Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий, определение в платиновых

    Было показано что палладий совместно с родием и рутением можно таким же образом отделить от серебра в сернокислом растворе. Выделение в виде гидроокисей имеет то преимущество перед осаждением сероводородом, что образующиеся соединения легко превращаются в галогениды, которые требуются для последующих операций. Поскольку этот метод наиболее применим для отделения платины от палладия, родия и иридия, он более детальна излагается в разделе Систематический ход. разделения и определения платиновых металлов (стр. 423). [c.414]


    Малая избирательность реагентов, применяемых для определения платиновых металлов и золота, часто вызывает необходимость предварительного отделения определяемого элемента от сопутствующих ему металлов. В ходе анализа сложных материалов, содержащих все благородные металлы, последние, обычно, концентрируются совместно на одной из стадий анализа. Поэтому часто вначале прибегают к групповому разделению, к отделению друг от друга нескольких металлов, наиболее близких по химическим свойствам, а затем ищут пути разделения отдельных элементов. Для группового разделения используют различия в окислительно-восстановительных свойствах благородных металлов. Окислители (броматы, хлор) служат для отделения осмия и рутения от остальных благородных металлов. Восстановители (каломель, хлористую медь) применяют для отделения платины, палладия и золота от родия и иридия. Наиболее частыми сочетаниями металлов, получаемыми в результате группового разделения, являются осмий и рутений платина, палладий и золото родий и иридий. Для группового разделения, а также для отделения металлов друг от друга наряду с химическими применяют хроматографические и экстракционные методы. [c.218]

    Особой проблемой, характерной для металлов восьмой группы периодической системы, является легкость гидролиза их соединений, приводящая к образованию нерастворимых гидроокисей. Процесс гидролиза — источник ошибок спектрофотометрических методов, включающих нагревание растворов с низкой кислотностью (pH 4—8). Склонность к гидролизу и, следовательно, чувствительность к изменению концентрации электролитов объясняют затруднения, испытываемые химиками, разрабатывающими спектрофотометрические методы определения платиновых металлов. Чтобы в достаточной мере изучить состояние металла в растворе, требуется также хорошее знакомство с процессами растворения платиновых металлов. Из платиновых металлов только палладий и родий могут быть количественно растворены в одной из минеральных кислот. Родий в некоторых случаях можно растворить в концентрированной серной кислоте. Влияние серной кислоты, часто мешающей определению платиновых металлов, редко учитывают полностью. [c.136]

    Осаждение в виде гидроокисей. Все металлы платиновой группы, за исключением золота и платины (IV), осаждаются в виде гидроокисей из почти нейтральных растворов. Этот способ применим для отделения платиновых металлов, кроме платины, от щелочных металлов и магния. Было показано , что палладий совместно с родием и рутением можно таким же образом отделить от серебра в сернокислом растворе. Выделение в виде гидроокисей имеет то преимущество перед осаждением сероводородом, что образующиеся соединения легко превращаются в галогениды, которые требуются для последующих операций. Поскольку этот метод наиболее применим для отделения платины от палладия, родия и иридия, он более детально излагается в разделе Систематический ход разделения и определения платиновых металлов (стр. 387). [c.378]


    Другие платиновые металлы. Методы, рекомендуемые для определения палладия осаждением диметилглиоксимом, а также для выделения иридия, родия, осмия, рутения в виде гидроокисей и родия в виде сульфида, описаны в разделе Систематический ход разделения и определения платиновых металлов (стр. 387). [c.385]

    При анализе платиновых металлов очень редко приходится иметь дело с определением только одного какого-либо элемента в чистом растворе. Природные минералы чаще всего наряду с платиной и палладием содержат в большем или меньшем количестве родий, иридий, осмий и рутений, а также железо, кобальт, никель и хром. Применяющиеся в технике изделия из платины, палладия или родия в большинстве случаев содержат некоторое количество иридия и рутения для повышения механической прочности. Определению платиновых металлов могут мешать анионы, которые появляются в растворе после растворения анализируемых материалов. Для отделения благородных металлов от сопутствующих элементов все еще наиболее удобны пробирные методы [404] (стр. 191), в то время как для разделения платиновых металлов почти всегда рекомендуют экстракционные методы, если определение заканчивают фотометрически. [c.356]

    При обзоре разработанных фотометрических методов определения платиновых металлов бросается в глаза, что существует очень много реагентов для определения палладия и только несколько тщательно исследованных методов определения иридия и родия [150, 152, 153]. Это же соотношение характерно и для классических методов определения. [c.357]

    Из полученных данных видно, что платину, палладий, родий, иридий, золото и медь (в нашем случае определения платиновых металлов) в полупродуктах на медной основе НО] можно анализировать в катодном режиме с подставным электродом из графита или другого металла. Причем такая замена электродов не окажет существенного влияния на интенсивность спектральных линий ввиду незначительного разрушения анода по сравнению с катодом. [c.31]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Для платиновых металлов в соединениях характерны практически все степени окисления от О до +8. При этом отмечается тенденция к понижению максимальных степеней окисления в горизонтальных рядах. В вертикальных диадах обычно наблюдается соответствие степеней окисления. Так, элементы первой диады (Ки—Оз) могут проявлять максимальную степень окисления +8 (даже в соединениях первого порядка), элементы второй диады (КЬ—1г) достигают степени окисления +6 (в комплексных соединениях), а палладий и платина имеют типичные степени окисления +2 и +4. Элементы первой диады напоминают по свойствам элементы УПВ-группы — технеций и рений (подобно тому как железо напоминает марганец). Элементы же последней диады проявляют определенное сходство с элементами 1В-группы— серебром и золотом (подобное сходству между никелем и медью). [c.417]

    Сплавы золото-палладиево-платиновые. Метод определения золота, палладия [c.585]

    К первой группе относится восстановление золота (III) до металла гидрохиноном, метолом, /г-аминофенолом и п-фенилендиами-ном 2. Водные растворы этих веществ окисляются на платиновом электроде при потенциале от +0,8 до +1,1 в (Нас. КЭ) на фоне 2 н. серной кислоты, так что титровать можно по току окисления титрующего раствора. Золото (III) при потенциале +1,0 в, при котором ведут титрование, не восстанавливается на электроде, так что кривая титрования имеет форму б. Элементы, часто сопутствующие золоту — селен, теллур, палладий, иридий, рубидий, рутений, — ни на электроде при +1,0 в, ни в растворе этими восстановителями не восстанавливаются и не мешают определению золота. Метод позволяет определять от 3 до 90 мг/л золота в промышленных продуктах. [c.208]


    Комплексонометрическое титрование меди в настоящее время может быть выполнено как с ртутным капельным, так и с платиновым электродом. Известно несколько вариантов этого определения "8, однако в основном это методы, разработанные для определения других элементов, попутно с которыми может быть в определенных условиях оттитрована и медь (см., например, разделы Кальций , Иридий , Палладий ). [c.254]

    Одной из трудных операций при определении микрограммовых количеств теллура в рудах и других продуктах является разделение селена и теллура. В норильских медно-никелевых рудах и продуктах их переработки селен и теллур, кроме того, встречаются в сочетании с платиновыми металлами. Это обстоятельство значительно осложняет анализ, так как при восстановлении селена и теллура вместе с этими элементами осаждаются палладий и частично платина. Надежных методов отделения селена и теллура вт платиновых металлов до сего времени нет. [c.308]

    Мэкстед [181] показал, что сероводород не только ослабляет каталитическую активность палладия, но также влияет и на окклюзию водорода. Он количественно исследовал зависимость между способностью к окклюзии и содержанием яда и нашел, что в отношении водорода способность к окклюзии у палладия выражается линейной функцией от содержания серы в катализаторе. Палладий количественно диссоциирует адсорбированный сероводород на серу и водород. Зависимость между содержанием серы [181] и активностью платинового катализатора при гидрогенизации олеиновой кислоты линейная до определенной концентрации яда выше этой величины кривая отравления идет более полого в направлении полной инактивации. [c.401]

    Роданиды палладия, рутения, платины и родия экстрагируются некоторыми органическими растворителями. Это свойство ооданидов используется для разделения элементов, например для отделения палладия от платины и иридия. Растворы роданидов ярко окрашены и вдогут служить для колориметрического определения платиновых металлов [42]. [c.54]

    Среди методов определения микроколичестз платиновых металлов и золота основное место занимают колориметрические и спектрофотометрические или экстракционно-спектрофотометрические методы. Число колориметрических методов для некоторых благородных металлов, например палладия, чрезвычайно велико между тем для определения иридия существует сравнительно небольшое число методов. Чувствительность спектрофотометрических методов достигает 0,01 мкг/мл, за редким исключением 0,001 мкг/мл. Большая часть методов основана на возникновении окраски комплексных соединений платиновых металлов с органическими реагентами (реже применяются неорганические реагенты) и на использовании собственной окраски таких комплексных соединений, как хлориды, бромиды, иодиды. Для спектрофотометрического определения платиновых металлов и золота применяют все классы органиче ских реагентов,, перечисленные в главе П. Во многих случаях химизм реакции и состав образующихся окрашенных продуктов неизвестны. Многие реагенты не избирательны, поэтому методы определения одного металла в присутствии другого основаны либо на нахождении различия в условиях образования окрашенных соединений (температура, pH раствора), либо на использовании некоторого различия в спектрах поглощения соединений двух металлов с одним и тем же реагентом, т. е. определении оптической плотности в разных областях спектра, либо на различной экстрагируемости окрашенных соединений органическими растворителями. [c.158]

    Определение палладия в виде [Pd U] при помощи платинового электрода [341]. Ион [Pd U] - восстанавливается на платиновом электроде, образуя волну, пропорциональную концентрации палладия. Определению не мешает родий, но мешают золото, иридий и рутений. В присутствии платины образуется суммар ная волна платины и палладия. Метод рекомендуется для определения от 5 10 до 2 10 М палладия. Точность, определения 3,0 %. [c.194]

    В фильтрате, кроме платиновых металлов, содержатся органические вещества, вымытые с катионита, поэтому перед определением платиновых металлов раствор обрабатывают царской водкой или смесью концентрированной HNO3 с 30%-ной Н2О2 для разрушения органических веществ. После этого повторным выпариванием раствора с концентрированной НС1 переводят платину, палладий, родий и иридий в хлориды. [c.257]

    Опробование слитков, содержащих много платины, наряду с палладием, иридием, родием, производится по методу Общества пробиреров ЛоЬпзоп а. Ср. также опробование и определение платиновых [c.350]

    По указанным выше причинам приведенные в этих таблицах данные, касающиеся влияния примесей, могут быть истолкованы по-разному. В некоторых случаях авторы методов проверяли влияние благородных и неблагородных металлов, входящих в состав природных материалов, а в других проверяли влияние металлов, выбранных произвольно. При определении платины или палладия в присутствии сравнительно малых количеств родия или иридия вал<ны сведения об их влиянии. То же самое можно сказать и о влиянии меди, никеля и железа. К сожалению, в большей части спектрофотометрических методов не проверено влияние свинца, который применяют при пробирном способе концентрирования платиновых металлов. Иногда прн разработке спектрофотометрического метода проверяют влияние большего числа примесей, чем это необходимо. Длинный список немешающих катионов не представляет ценности, поскольку многие из этих катионов редко сопутствуют платиновым металлам. Не представляет ценности также проверка влияния примесей без учета предшествующих определению стадий, а также способов растворения. Нужно надеяться, что авторы новых методик проверят влияние меди, никеля, железа, хрома, платиновых металлов, золота, серебра и свинца и приспособят новые спектрофотометрические методики для определения платиновых металлов в природных и промышленных продуктах. Тогда в них не будет излишних данных. [c.140]

    Необходимость определения платиновых металлов в присутствии больших количеств сопутствующих элементов довольно часто возникает при анализе природных и промышленных объектов. В работе [22] предложен новый быстрый, чувствительный и селективный метод обнаружения микрограммовых количеств палладия в растворах сложного состава — сульфатных растворах N1, Ре, Со. Метод основан на применении в ТСХ модифицированной целлюлозы, содержащей функционально-аналитические группы реагентов — бисазоза-мещенных хромотроповой кислоты. Селективность метода обусловлена специфичностью взаимодействия элементов с введенными в целлюлозу хелатообразующими группами. На тонком слое целлюлозы на пластинке одновременно происходит отделение палладия от неблагородных металлов и развитие цветной реакции с ним, что позволяет обнаружить зону палладия на хроматограмме без опрыскивания и определить его количество по величине и интенсивности пятна визуально или денситометрически. [c.69]

    Интенсивно окрашенный комплекс тетрапиридин-Ад (И)-персульфат [25] применен для качественного и количественного определения серебра в веществах сложного состава (силикатах). Калибровочная кривая прямолинейна в интервале 2—18 мкг мл. Не мешают определению платиновые металлы (платина, палладий, родий и осмий). Мешают ионы двухвалентного железа, ванадия, меди, никеля, кобальта и урана. [c.49]

    Опубликованные в последние годы работы по кинетическим методам определения платиновых металлов свидетельствуют о резко возросшем интересе к этому направлению аналитической химии. В настоящее время уже существует ряд методик определения осмия, рутения и иридия кинетическим методом, характеризующихся высокой чувствительностью и избирательностью при достаточной точности и простоте выполнения. Обнадеживающими являются и факты применения кинетических методов определения платиновых элементов в непосредственном анализе промышленных объектов. Сведения о реакциях окислительцо-восстановительного типа, катализируемых соединениями палладия, позволяют надеяться, что и для определения этого элемента будут разработаны новые высокочувствительные кинетические методы. [c.317]

    Для палладия — единственного платинового металла, который почти всегда бывает в двухвалентном состоянии, описано и практически используется большое число сравнительно селективных гравиметрических реагентов. Важнейшим классом хелатообразующих реагентов для определения палладия являются, несомненно, оксимы. Хотя почти все без исключения реагенты этого класса взаимодействуют с никелем и некоторыми другими тяжелыми металлами, в кислых растворах труднорастворимые соединения образуют только па.ии1дий и золото(I). Предварительное отделение золота необходимо при любом методе определения палладия (см. ниже). [c.191]

    Использованию ЭДТА для определения платиновых металлов посвящено мало работ в основном проводилось титрование растворов солей палладия. Однако существуют комплексы ЭДТА с другими платиновыми металлами, по крайней мере с Ки, КЬ, 1г, Р1 [1272, 1273]. [c.247]

    Важнейшим проявлением специфики электронного строения и вытекающих отсюда химических свойств платиновых элементов является их склонность к образованию комплексных соединений. Элементы-металлы других групп периодической системы, особенно поливалентные элементы переходных рядов, также дают комплексные соединения той или иной устойчивости практически со всеми известными лигандами. Спецификой комплексных соединений платиновых элементов и прежде всего наиболее изученных комплексов платины и палладия является высокая прочность ковалентной связи, обусловливающая кинетическую инертность этих соединений. Последнее даже делает невозможным определение обычными методами такой важной характеристики комплекса, как его /Сует- Обмен лигандами внутри комплекса и с лигандами из окружающей среды также затруднен. Это позволяет конструировать, например, октаэдрические комплексы платины (IV), в которых все шесть лигандов различны. Такие системы могут существовать без изменения во времени состава как в растворах, так и в твердом состоянии. Мы уже отмечали, что, напротив, осуществить синтез столь раз-нолигандмых комплексов для элементов-металлов, образующих пре- [c.152]

    Сорбционные методы можно применять также для концентрирования, разделения и определения благородных металлов (серебра, золота, металлов платиновой группы — рутения, осмия, родия, иридия, палладия, платины), содержащихся в малых количествах в природных водах и в различных растворах. При этом происходит концентрирование определяемого металла из большого объема раствора в небольшой массе сорбента за счет сорбции соединений этого металла на сорбенте. Сорбентами служат органические полимеры, силикагели, химически модифицированные ионообменными или комгаексообразующими группами (четвертичными аммонийными и фосфониевыми основаниями, производными тиомочевины), привитыми на поверхности силикагеля. [c.236]

    Глицинтимоловый синий предложен для спектрофотометрического определения малых количеств палладия в чистых платиновых металлах и их соединениях [18]. [c.15]

    Для определения 4,3—16,2 мкг/мл Аи предложен полярографи-ческий метод, основанный на прямой пропорциональной зависимости между высотой волны восстановления золота на враш аюш ем-ся платиновом электроде при потенциале +0,6 в (отн. н.к.э.) от концентрации 2-10 —3-10" г-ион/л Аи. Ошибка определения методом добавок и по калибровочному графику составляет 2—3% [50]. Разработан метод определения 0,025—2,50 мг Аи на фоне 1 М НС1 при помощи микродискового электрода. Золото восстанавливается при потенциале электрода +0,60 в. Платина и палладий [c.173]

    Титрование по току окисления избыточных иодид-ионов на платиновом аноде осуществляется при потенциале +1,0 в по отношению к меркур-иодидному электроду [251, 356]. При pH 2— 2,5 определению не мешают 1000-кратные количества Си, Ге, 2п, РЬ, Мп мешающее влияние ионов палладия устраняется переводом его при pH 4—5 в аммиачный или пиридипатпый комплексы [359, 399]. При pH 1—2 в сернокислой среде определяют сумму палладия и серебра [359], а добавлением аммиака до pH 4—5 титруют серебро, так как палладий при этом не осаждается иодидом. Если присутствует ртуть, то ее оттитровывают комплексоном III с танталовым электродом на фоне 0,1—0,5 N серной или азотной кислот при +1,2 й (нас.к.э.) после этого изменяют потенциал электрода до +0,8 в и титруют серебро иодидом [439]. [c.88]

    Особенностью палладия по сравнению с другими металлами платиновой группы является лабильность его аквакомплексов, а по сравнению с другими элементами периодической системы — способность взаимодействовать с гетероциклическими азосоединениями в кислой среде. По мнению авторов работы [518], ПАР является лучшим реагентом на палладий по совокупности оптических характеристик (АХ = 100 нм емр — еня > 10 eчR/eнR > Ю). Реагент образует с палладием два комплекса — в кислой и нейтральной средах. Экстракционно-фотометрическому определению палладия с использованием ПАР [629] при кислотности водной фазы ЗМ Н25О4 и при экстракции комплекса этилацетатом не мешают (в кратных количествах по отношению к 59,4 мкг палладия) Со, Си, Ре(1П), РЬ, 2п— 10 Pt(lV) — 2-10= Аи(1П), 1г(П1), 05(111), КЬ(1И), Ри(111) — 200. Фотометрическому определению палладия с помощью ПАР при pH 7,0 + 1,5 в присутствии ЭДТА и цитрата не мешают [629] (в кратных количествах) ш,елочные и щелочноземельные элементы — 2-10 А1, А5(1И, V), Ве, В1, Сс1, Се(111), Сг(111, VI), Оа, Нё(11), 1п, Ьа, Mg, Мп, Мс1, РЬ, Рг, КЬ, 5с, 5е, ТЬ, Т1(1, III), U(VI), V(IV), АУ, V, 2п -2-10" N1, 5п(IV) — [c.153]

    Согласно Бику, процесс хемосорбции водорода на пленках металла протекает обычно весьма быстро, а медленная адсорбция, которая иногда наблюдается, приписывается вторичному эффекту проникания адсорбента, как уже отмечалось выше. На платиновой черни [11] по крайней мере 90% поглощенного водорода адсорбируется очень быстро, поэтому величина удельной поверхности, рассчитанная из общего поглощения, была на 10% выше. При адсорбции на палладии, как хорошо известно, водород проникает в глубь решетки, поэтому определение удельной поверхности этого металла по адсорбции водорода полностью исключено. [c.291]

    Платина, палладий. Кулонометрическое определение этих элементов в обычных водных растворах применяется редко, в то же время благородные металлы являются отличным электродным материалом. Бубернак [133] провел обстоятельное исследование электролитических методов выделения и определения палладия и других металлов платиновой группы. В среде пиридинхлорида палладий (II) подвергается простому двухэлектродному восстановлению- при потенциале —0,3 в [134]. Было показано, что этот процесс восстановления может использоваться для аналитического определения палладия в диапазоне концентраций 0,1—5 ммоль. [c.62]

    Первые два метода заключаются в том, что иридий (IV) в виде Nailr lg титруют восстановителем (гидрохиноном или аскорбиновой кислотой) по току восстановления иридия на платиновом электроде при +0,4—0,5 в (Нас. КЭ) в солянокислом или хлорид-ном растворе с pH 1,5 (кривая титрования типа а). Можно было бы воспользоваться также током окисления гидрохинона или аскорбиновой кислоты при более положительных потенциалах, но при титровании иридия этого делать не следует, так как ионы иридия (III), появляющиеся в растворе во время титрования, также легко окисляются при тех же потенциалах, что гидрохинон и аскорбиновая кислота, и конечную точку заметить не удастся. При титровании по току восстановления иридия (IV) конечная точка выражена очень резко, что дает возможность определять даже малые концентрации иридия порядка 1 10 М, т. е. около 0,015 мг в титруемом объеме. Платина и палладий, а также медь, никель, селен и теллур не титруются гидрохиноном йли аскорбиновой кислотой и не восстанавливаются на платиновом электроде при указанном потенциале, поэтому не мешают определению иридия. Присутствие же золота недопустимо, так как оно ведет себя при титровании совершенно так же, как иридий (IV) —восстанавливается и на электроде и в растворе гидрохиноном. Рутений (IV) также реагирует с гидрохиноном, но его влияние может быть ослаблено соответствующей обработкой раствора, так же как и влияние железа (последнее просто связывают фосфорной кислотой). [c.220]

    Комплексы с перечисленными основаниями используются для экстракционно-фотометрического определения и разделения многих металлов. Описаны методы определения меди [14, 24—31, 33, 36], железа [13, 14, 20, 44, 50, 56, 58], кобальта [12, 19,20, 42, 45, 47], таллия [48], сурьмы [40], рения [66], палладия [43, 67] и ряда других металлов. Осуществляется разделение ряда платиновых металлов, рения и молибдена [14]. В ряде случаев разделение производится путем создания различной кислотности водной фазы перед экстракцией. Так, кобальт извлекается в виде пиридин-роданидного комплекса при pH около 6, а никель — при pH 4 [34]. Большое значение имеет выбор экстрагента. Так, пиридин-роданидный комплекс палладия хорошо извлекается хлороформом, а рутений в этих условиях не извлекается. Для его экстракции применяют смесь трибутилфосфата и циклогексано-на [35]. 11звестно использование тройных комплексов для открытия ряда анионов, таких как роданид, иодид, бромид, цианат, цианид [36]. [c.115]


Смотреть страницы где упоминается термин Палладий, определение в платиновых: [c.22]    [c.173]    [c.282]    [c.285]    [c.18]    [c.571]    [c.113]    [c.136]    [c.24]    [c.264]    [c.278]    [c.498]    [c.590]   
Химико-технические методы исследования (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий определение в платиновых рудах

Палладий палладий

Палладий, определение в платиновых слитках, быстрое



© 2025 chem21.info Реклама на сайте