Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетальдегид, продукты реакций

    Прн этих условиях наряду с винилацетатом образуется некоторое количество ацетальдегида. Продукты реакции проходят ловушку 17 для улавливания угольной пыли и направляются в последовательно присоединенные холодильники 8—10. Холодильник 8 охлаждается водой, холодильник 9— рассолом с температурой —15° и холодильник 10 — рассолом с температурой —40°. Винилацетат, конденсируясь в холодильниках, стекает в прием-пики 18 и 19 п подается в напорный бак 7. Не вошедший в реакцию ацетилен [c.815]


    Вторым важным направлением исследований в области каталитического окисления непредельных углеводородов является изучение реакций с атакой кислорода на С—Н-связь, активированную двойной связью. Акролеин, ацетальдегид, продукты реакции гидроксилирования, производные окисей олефинов — таковы целевые продукты окисления олефинов, возможность образования которых при этом очевидна. Этим вопросам посвящено немало работ [418—421]. [c.84]

    В США для этой цели в большинстве случаев применяют технически чистый ацетилен и катализатор из окиси железа и окиси цинка, находящийся в виде шариков в трубчатой печи. Ацетилен и водяной пар смешивают в объемном отношении 1 10 и пропускают над катализатором. Продукты реакции промывают водой, а затем раствор подвергают перегонке. Незначительное количество ацетальдегида получают как побочный продукт. [c.248]

    Побочными продуктами реакции будут формальдегид, ацетальдегид, окись углерода, органические кислоты, карбонильные соединения и полимеры. [c.95]

    Собранные после каждого опыта газообразные и жидкие продукты подвергались анализу газы на содержание водорода, метана, азота, углекислоты, окиси углерода, кислорода и непредельных углеводородов общепринятыми методами в конденсате (смесь жидких продуктов реакции) определялось содержание эфира, ацетальдегида и других альдегидов, уксусной и других кислот. [c.369]

    Источники загрязнения окружающей среды. В парофазном этиленовом процессе газообразные выбросы — хвостовые газы из скрубберов, содержащие следы этилена, уксусной кислоты, винилацетата, ацетальдегида и других побочных продуктов реакции. Тяжелые остатки нз дистилляционных колонн содержат полимеры и смесь альдегидов. [c.279]

    Технологическая схема процесса приведена на рис. 6.14. В реактор 7 подают катализаторный раствор, уксусную кислоту, этилен, кислород и циркуляционный газ [концентрация кислорода в исходном газе около 5,5% (об.)]. Реакция осуществляется при 130 °С и давлении 3 МПа. Выходящая из реактора смесь непрореагировавшего этилена, кислорода, продуктов реакции и уксусной кислоты после охлаждения в холодильнике 3 и дросселирования поступает в газосепаратор 4. Несконденсировавшиеся газы после поглощения двуокиси углерода раствором соды в скруббере 5 (с последующей десорбцией Og в отпарной колонне 6) возвращаются в реактор J. Для удаления инертных компонентов часть газа периодически выводится иа системы. Конденсат из газосепаратора 4 поступает в колонну 7, в которой отгоняются продукты реакции, включая образовавшуюся воду. Из куба этой колонны отбирается непрореагировавшая уксусная кислота, которая затем возвращается в реактор. В колонне 8 отгоняются низко-кипящие компоненты, которые для выделения ацетальдегида поступают в абсорбер 12. Поглощенный водой ацетальдегид выделяется из водного раствора ректификацией в колонне 13. Отбираемый из куба колонны 8 продукт, состоящий из винилацетата, воды и высококипящих компонентов, разделяется в отстойнике 9 на два слоя. Водный слой после извлечения следов винилацетата направляют в канализацию. Органический слой из отстойника 9 направляют для удаления воды в колонну 10, из которой смесь продуктов поступает в ректификационную колонну И, где отгоняется чистый винилацетат. Из куба колонны И выводятся высококипящие примеси. Пары воды с примесью винилацетата из верхней части колонны 10 возвращаются в колонну 8. [c.193]


    В качестве побочных продуктов образуются пропионовый альдегид, ацетальдегид, формальдегид, ацетон, СО, СОа и вода. Катализаторо.м-для этого процесса служит окись меди, нанесенная на непористый носитель (пемзу или карборунд) в количестве 0,5—1,5% (масс.). Позднее был разработан молибдено-кобальтовый катализатор с висмутом и другими добавками. Окисление ведут при 320—350 °С и времени контакта 0,5—1,0 с в присутствии водяного пара, позволяющего улучшить условия выделения акролеина и подавляющего реакции глубокого окисления. Последний эффект достигается также при добавлении в исходную газовую смесь микроколичеств (0,05% от массы пропилена) бромистых или хлористых алкилов. Состав исходной смеси диктуется пределами взрывоопасных концентраций. Соотношение (мольное) пропилен кнслород водяной пар поддерживают равным 4 1 5 или 1 1,5 3, т. е. выше верхнего или ниже нижнего пределов взрываемости. В зависимости от состава газовой смеси процесс ведут с рециркуляцией пропилена или без нее. Реакцию окисления проводят в многотрубчатых контактных аппаратах с солевым теплоносителем. Реакционные газы проходят водную промывку, при этом получают 1,5—2%-ный раствор акролеина в воде,содержащий также побочные продукты реакции — ацетальдегид, пропионовый альдегид й т. д. Акролеин выделяется из водного раствора, ректификацией очищается от ацетальдегида и экстрактивной дистилляцией с водой — от пропионового альдегида. Выход акролеина составляет 67—70% при степени превращения пропилена 50%. [c.207]

    Окисление пропана и бутана производится при смешивании их с кислородом и реакторах при 350—50" С и давлении 7 — 10 ат. В продуктах реакции получают формальдегид, ацетальдегид. мета-пол и другие соединения. [c.354]

    После очистки в циклоне от следов ртути газообразные продукты реакции охлаждали сперва до 60°, что приводило к конденсации некоторой части ацетальдегида. Затем газ промывали жидкостью, вытекавшей из последнего скруббера, и получали 7%-ный водный раствор ацетальдегида. Последние следы ацетальдегида удаляли из газов промывкой их водой при 40° полученный при этом слабый раствор применяли для орошения предыдущего скруббера. Водный раствор ацетальдегида, содержащий следы ацетона и уксусной кислоты, а также высшие продукты конденсации, такие, как кротоновый альдегид, очищали ректификацией под давлением 3 ата. В качестве побочной фракции собирали ацетон, который концентрировали в отдельных колоннах. Выход товарного ацетальдегида составлял 93%, считая на ацетилен. [c.299]

    Метилвиниловый эфир гидролизовали при 80—100° и 3,5 ата 0,28%-ным раствором серной кислоты [13]. Газообразные продукты реакции конденсировали и разгоняли, чтобы отделить ацетальдегид от метилового спирта. При перегонке среда должна быть несколько кислая, чтобы не происходило образования ацеталя. Общий выход ацетальдегида из ацетилена равнялся 96%. Этот метод не требует применения ртути, но тем не менее в настоящее время не используется промышленностью.  [c.299]

    Рекомендуемые эфиры, например этилацетат, образуют азеотропные смеси только с водой, но не с уксусной кислотой или ее ангидридом. Таким образом, вода по мере ее появления непрерывно удаляется из аппарата. Из других веществ, образующих с водой азеотропные смеси, можно пользоваться диизопропиловым эфиром [7]. Отношение уксусного ангидрида к уксусной кислоте в продуктах реакции зависит от отношения этилацетата к ацетальдегиду в исходной смеси. Это иллюстрируется данными, приведенными в табл. 65. [c.335]

    Процесс получения смеси уксусной кислоты и уксусного ангидрида проводили как по непрерывной, так и по периодической схемам. По периодическому методу [9] смесь уксусной кислоты и ацетальдегида, взятых в отношении 1 2,3, окисляли при 40° и повышенном давлении. В качестве катализатора использовали смесь ацетатов кобальта и меди. Продукты реакции состояли из 57% уксусной кислоты, 33% уксусного ангидрида и 10% воды. [c.336]

    При непрерывном процессе [4] при температуре 40° окислению подвергали смесь из 1 весовой части ацетальдегида и 2 весовых частей этилацетата, к которой было добавлено 0,05—0,1% ацетатов кобальта и меди (отношение Оэ Си равнялось 1 2). Окисление вели до 96%-ной конверсии. Отношение уксусного ангидрида к уксусной кислоте в продуктах реакции равнялось 56 44 в отсутствие этилацетата оно снизилось бы до 20 80. В продолжение всего процесса непрерывно отгонялась смесь ацетальдегида, этилацетата и воды. После отделения водного слоя раствор ацетальдегида в этилацетате возвращали обратно в реактор. В настоящее время процесс проводят таким образом, что отношение ангидрида к кислоте в продуктах реакции равняется 70 30. [c.336]


    Этот процесс используют для производства этилацетата из ацетальдегида. Катализатор состоит в основном из этилата алюминия, некоторого количества хлористого алюминия и небольших добавок окиси или этилата цинка. Конденсацию проводят при 0°, медленно прибавляя ацетальдегид к смеси этилацетата и этилового спирта. После этого реакционную смесь выдерживают до тех пор, пока конверсия альдегида не достигнет 98%. Продукты реакции перегоняют. Первая фракция представляет собой непро-реагировавший альдегид и некоторое количество смеси этилацетата и этилового спирта. Эту фракцию возвращают в реактор. Вторая фракция содержит 75% этилацетата и 25% этанола. Ее применяют для приготовления катализатора. Третья фракция является чистым этилацетатом. Общий выход этилацетата из ацетальдегида равен 97—98% [15]. [c.348]

    Другой промышленный способ получения этиленгликоля заключается в действии окиси углерода на формальдегид. В результате конденсации образуется гликолевая кислота, метиловый эфир которой восстанавливают в паровой фазе в этиленгликоль (гл. 16, стр. 296). В 1954 г. в США 83% этиленгликоля было получено из окиси этилена, а 17% — из формальдегида и СО [1]. Последний способ нельзя использовать для производства окиси этилена хотя теоретически этиленгликоль и может превратиться при повышенной температуре и низком давлении в окись этилена, на практике основными продуктами реакции, проведенной при этих условиях, являются ацетальдегид или диоксан, более устойчивые, чем окись этилена. [c.354]

    Фтор-3-(трифторметил)фенилметилкарбинол. К магнийорганическому соединению, полученному из 42 г 1-бром-3-(трифторметил)-4-фторбензола в 120 мл эфира, прибавляют раствор 9,5 г ацетальдегида в 50 мл эфира. Продукт реакции разлагают прибавлением 28 жл 25%-ного раствора хлористого аммония, фильтруют, отделяют эфирный раствор и перегонкой выделяют 22 г 4-фтор-3-(трифторметил)фенилметилкарбинола с т. кип. 86—87° (5 мм) df, 1,332 Лд 1,4461 выход составляет 61% от теорет. [8]. [c.156]

    Одностадийное окисление м- и л-ксилолов реализовано в промышленности и успешно конкурирует с двухстадийным. Окисление проводят воздухом в уксуснокислом растворе при 125—200 °С и давлении до 4 МПа в барботажных колоннах. Катализаторами служат ацетат кобальта и ацетальдегид. Продукты реакции — дикарбоновые кислоты — выпадают из раствора и отделяются фильтрованием. Уксусную кислоту после регенерации и отделения воды возвращают в процесс. Выход терефталевой кислоты составляет 98% от теоретического [7]. [c.494]

    Имеется ряд сообщений о влиянии добавок на периоды и г . По-видимому, особо важную роль играют добавки соединений, образующихся в качестве промежуточных продуктов реакции, таких как формальдегид и ацетальдегид. Изучение смесей пентан-кислород и гексан-кислород при температурах несколько выше 200° С показало, что добавление умеренных количеств формальдегида оказывает сильнейшее ингибирующее действие [8], Точно так н<е при изучении смесей пропан-кислород было обнаружено увеличение индукционного периода в присутствии формальдегида [15]. В противоположность этому наблюдения над влиянием ацетальдегида на смесь ЮдН а + 20а при температуре 329° С и давлении 200 мм рт. ст, (по-видимому, в период т ) показали, что индукционный период после добавления ацетальдегида уменьшается. Однако следует отметить, что в указанных опытах индукционный период не уменьшался до нуля даже при добавлении 5% ацетальдегида, хотя по данным экспериментаторов [1] это соответствовало приблизительно концентрации ацетальдегида к концу индукционного периода в тех случаях, когда ацетальдегид вообще пе добавлялся к смеси. Поэтому Айвазов и Нейман пришли к заключению, что один ацетальдегид не может бы1Ь причиной мгновенного образования холодного пламени, и предположили, что перекиси, обнаруженные ими в сравнимых количествах, также должны играть известную роль в механизме возникновения холодного пламени. По-видимому, это предположение справедливо, однако возникает вопрос, идентичны ли перекиси, выделяемые из реакционной смеси, тем активным перекисям, которые обусловливают реакцию разветвления цепи в период т . Вероятно, следует различать, по крайней мере, два процесса образования перекисей. Одним из них является окисление формальдегида с образова- [c.256]

    При некаталитпческом окислении и-бутана при температуре 220—240° и давлении от 30 до 150 ат основными продуктами реакции, так же как и при окислении пропана, являются ацетальдегид, формальдегид, метанол и др. Изобутап в этих условиях дает высокий выход ацетона, что объясняется наличием в изобутане третичного атома углерода. [c.84]

    Помим9 основных продуктов (ацетальдегида, формальдегида, метанола, ацетона), в продуктах реакции содержатся также дру- [c.93]

    Принципиальная схема процесса приведена на рис. 6.11. Окисление циклогексана (/) осуществляется в растворе уксусной кислоты, взятой в десятикратном избытке, при 90 °С. К смеси добавляется ацетилацетонат трехвалентного кобальта (в количестве 3,5 кг/м ) и ацетальдегид (до 2 кг/м в расчете на вводимое сырье). Продолжительность реакции измеряется долями секунды. Оксидат с высоким содержанием адипиновой кислоты поступает в отделение 2, в котором происходит регенерация уксусной кислоты и непрореагировавшего циклогексана. Там же осуществляется выделение образовавшейся в ходе реакции воды. При последующей nepepa6otKe (5) от сырой адипиновой кислоты отделяются катализатор и побочные продукты реакции. Затем адипиновая кислота подвергается рафинации (4). Для производства 1 т адипиновой кислоты е чистотой 99,7% (масс.) расходуется 800 кг циклогексана. По сравнению с процессом получения адипиновой кислоты по двухстадийному методу с применением азотной кислоты на второй стадии, процесс фирмы Asahi технологически более прост и не связан с образованием труднореализуемых продуктов производства. [c.189]

    Невит и Блох изучили также окисление этана при давлении 15—100 атм и температуре 260—360 . В продуктах реакции, помимо воды, метилового спирта, формальдегида, муравьиной кислоты и ацетальдегида, в преобладающем количестве находились этиловый спирт и уксусная кислота. Попышение давления благоприятствовало образованию веществ, получающихся без разложения молекулы углеводорода. Впоследствии в Англии и Канаде этот метод окисления под высоким давлением и при отношении углеводород кислород = 9 1 стал промышленным способом получения метилового и эти.чового спиртов из метана и этана. [c.349]

    ДОМ воды В межполочное пространство. Продукты реакции проходят котел-утилизатор 4, вырабатывающий технологический пар, и поступают в холодильник-конденсатор 5, где конденсируются вода, ацетальдегид и кротоновый альдегид. Конденсат собирается в сборнике 6, а несконденсировавшаяся парогазовая смесь подается в промывной скруббер 7, орошаемый водой, где из нее извлекается ацетальдегид. Непоглощенный ацетилен возвращается в смеситель I в виде циркуляционного газа, а часть его выводится на очистку (отдувка). Раствор ацетальдегида из скруббера соединяется в сборнике 6 с конденсатом и в виде 10% -ного водного раствора подается в колонну 9 предварительной ректификации через подогреватель 8. Отбираемая из колонны верхняя фракция, содержащая ацетальдегид, поступает на окончательную ректификацию и очистку. [c.303]

    Взаимодействие арилгидрокснламина со спиртовым раствором. серной кислоты ведет к ряду сложных реакций, в том числе к алкилированию промежуточного продукта (фенола) в эфир фенола [201]. При электролизе раствора этилсерной кислоты ацетальдегид в продуктах реакции не обнаружен [202]. [c.38]

    В этом варианте процесса смесь этилена, кислорода и уксусной кислоты пропускают над палладиевым катализатором на носителе реакция идет в газожидкостной или газовой фазе. В типичном случае этилен пропускают через нагретую уксусную кислоту, чтобы получить необходимое их соотношение, а затем вводят кислород. Смесь проходит над твердым катализатором, находяшимся в трубках теплообменника. Для отвода тепла реакции применякэт кипящую под давлением воду, она омывает трубки. Продукт реакции быстро охлаждают, чтобы отделить жидкие продукты реакции от непрореагировавш уксусной кислоты. Поскольку в реакцию вступа т не весь кислород и этилен, после прохождения скрубберов, где улавливается СО2, газ снова возвращается в цикл /30, 34, 37/. Выход винилацетата составляет 90% в расчете на этилен, а выход ацетальдегида 1% и меньше. [c.288]

    Ацетальдегид полимеризуется в паральдегид в присутствии следов серной кислоты. Паральдегид смешивают с водным раствором аммиака (30-40% NH3) и небольшим количеством уксусной кислоты (катализатор - ацетат аммония), реакция протекает непрерывно в жидкой фазе при 220-280°С и 100-200 атм. При охлаждении продукт реакции разделяется на два слоя. Большую часть водного слоя насьпдают аммиаком и возвращают в цикл. Из органического слоя выделяют 2-ме-тил-5-этилпиридин выход примерно 70% от теоретического в расчете на ацетальдегид /9, 36/. [c.335]

    Частичное окисление СНГ. При окислении отдельных углеводородов, особенно олефинов, наблюдается тенденция к образованию смеси сложных соединений. Однако преимущества гомогенной фракции по сравнению с неразогнанной смесью СНГ не всегда можно использовать. Окисление смеси СНГ, осуществляемое обычно в присутствии катализаторов, в итоге приводит к образованию избытка определенных химических соединений, откуда возникает проблема разделения продукта реакции и сырья. Хотя процесс разгонки сырья не является простым (в первую очередь из-за того, что точки кипения различных компонентов исключительно близки друг к другу), идентичный процесс окисления смесей СНГ с последующей разгонкой продуктов применяется довольно редко. В эксплуатации находятся четыре завода, работающих по этим технологиям, из которых три функционируют в США,, а один в Канаде. Все они принадлежат компаниям Селанеа Корпорейшн и Ситиз Сервис . На одном из заводов осуществляется частичное окисление пропана—бутана без катализатора при недостатке воздуха, температуре 350—450 °С и давлении 303— 2026 кПа. Реакция идет в паровой фазе. Основными продуктами являются формальдегид, метанол, ацетальдегид, нормальный про-панол, уксусная кислота, метилэтиловые кетоны и окислы этилена и пропилена. На другом заводе окисление происходит в жидкой фазе в присутствии растворителя. Основной продукт — уксусная кислота с некоторым количеством побочных продуктов метанола, ацетальдегида и метилэтиловых кетонов. Могут быть подобраны такие режимы, при которых в основном будут образовываться метилэтиловые кетоны. Сепарация продуктов в первом случае основана на различной растворимости веществ одни растворимы только в воде, другие — в углеводородах. Спирты и альдегиды сепарируются из кислот при щелочной экстракции, а отдельные соединения разделяются фракционной разгонкой. [c.245]

    В США прямое окисление природного газа осуществляют две фирмы. Фирма Ситиз сервис ойл компани имеет установку в г. Таллант (шт. Оклахома), на которой природный газ окисляют при умеренных температуре и давлении в смесь равных весовых количеств метилового спирта и формальдегида. Наряду с ними образуются в меньших количествах ацетальдегид и метилацетон схему этой установки см. в работе [10]. Согласно опубликованным патентам [11], природный газ, содержащий j—С4-угле-водороды, смешивают с 10 об.% воздуха и пропускают при 460° и 20 ama над твердым контактом. Первоначально катализатором служил платинированный асбест позже стали применять смесь фосфата алюминия и окиси меди на инертном носителе. Продукты окисления выделяли охлаждением газовой смеси, которую в заключение промывали при 0° частью конденсата, образовавшегося при охлаждении. Природный газ окислялся неполностью, тогда как кислород реагировал целиком отходящие газы либо возвращали обратно, смешивая со свежими порциями природного газа и воздуха, либо сжигали. Жидкие продукты реакции содержали в среднем 5—6% ацетальдегида, 34—36% метилового спирта, 20—23% формальдегида, воду и небольшие количества кислородных соединений более высокого молекулярного веса. Время реакции не превышало нескольких секунд, иногда даже меньше 1 сек. температуру реакции регулировали подогревом входящего в реактор газа до температуры на 50° ниже рабочей. Для максимального выхода формальдегида давление не должно было превышать 20 ат при 50 ат основным продуктом являлся метиловый спирт. В патентах указывается, что большая часть метана не реагирует и получаемые продукты образуются в результате окисления высших углеводородов. [c.72]

    В настоящее время фирма Ситиз сервис , по-видимому, также проводит окисление пропана и бутана по процессу, аналогичному методу фирмы Силениз корпорейшн оф Америка . Эта последняя фирма осуществляет некаталитическое (термическое) окисление пропана и бутана воздухом при 350—450° и давлении 3—20 ата углеводород берут в избытке. Бутан реагирует легче, чем пропан, и им предпочитают пользоваться как исходным сырьем. Продукты реакции разделяют на конденсат, состоящий из водного раствора органических кислородных соединений, и на неконденсирую-щиеся отходящие газы, которые возвращают в процесс. Часть отходящих газов выводят из системы, чтобы предотвратить накопление в ней инертных примесей однако из этих сбрасываемых газов выделяют пропан и бутан, возвращаемые в систему. Превращение углеводородов составляет 100%i. Не менее 15—20% углеводородов сгорает до окислов углерода и воды. Получаемая смесь органических соединений имеет сложный состав в нее входят формальдегид, метиловый спирт, ацетальдегид, уксусная кислота, н-пропиловый спирт, метилэтилкетон и окиси этилена, пропилена и бутилена. По этому методу работают заводы в г. Бишопе (шт. Техас) и г. Эдмонтоне (Канада). [c.72]

    Непосредственное превращение этилена в формальдегид при нагревании с кислородом стало известно уже давно благодаря исследованиям Шутценбергера (1875 г.), Вильштеттера, Бона, Уилера и их шкоп. Наилучшие выходы получаются при 550—600° и больших объемных скоростях газов. Одновременно с формальдегидом образуются также следы ацетальдегида и уксусной кислоты. Ленер [1] подробно исследовал продукты окисления этилена молекулярным кислородом. Окисление проводилось в интервале 300—500° при длительной реакции (в проточной системе без рециркуляции) и при кратковременной реакции (в системе с рециркуляцией). В жидких продуктах реакции, полученных после конденсации, содержались окись этилена, этиленгликоль, глиоксаль, ацетальдегид, формальдегид, муравьиная кислота и вода. В опытах с рециркуляцией основными продуктами являлись окись этилена и формальдегид. При работе на более крупной лабораторной установке в значительном количестве была выделена перекись формальдегида НОСНзООСНцОН. Последняя могла быть разложена на водород и муравьиную кислоту, которые присутствуют в продуктах окисления этилена  [c.157]

    Ньюитт и Мен [2], окисляя этилен воздухом при 210—270° и под давлением 30—100 ат, выделили из продуктов реакции формальдегид, ацетальдегид, этиленгликоль, а также муравьиную и уксусную кислоты [2]. [c.157]

    В своей работе по окислению пропилена кислородом Ленер [I] выделил только ацетальдегид, формальдегид и муравьиную кислоту. Однако Ньюитт и Мен, работавшие с избытком пропилена, получили при 215—280" и 12—18 ата окись пропилена, пропиленгликоль и глицерин наряду с различными кислотами и альдегидами [2]. Установлено, что в начальных стадиях окисления образуются аллиловый спирт и пропионовый альдегид. Можно сказать почти определенно, что аллиловый спирт и глицерин получаются в результате атаки кислородом метильной группы. Лукас исследовал окисление бутилена-2 кислородом при 350—500° [3]. Основными продуктами реакции являются ацетальдегид и дивинил. Установлено также присутствие глиоксаля, окиси олефина, кислоты и перекисей метилэтилкетон не обнаружен. Дивинил, по-видимому, получается в результате дегидратации 2,3-бутандиола или окиси бутилена, а окисление его по двойным связям приводит к глиоксалю  [c.158]

    В крупном промышленном масштабе ацетальдоль получают, прибавляя небольшое количество гидроокиси щелочного металла к ацетальдегиду и выдерживая смесь в течение нескольких часов при 20° или ниже. Процесс можно проводить непрерывно или периодически. Реакция — экзотер.ми-ческая (ДЯ = —13 ккал на 1 г-моль ацетальдегида), и поэтому следует предусмотреть отвод теплоты реакции. При осуществлении непрерывного процесса тепло реакции можно отводить с помощью энергичной рециркуляции продуктов реакции. [c.301]

    В патентной литературе описывается аналогичный процесс. Нормальный масляный альдегид конденсируют с избытком ацетальдегида при 0—10° в присутствии 0,03—0,04% едкого натра. Продукты реакции нейтрализуют и выливают в кипящий 2%-ный водный раствор серной кислоты. При этом с хорошим выходом получается ненасыщенный альдегид изостроения, метилэтилакролеин (а-этилкротоновый альдегид) СН3СН2ССНО, кипящий [c.303]

    Хлораль. Наиболее интересным и практически важным иа хлорированных альдегидов является хлораль. Его получают, действуя хлором на этиловый спирт (Либих). При этом первоначально образуются ацетальдегид и различные хлорпроизводные ацетальдегида конечным продуктом реакции является хлораль, получающийся в виде соединения с одной молекулой спирта — хлоральалкоголята. Последний разлагают затем концентрированной серной кислотой. [c.313]

    Т рифторметилфенилметилкарби но л. В колбу емкостью 5 л, снабженную мешалкой, обратным холодильником и капельной воронкой, помещают 73,3 г (3,14 г-атома) магниевых стружек и 50 мл сухого эфира и при перемешивании прибавляют в течение 2 час. раствор 706,5г (3,14 моля) 3-бром-а,а,а-трифтортолуола в 2000 мл сухого эфира. К полученному раствору магнийорганического соединения прибавляют при перемешивании раствор 160 г (3,63 моля) свежеперегнанного ацетальдегида в 1800-ил сухого эфира и реакционную смесь кипятят в течение 4 час. с обратным холодильником. Продукт реакции разлагают насыщенным раствором хлористого аммония, отделяют эфирный слой, а водный слой экстрагируют 500 мл эфира. Эфирные растворы соединяют, промывают водой, 500 мл 5%-ного раствора бикарбоната натрия и снова водой и сушат сернокислым натрием. Эфир отгоняют, а остаток перегоняют в вакууме, применяя колонку с насадкой из спиралей. Выход 3-трифторметилфенилметилкарбинола составляет 495 г (83% от теорет.) [47] т. кип. 99—99,5° (15 л Л1) [10], 100—102° (17 лгж)  [c.59]

    Фен илфенилметилкарбинол [3-(а-оксиэтил)дифенил] получают из 3-бромдифенила и ацетальдегида по методике, описанной для синтеза 2-фенилфенилметилкарбинола (см. стр. 72). 3-Фенилфенилметилкар-бинол выделяют из продуктов реакции перегонкой в вакууме собирают фракцию с т. кип. 146—149° (1 мм)-, 1,6098 выход равен 66% оттеорет. [961. [c.73]

    Х лор-3 -(трифторметил) фенилметил карбинол получают следующим образом. На магнийорганическое соединение, полученное обычным путем из 200 г 1-бром-3-(трифторметил)-4-хлор-бензола в 500 мл эфира, действуют раствором 35,2 г ацетальдегида в 100 мл эфира продукт реакции гидролизуют прибавлением 75 мл насыщенного-раствора хлористого аммония. Получают 127 г 4-хлор-5-(трифторметил)-фенилметилкарбинола с т. кип. 109—109,5° (6 мм)-, т. пл. —15° df 1,3672 По 1,4853 выход составляет 71,5% оттеорет. [189]. [c.158]

    Из 12,5 г магния и 105 г 1-бромнафталина в 200 мл эфира получают раствор бромистого 1-нафтилмагния. При охлаждении ледяной водой к этому раствору прибавляют по каплям раствор 25 г ацетальдегида в 50 мл эфира. Смесь оставляют на ночь при комнатной температуре, после чего разлагают подкисленной водой при охлаждении льдом. Продукты реакции экстрагируют эфиром, отгоняют от эфирного раствора эфир и затем отгоняют с водяным паром нафталин, образовавшийся во время реакции. Оставшийся в перегонной колбе 1-нафтилметилкарбинол вновь экстрагируют эфиром, сушат поташом и перегоняют. Получают 70 г неочищенного 1-нафтилметилкарбинола, основная масса которого перегоняется при 143—144° (6 мм)-, в течение суток он застывает в виде крупных кристаллов с т. пл. 64°. Выход 1-нафтилметилкарбинола составляет 81% от теорет. [222]. [c.186]

    Получают магнийорганическое соединение из 182 г (0,75 моля) 2,5-дибромтиофена [2951 и 18,3 г (0,75 г-атома) магния в 250 мл эфира и прибавляют 200 мл бензола для того, чтобы растворить красное масло, не растворимое в эфире. Затем приливают по каплям 34 г (0,77 моля) ацетальдегида, после чего гидролизуют разбавленной уксусной кислотой. Прибавляют 2 %-ную серную кислоту и перегонкой с водяным паром выделяют из продуктов реакции 2-(а-оксиэтил)-5-бромтиофен в смесн с 2-винил-5-бромтнофеном. Фракционированной перегонкой выделяют 2-винил-5-бромтиофен выход составляет 34% от теорет. [292]. [c.237]


Смотреть страницы где упоминается термин Ацетальдегид, продукты реакций: [c.160]    [c.822]    [c.122]    [c.184]    [c.296]    [c.398]    [c.219]    [c.304]    [c.29]   
Справочник резинщика (1971) -- [ c.304 , c.305 , c.306 , c.333 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетальдегид

Продукты реакции



© 2025 chem21.info Реклама на сайте