывает наличие неценного поверхностного процесса. Из изложенных фактов можно сделать вывод, что в случае жидкофазного окисления углеводородов на твердых катализаторах мы имеем дело с гетерогенно-гомогенным процессом, причем доля объемного продолжения здесь весьма значительна. Выход радикалов с поверхности в объем вероятен по соображениям, излагаемым ниже. Вероятна также, вследствие наличия ближнего порядка в жидкостях, эстафетная передача свободной валентности аналогично тому, как это происходит со свободными радикалами в чисто цепных реакциях при протекании реакции в клетке из окружающих радикал молекул растворителя. При применении истинно инертного растворителя эстафета обрывается и скорость реакции замедляется с разбавлением, ка то бывает в газофазных процессах. В целом можно предположить, что при поверхностном радикальном механизме гетерогенных каталитических реакций степень выхода реакций в объем зависит от соотношения скорости передачи свободной валентности в объем и скорости превращения радикалов на поверхности. Видимо, в газофазных процессах, протекающих при высоких температурах, условия более благоприятствуют превращению радикалов, в то время как в ряде жидкофазных реакций создаются условия, увеличивающие вероятность передачи свободной валентности в объем. Таким образом, как это часто имеет место в гетерогенном катализе, нельзя говорить, подобно М. В. Полякову [93], о каком-то специальном гетерогенно-гомогенном механизме катализа, а можно говорить лишь о соответствующей области протекания процесса в результате сложившихся соотношений скоростей различных его стадий. [c.62]


    Характерные признаки ХПЭ, возникающей по триплетному механизму, следующие. Во-первых, оба радикала имеют поляризации одинаковых величин и знаков. Наиболее подробно исследована ХПЭ при фотолизе карбонильных соединений, в которых /)>0 и сильнее заселяется 7 +-подуровень триплетной молекулы при реакции ее образуются радикалы с инверсной заселенностью верхнего зеемановского уровня и с эмиссионным спектром ЭПР. Во-вторых, поляризация не зависит от энергии СТВ и -факто-ров радикалов. В-третьих, спад поляризации происходит за время спин-решеточной электронной релаксации в радикалах. На основании этих признаков легко различить ХПЭ, возникшую в радикальных парах и в триплетных молекулах. [c.46]

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]


    Большинство реакций восстановления характеризуется присоединением водорода по кратной связи. Гидрирование олефинов и ацетиленов на поверхности переходных металлов относится к радикальным реакциям этот тип восстановления будет рассмотрен в главе 26. Восстановление растворенными металлами, например натрием, может быть классифицировано как нуклеофильное присоединение в соответствии с этим оно наблюдается для карбонильной группы, соединений с двойной связью С = С, сопряженной с ароматическим ядром, и для многих азотсодержащих соединений, таких, как нитро-, нитрозе- и азосоединения. Этот второй тип восстановления и рассматривается в настоящей главе. Сюда включены также электролитическое восстановление и восстановление действием металлов и ионов металлов, которое может протекать с образованием радикалов. [c.477]

    Карбонильные соединения. Легкость замещения атомов водорода, находящихся в а-положении к карбонильной группе, зависит от характера заместителей при карбониле. Часто бывает трудно определить, идут ли реакции замещения по ионному или радикальному механизму. Альдегиды, наиболее реакционноспособные карбонильные соединения, при реакции с галогенами могут образовывать галогенангидриды или а-галогензамещен-ные альдегиды. Первый тип замещения протекает удовлетворительно лишь [c.530]

    Отщепление окиси углерода от карбонильного соединения и двуокиси углерода от карбоновой кислоты чаще всего происходит при простом нагревании. что говорит о радикальном механизме этих реакций. [c.577]

    Характер кинетических кривых накопления карбонильных соединений и кислот свидетельствует о том, что они образуются, по-видимому, параллельно с перекисями в результате радикальных реакций. Так, кетоны и спирты могут образовываться при рекомбинации перекисных радикалов  [c.195]

    Циклогексен-2-он и другие р-замещенные а,р-непредельные карбонильные соединения реагируют с R3B при медленном введении небольшого количества воздуха (схема (180) . Можно применять и другие инициаторы радикальных реакций или облучение УФ-светом [49л]. Избыток пиридина, по-видимому, также катализирует некоторые реакции этого типа [382], однако причина этого не ясна. [c.431]

    По аналогии со связью С=С (см. разд. 7.1), можно ожидать, что связь С=0 будет участвовать в реакциях присоединения, но если полярная атака связи С=С обычно начинается только электрофилами, то атака связи С=0 из-за ее полярной природы может начинаться либо электрофильной атакой Х<+ или X по атому кислорода, либо нуклеофильной атакой Y или Y по атому углерода (радикальные реакции присоединения к карбонильным соединениям очень редки). Оказалось, что первичная электрофильная атака атома кислорода имеет небольшое значение, за исключением тех реакций, в которых электрофилом является кислота (или кислота Льюиса), когда быстрое обратимое протонирование может предшествовать медленной, скоростьлимитирующей атаке нуклеофилом атома углерода, что и завершает присоединение присоединение в этом случае катализируется кислотой. [c.226]

    Спирты. Первичные и вторичные спирты в условиях гомогенного окисления превращаются соответственно в альдегиды или кетоны. В ряде случаев показано, что карбонильные соединения, образующиеся при окислении углеводородов, являются продуктами не только превращения гидроперекисей или перекисных радикалов, но и дальнейшего окисления спиртов. При радикально-цепном механизме окисления спиртов наиболее чувствительной к атаке свободным радикалом оказывается связь С—Н того же углеродного атома, при котором находится гидроксильная группа. В результате последовательных превращений образуется оксигидроперекись, которая в случае вторичных спиртов может распадаться по обратимой реакции на кетон и перекись водорода  [c.495]

    Радикальные или ионные реакции присоединения к а,(3-непре-дельным карбонильным соединениям и нитрилам приводят к получению одних и тех же продуктов реакции. Опубликованы обзоры ])еакций присоединения тиолов к олефинам Майо и Уоллинга [8], Уоллинга ([45], стр. 313 и сл.), а также Кнунянца и Фокина [70]. [c.184]

    Было убедительно показано, что в случае обычных олефинов в отсутствие окислителя или другого источника радикалов присоединения бисульфита не происходит [210]. С другой стороны, бисульфит-ион очень легко присоединяется к а,р-непредельным карбонильным соединениям и нитрилам. Поскольку на эту реакцию совершенно не оказывают влияния факторы, которые обычно промотируют или замедляют радикальное присоединение, очевидно, что эта реакция имеет ионный характер [222, 223]. [c.218]

    Обзор Е. Фендлер и Дж. Фендлера вводит нас в интереснейшую область радиационной химии, тесно связанную с многими процессами в органической химии, и демонстрирует большие возможности метода для изучения механизма органических реакций. Метод импульсного радиолиза позволяет регистрировать образование различных, иногда крайне неустойчивых радикальных частиц и изучать их реакционную способность. Это прежде всего относится к изучению реакций первичных продуктов радиолиза воды —гидратированного электрона и гидроксильного радикала — с различными органическими соединениями. Определены константы скоростей реакций гидратированного электрона с ароматическими соединениями, алкилгалогенидами, ненасыщенными и карбонильными соединениями и т. д., в которых электрон выступает как простейший нуклеофил и восстанавливающий агент. Такие реакции могут служить прекрасными моделями для исследования окислительно-восстановительного механизма многих органических реакций, что имеет первостепенное значение именно на современном этапе развития представлений о механизмах многих процессов, ранее относимых к классическим 5к- и Зв-реакциям, для которых в настоящее время предполагается стадия одноэлектронного переноса. [c.6]


    Описанные выше реакции являются гетеролитическими процессами. В. некоторых случаях диалкилфосфиты присоединяются к карбонильным соединениям и по радикальному механизму. Так, например, они реагируют с л-хинонами [c.58]

    Первые в СССР работы по радиационному окислению жидких углеводородов кислородом при комнатной температуре были проведены Н. А. Бах [194] был установлен состав продуктов (перекиси, карбонильные соединения, кислоты) и механизм радикальных реакций, приводящих к образованию этих продуктов. [c.53]

    Схему радикальной или бирадикальной реакции термической димеризации диенов впервые выдвинул С. В. Лебедев [10] в 1913 г., предположив, что она протекает через образование промежуточного динамического изомера или так называемого парного комплекса . В ряде случаев диеновые конденсации истолковывались как соединения компонентов, протекающие через парциальные валентности Тиле [26, 27], или — как скрыто радикальные [64, 166]. Бирадикальный механизм придавался также диеновым конденсациям антраценовых углеводородов с малеиновым ангидридом [492, 505] и димеризации а,Р-ненасыщенных карбонильных соединений [506]. [c.67]

    Доноры протонов превращают эти димеры в пинаконы. Подобная стадия реакции кажется вероятной и для обычного восстановления кетонов в пинаконы при помощи магния. Мономерное восстаповлепие карбонильных соединений металлами в кислой среде с образованием спиртов или углеводородов также может включать возникновение подобного первичного иона радикального характера. Отличие состоит в том, что в этом случае он захватывает протон и затем восстанавливается (возможно, все еще находясь в адсорбированном состоянии на поверхности металла) до того, как произойдет димеризация [187, 188]. [c.461]

    Рассмотренные выше реакции карбонильной группы в карбоновых кислотах и их производных являются по современным представлениям ионными или криптоионньши. Известен, однако, ряд реакций карбонильных соединений, которые протекают на основе радикальной активации карбонильной двойной связи. Некоторые из этих иногда очень важных реакций мы уже обсуждали на стр. 339. [c.371]

    Участвующие в реакции димеризации радикальные частицы иногда обладают способностью образовывать димерные продукты различного строения. В настоящее время установлено существование двойственной реакционной способности у свободных радикалов и ион-радикалов ароматических и гетероароматических карбонильных соединений (Л. Н. Некрасов, А. Д. Корсун, Л. Н. Выходцева, В. П. Гультей, Л. М. Коротаева). Димеризация таких частиц наряду с синтезом иинаконов (V) или гликолей приводит к образованию значительно менее устойчивых продуктов (VI), содержащих енольную группировку и являющихся результатом появления а-связи между атомом углерода карбонильной группы одной частицы и атомом углерода бензольного кольца, находящегося в параположении по отношению к карбонильной группе (взаимодействие по типу голова — хвост ). Так, димеризация свободных радикалов ацетофенона в кислой среде осуществляется в соответствии со следующей реакционной схемой  [c.253]

    Главной особенностью двойных связей в олефинах или карбонильных соединениях является их способность вступать в реакции присоединения. Возможно линейное присоединение трех типов (циклоприсоединение обсуждается ниже), в которых атакующим реагентом служит или НСМО-ген (катионный), или ОЗМО-ген (радикальный), или ВЗМО-ген (анионный). Пиктографическая орбитальная теория объясняет ориентацию, относительную скорость (в тех случаях, когда ее можно применить) и стереохимию всех трех типов реакций присоединения. [c.71]

    Несмотря на возможность протекания неконтролируемых радикальных реакций при взаимодействии алюминийорганических соединений с полигалоидалканами, такие растворители, как хлороформ, хлористый метилен и дихлорэтан находят применение в алюминийорганическом синтезе, особенно при проведении низкотемпературных реакций с карбонильными субстратами. В отдельных случаях замена углеводородных растворителей на хлорсодержащие приводит не только к увеличению выхода продуктов реакции, но и к повышению или изменению региоселективности процесса. Подобный эффект авторы, как правило, объясняют тем, что хлоруглеводороды, образуя комплексы с АОС, способствуют переходу последних из димерной формы в более активную мономерную. Исходя из этого предположения, для ТИБА, существующего, в отличие от таких АОС димерной структуры, как триметилалюминий, ТЭА, ДИБАГ, преимущественно в мономерной форме, не следовало ожидать каких-либо существенных изменений в ходе реакции. [c.11]

    Первичные и вторичные алкилгидропероксиды в щелочных условиях реакции обычно отщепляют воду и превращаются в карбонильные соединения. В индуцируемом основанием аутоокислении флуорена перенос электрона от промежуточно образующегося флуоренил-аниона обычно является стадией, лимитирующей скорость всего процесса, однако в случае трифенилметана медленной стадией является образование карбаниона, а перенос электрона от менее устойчивого аниона происходит очень быстро [69]. Медленную стадию переноса электрона в случае флуоренил-анионов можно устранить, используя синглетный ( Ag) молекулярный кислород, с которым они реагируют очень быстро [70]. Ароматические нитросоединения могут конкурировать с кислородом в качестве акцепторов электронов образующиеся радикалы далее димеризуются [например, уравнение (31)] [71]. Димерные радикальные продукты образуются также при фотохимическом возбуждении карбанионов  [c.562]

    Обработка солей алифатических нитросоединений (34) алкилгалогенидами приводит к алкилированию либо по атому углерода либо по атому кислорода. В общем случае алкилирование по кислороду, которое по реакции 5л 2 через промежуточное образование нитроновых эфиров (35) приводит к карбонильным соединениям и оксимам, лишь в очень малой степени или вообще не сопровождается алкилированием по углероду [схема (107)]. Однако Корн-блюм и сотр. показали [83], что при реакциях 2-нитропропана с -нитробензилгалогенидами протекает как О- так и С-алкилиро-вание, соотношение между которыми зависит от природы замещаемого галогена. Удалось раздельно определить константы скорости О- и С-алкилирования для различных галогенидов, и оказалось, что если константа скорости 0-алкилирования при переходе от С1 к Вг и I возрастает в 900 раз, что согласуется с механизмом Sn2, то в случае С-алкилирования эти константы изменяются только в 6 раз. Такое небольшое изменение скорости противоречит механизму 5л 2 и заставляет думать, что здесь имеет место ради кально-ценной механизм, рассмотренный вначале этого раздела Другими доказательствами такого механизма являются обнару жение с помощью ЭПР-спектроскопии промежуточно образующих ся радикалов, подавление С-алкилирования введением ингибито ров радикальных процессов, ускорение С-алкилирования при фотолизе. Дополнительные примеры замещения по механизму, включающему перенос электрона, приведены на схемах (108). (109) [c.668]

    Практически все радикалы с реакционным центром на атоме углерода, а также многие из гетерорадикалов и атомов способны присоединяться к молекулам, содержащим ненасыщенные связи. Алкены, алкины, карбонильные соединения, азосоед1шения активно вступают в эти реакции. Радикальное присоединение к ароматическим соединениям протекает с меньшей скоростью, поэтому конечным результатом обычно является замещение. [c.225]

    Мы предполагаем, что последний механизм характерен для довольно широкого круга окислительно-восстановительных пропессов, не имеющих радикального характера, например для реакций Каннрщцаро, Меервейна—Пондорфа, восстановительного метилирования, образования аминов из карбонильных соединений и формиата аммония (или форм-амида), а также для диспропорционирования ароматических спиртов и их эфиров. Исследование механизма реакций этого последнего типа при помощи дейтерия начато нами в последнее время. [c.118]

    Относительно меньшая результативность, или эффективность исследований процессов ионной полимеризации по сравнению с изученностью радикальных реакций тем более обидна , что ионная полимеризация более универсальна, чем радикальная. При радикальном инициировашгп в качестве мономеров могут быть использованы почти исключительно ненасыщенные соединения, причем и для них существуют определенные ограничения. Ионная же полимеризация позволяет синтезировать высокомолекулярные соединения не только из ненасыщенных мономеров, в том числе неполимеризующихся по радикальному механизму, но и из веществ иного типа — карбонильных производных, окисей, лактонов, лактамов и др. Это не означает, что ионная полимеризация является неизбирательной. Напротив, наряду с соединениями, способными к любому типу ионной нолимеризации, существуют мономеры, отличающиеся специфическим характером часть из них способна полпмеризоваться только по катионному механизму, часть — по анионному. [c.90]

    В книге собраны задачи и упражнения по органической химии, сгрупнированные по темам номенклатура органических соединений, радикальные реакции, реакции нуклеофильного замещения в алифатическом ряду, окислительно-восстановительные реакции, реакции конденсации и таутомерия карбонильных соединений, магнийорганический синтез, реакции электрофи.аьного и нуклеофильного замещения в ароматическом ядре, получение ароматических аминов и диазосоединений, карбо- и гетероциклы. Значительное внимание уделено задачам и упражнениям, построенным с учетом современной теории органических реакций. Каждая глава имеет краткое введение и ответы к наиболее сложным заданиям. [c.2]

    Различный характер электровосстановления ароматических карбонильных соединений в неводной среде нри малых и больших концентрациях деполяризатора обнаружен при изучении тио-фснальдегида [40]. Обычно возможность изменения характера процесса в зависимости от концентрации деполяризатора, а также возможность хемосорбции промежуточно образующихся частиц в органических растворителях практически не принимаются во внимание. Однако высказывались предположения [41] об образовании на ртутном катоде активированных комплексов анион-радикалов и дианионов с ртутью по механизму взаимодействия я-люлекулярных орбиталей интермедиатов с атомными орбитами материала катода, хотя ранее изменение полярографического поведения тиофенальдегида прп варьировании концентрации объясняли влиянием адсорбции образующихся в первой стадип восстановления анион-радикальных частиц па последующие реакции, несмотря на то что эти анион-радикалы должны были бы отталкиваться от отрицательно заряженной поверхности катода, особенно с ростом его отрицательного потенциала. Но, по-видимому, силы хемосорбции оказываются достаточно большими, чтобы преодолеть такое электростатическое отталкивание. В работе [41] приведены данные полярографии и циклической вольтамперометрии, подтверждающие предположение о хемосорбции анион-радикалов ароматических карбонильных соединений на ртути. По-видимому, это первый конкретный пример влияния концентрации промежуточных частиц на механизм реакции. [c.115]

    Очень интересным является вопрос о влиянии эмульсионной среды на протекание других реакций, идущих по радикальному механизму. Из таких процбссов, прежде всего, заслуживает внимания реакция жидкофазного окисления углеводородов молекулярным кислородом при низких температурах. Интерес к изучению этой реакции обусловлен тем, что основным ее продуктом являются гидроперекиси — инициаторы многих химических процессов. Кроме того, продуктами реакции окисления являются карбонильные соединения, спирты и кислоты. [c.212]

    Путем классификации и анализа огромного количества данных и фактов, накопленных более чем за 100 лет, механизмы обычных органических реакций в настоящее время четко установлены. Эти реакции обычно классифицируют как ионные, радикальные или молекулярные, хотя существует и более детальная классификация. Механизмы многих реакций с участием соединений непереходных металлов совершенно понятны, в то время как механизмы органических реакций с участием комплексов переходных металлов до сих пор не ясны. Без сомнения, эти реакции протекают путем образования о-связи металл — углерод, однако химические свойства этих связей остаются непонятными. Поэтому для более ясного понимания реакций, протекающих с использованием комплексов переходных металлов, вначале стоит проанализировать и сравнить их с реакциями реактивов Гриньяра, которые очень хорошо знакомы химикам-органикам. Известно, что первая стадия реакций Гриньяра состоит во взаимодействии металлического магния с ал-килгалогенидами с образованием алкилмагнийгалогени-дов, такшазываемых реактивов Гриньяра. В этой реакции нульвалентный магний окисляется до двухвалентного и происходит расщепление ковалентной связи углерод — галоген, следовательно, эту стадию можно рассматривать как окислительное присоединение алкилга-логенидов к металлическому магнию. Полученный таким способом реактив Гриньяра является источником карб-аниона и реагирует с различными электрофильными реагентами, например карбонильными соединениями или нитрилами. Эту стадию можно формально представить как реакцию внедрения ненасыщенной связи карбонильной группы по связи магний — углерод. В последнем процессе не изменяется степень окисления магния. Таким образом, реакцию Гриньяра можно представить [c.14]

    Проведены обширные исследования хемилюминесценции при ишдкофазном окислении углеводородов и их производных [Васильев, 1963 Аллабутаев и др., 1965]. Это окисление представляет цепную радикальную реакцию и епь ведут углеводородный и пе-рекисный радикалы. Механизм образования гидроперекиси состоит из нроцессов инициирования цепей (появление радикалов), и обрыв их происходит с образованием углеводородов, перекисей, спиртов, карбонильных соединений н кислорода. Доказано, что возбуждение свечения происходит в экзотермических процессах за счет энергии, высвобо>1.дающейся при рекомбинации (или диспропорционирования) радикалов, а интенсивность свечения пропорциональна скорости рекомбинации или в стационарном релшме — скорости инициирования. В реакциях окисления углеводородов, инициированных различными веществами, свечение занимает практически одну и ту же область (400—500 нм). Спектр представляет собой широкую бесструктурную полосу с пологим максимумом при 420—450 нм. [c.14]


Смотреть страницы где упоминается термин Радикальные реакции с карбонильными соединениями: [c.1503]    [c.218]    [c.61]    [c.266]    [c.94]    [c.320]    [c.270]    [c.177]    [c.78]    [c.95]    [c.21]    [c.94]   
Методы элементоорганической химии (1963) -- [ c.375 ]

Методы элементоорганической химии Магний бериллий кальций стронций барий (1963) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения

Радикальные реакции



© 2025 chem21.info Реклама на сайте