Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты неорганические химическая

    Неорганические полимеры. Неорганических полимеров — множество. Отличительным и практически важным свойством многих неорганических полимеров является их термическая и химическая стойкость. Другой отличительной чертой многих неорганических полимеров является их твердость и хрупкость. Это обусловлено наличием пространственной кристаллической структуры и часто высокой долей ионной составляющей химической связи. Влияют [c.611]


    Ионный обмени его применение. Изд. АН СССР, 1959, (319 стр.). Сборник статей различных авторов — крупных специалистов по ионному обмену. Отдельные статьи содержат сведения о классификации ионитов, их химическом составе и методах синтеза о теории ионного обмена и ионообменной хроматографии о применении ионитов в аналитической химии и технологии неорганических веществ, в промышленности, медицине о сорбции органических соединений. Каждая глава снабжена обширным библиографическим списком. [c.489]

    В аналитической химии, особенно в разделе количественного анализа, большую роль играет понятие грамм-эквивалента на основе грамм-эквивалентов определяют нормальности растворов. Относительной эквивалентной массой элемента (в виде атомов или атомных ионов) и химического соединения является выраженная в а. е. масса, которая реагирует в данных условиях с элементарным электрическим зарядом или количеством другого вещества, несущим такой фактический, или виртуальный заряд. Вещество взаимодействует непосредственно с электрическими зарядами в виде электронов в окислительно-восстановительных реакциях многих неорганических веществ (подробнее об этом см. далее) с другим веществом, несущим фактические заряды, когда происходят реакции между ионами с другим веществом, несущим виртуальный заряд, характеризуемый окислительным числом атома или группы атомов (радикала), в [c.35]

    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]


    Множество неорганических химических соединений отличается весьма сложным строением. В этих соединениях помимо обычных ковалентных или ионных связей между атомами или частицами действуют ковалентные химические связи, образованные по донорно-акцепторному механизму. Такие сложные соединения называются комплексными соединениями. [c.244]

    Химические сдвиги для ряда азотсодержащих органических и неорганических соединений (в том числе аммония, нитрат-, нитрит-, роданид-, цианид- и азид-ионов) приведены в [425, стр. 344]. По величине химического сдвига и относительной ширине линий поглощения судят об изменении ионного характера химических связей атома азота в различных соединениях. По спектрам ядерного магнитного резонанса на ядрах определяют строение молекул. [c.146]

    В неорганической технологии флотацию используют для обогащения поступающего в переработку сырья, например для извлечения из природных фосфатных руд апатита или фосфоритов, перерабатываемых в минеральные удобрения в производстве калийных солей — хлорида калия из сильвинитов и сульфата калия из полиминеральных калийных руд в производстве соды для разделения гидрокарбоната натрия и хлорида аммония в производстве борной кислоты и боратов и др. Флотацией можно извлекать тонкодисперсные осадки, взвешенные в жидкой фазе флотация осадков), или находящиеся в растворе ионы, способные химически соединяться с добавляемыми поверхностно-активными веществами (ПАВ), которые адсорбируются на воздушных пузырьках и выносятся ими в пенный слой ионная флотация). [c.325]

    В книге приведены свойства и строение атомов элементов, природных и радиоактивных изотопов, мо-..лекул, радикалов и ионов, физико-химические константы и реакционная способность более 3000 неорганических веществ, выпускаемых химической промышленностью и обычно используемых в лабораториях. Изложены номенклатурные правила составления химических формул и названий, даны тривиальные, устаревшие и минералогические названия веществ. [c.248]

    Электролиты — это химические соединения, которые в растворе (полностью или частично) диссоциируют на ионы. Различают сильные и слабые электролиты. Сильные электролиты диссоциируют в растворе на ионы практически полностью. Примерами сильных электролитов в водных растворах могут служить некоторые неорганические основания (NaOH) и кислоты (НС1, HNO3), а также большинство неорганических и органических солей. Слабые электролиты диссоциируют в растворе только частично. Доля продиссоциировав-ших молекул из числа первоначально взятых называется степенью диссоциации. К слабым электролитам в водных растворах относятся почти все органические кислоты и основания (например, СН3СООН, пиридин) и некоторые неорганические соединения. В настоящее время Б связи с развитием исследований в неводных растворах доказано (Измайлов и др.), что сильные и слабые электролиты являются двумя различными состояниями химических соединений (электролитов) в зависимости от природы растворителя. В одном растворителе данный электролит может быть сильным электролитом, в другом — слабым. [c.244]

    В воде неорганические соединения диссоциируют на электрически заряженные атомы и радикалы, называемые ионами. Распад веществ на составляющие их ионы называется ионизацией. Ион выражается химическим символом элемента или радикала со знаками плюс или минус вверху, указывающими число единичных зарядов иона. [c.11]

    Изучая реакции органических реагентов с неорганическими ионами физико-химическим методом (треугольная диаграмма Сос-став — свойство ), Ф. М. Шемякин установил, что наибольшее значение имеет специфичность условий реакции, а не специфичность реагентов, которой очень трудно достигнуть. Меняя условия проведения реакций, находя оптимальные концентрации реагирующих веществ, pH раствора, температуру, условия осаждения и растворения, а также используя процессы сорбции и ионного обмена, можно подобрать для каждого элемента специфические условия его определения наиболее характерными органическими реагентами. [c.221]

    Описанные особенности строения электронных оболочек атома углерода являются причиной образования в органических соединениях химических связей, существенно отличающихся по своему характеру от связей, присущих большинству диссоциирующих на ионы неорганических соединений. [c.28]

    Упомянутая особенность строения электронной оболочки атома углерода обусловливает существенное различие между характером химических связей, образующихся в органических соединениях, и характером связей, имеющихся в диссоциирующих на ионы неорганических веществах. [c.34]

    Очень сильное влияние на упорядочивающее воздействие поверхности глинистых минералов на воду оказывает состав обменных катионов. Это объясняется прежде всего прочностью связи катионов с поверхностью глинистой частицы, т. е. способностью их к диссоциации и участию в катионообменных реакциях. Степень поверхностной диссоциации (т. е. поверхностного растворения) глинистых минералов, замещенных одновалентными катионами, на один-два порядка выше степени диссоциации глин, обменный комплекс которых насыщен двухвалентными катионами. При прочих равных обстоятельствах степень поверхностной диссоциации зависит не только от плотности заряда обменного катиона, но и от взаимного влияния силовых полей поверхности частицы и катиона друг на друга при взаимодействии с водой. По мере увлажнения поверхности глин вокруг обменных катионов развиваются области с упорядоченными молекулами воды. Часть слабо связанных с поверхностью катионов удаляется от нее и может участвовать в трансляционном движении вместе с молекулами воды и растворенными в ней органическими и неорганическими веществами. Если в дисперсионной среде находятся крупные гидратированные катионы (Ма+, Mg2+), то они, вытеснив с поверхности глинистого минерала менее гидратированные катионы (К+, Са ), могут привести к увеличению гидратной оболочки глинистых частиц. В натриевом бентоните по мере возрастания содержания воды и уменьшения концентрацни суспензии отдельные слои глинистых частичек полностью диссоциируют. В бентоните, обменный комплекс которого насыщен магнием или кальцием, этого не произойдет, хотя ионный радиус этих катионов в гидратированном состоянии почти в два раза превышает радиус гидратированного натрия. Это, видимо, является следствием как изменения структуры воды и размеров гидратированных катионов вблизи поверхности в зависимости от их химического сродства, так и сжатия диффузной части двойного электрического слоя. [c.70]


    Изучая реакции органических реагентов с неорганическими ионами физико-химическим методом (треугольная диаграмма Со- [c.218]

    Исторически сложилось так, что первые попытки количественного описания ионообменного равновесия относились к неорганическим ионитам — главным образом, алюмосиликатам. Можно отметить целый ряд эмпирических и полуэмпирических уравнений, попытки применить закон действующих масс или уравнение изотермы адсорбции газов — в зависимости от взглядов на ионный обмен (химическую реакцию двойного обмена, идущую во всем объеме частицы ионита, или обменную адсорбцию, идущую на поверхности частицы). Из этих эмпирических уравнений следует отметить уравнение Ротмунда и Корнфельд [240] [c.189]

    Органические соединения — это углеводороды и их многочисленные производные, в состав которых могут входить многие элементы периодической системы. Органические соединения обладают рядом характерных особенностей, которые отличают их от неорганических. Почти все они (за редким исключением) горючи, большинство из них не диссоциируют на ионы, что обусловлено природой ковалентной связи — основной химической связи в органических веществах. [c.52]

    Произведение растворимости. Прежде всего следует подчеркнуть, что абсолютно нерастворимых веществ не существует— ничтожное количество вещества всегда переходит в раствор. Если говорить о неорганических солях, кислотах и основаниях, то большинство из них обладает ионным типом химической связи, и поэтому ионы, содержащиеся в кристаллической решетке твердого вещества, при растворении прямо переходят в раствор в виде гидратированных ионов. Учащиеся часто ошибочно считают, что малорастворимое вещество обязательно должно быть и слабым электролитом. Это не верно. Если бы даже малорастворимое вещество представляло собой мало диссоциирующее соединение (было слабым электролитом), то все равно в связи с огромным разбавлением (из-за малой растворимости его) можно было бы и в этом случае считать диссоциацию такого электролита полной. Поэтому следует считать, что малорастворимый электролит при растворении в воде прямо переходит в состояние ионов, не образуя при этом недиссоциированных молекул. [c.46]

    Справочник состоит из б разделов, составленных в общепринятой табличной форме. В первом разделе Неорганические вещества. Физические свойства и реакционная способность приведены формулы и названия, относительные молекулярные массы, некоторые физические свойства (температура фазовых переходов, окраска, агрегатное состояние), а также сведения о реакционной способности (химических свойствах) веществ по отношению к распространенным растворителям и реактивам (воде, этанолу, хлороводородной, серной и-азотной кислотам, гидроксиду натрия и гидрату аммиака). В последующих разделах охарактеризованы атомные, молекулярные и термодинамические свойства атомов, молекул, радикалов и ионов неорганических веществ, существующих в индивидуальном состоянии и в водном растворе. Представлены относительные атомные массы элементов, свойства природных и радиоактивных изотопов, электронные формулы атомов, энергии ионизации и сродство к электрону для атомов и молекул, энергии и длины химических связей, строение (геометрическая форма) молекул веществ, в том числе и комплексных соединений Приведены термодинамические константы веществ во всех агрегатных состояниях (газ, жидкость, твердое состояние, состояние водного раствора), окислительно-восстановительные потенциалы, константы кислотности и основности, константы устойчивости комплексов в водном растворе и растворимость веществ в воде. В последнем разделе Номенклатура неорганических веществ сформулированы правила составления химических формул и на их основе химических названий веществ. [c.5]

    Природа вещества может играть важную роль в процедурах отбора, хранения, химической обработки перед анализом, правильного определения и оценки результатов (включая токсичность вещества или возможные поправки). Так, свинец может находиться в воздухе вблизи автострад в виде газа, аэрозоля и твердого вещества, в виде металла, оксида, хлорида, бромида, карбоната, сульфата, фосфата и др., а также в виде алкилсвинца и других металлорганических производных. Кадмий присутствует в воде в виде ионов, неорганических и органических соединений, металла, адсорбированного на твердых примесях или осажденного в виде покрытия, а также в виде включений в твердых биологических материалах или в кристаллических структурах. [c.582]

    Гидролизу могут подвергаться химические соединения различных классов соли, углеводы, белки, эфиры, жиры и т. д. В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т. е. с обменным взаимодействием ионов соли с ионами воды, в результате которого смещается равиовесие электролитической диссоциации воды. [c.202]

    Но нам были нужны еще и модели неорганических ионов, и в этом заключалась главная трудность. В отличие от прочих составных частей они не подчинялись простым правилам, которые подсказали бы нам, под каким углом расположить соответствующие химические связи. Так что сконструировать правильные модели нам, возможно, удалось бы только, если бы мы знали структуру ДНК. Я, однако, не терял надежды, что Фрэнсис уже что-нибудь придумал и объявит об этом, как только появится в дверях лаборатории. Последний раз мы с ним говорили более восемнадцати часов назад, а дома у него была возможность сосредоточиться — не могло же его отвлечь чтение воскресных газет. [c.54]

    В природе и технике протекает огромное количество разнообразных химических процессов — начиная от простейших реакций веществ в лабораторных условиях и кончая сложнейшими процессами, протекающими в живых организмах. Вместе с тем число известных в настоящее время партнеров элементарных реакций сравнительно невелико. Это молекулы, свободные радикалы и атомы, ионы и комплексы различного химического состава и строения. Свойства этих частиц в основном и определяют особенности механизма и закономерности развития химических процессов. Именно этим обусловлена возможность создания общих теоретических основ химической кинетики, позволяющих с единой точки зрения рассматривать разнообразные процессы органической, неорганической и биологической химии. [c.3]

    После завершения химической реакции избыток ионов ОН создает в растворе щелочную реакцию, что обнаруживается визуально по изменению окраски кислотно-основного индикатора или потенциометрически (рН-метрически) со стеклянным индикаторным электродом. В исследуемый раствор добавляют индифферентный сильный электролит для повышения электропроводности раствора. Этим методом определяют неорганические и органические кислоты как сильные, так и слабые (если Ка" 10-7). [c.167]

    В органической химии вносится качественно новый материал и в понятия о механизмах реакций [26, 28]. Впервые дается представление о свободнорадикальном механизме реакций замещения и полимеризации и ионном механизме реакций присоединения. Свободнорадикальный механизм рассматривают на примере реакций замещения (галогенирова-ние алканов), присоединения (полимеризация), отщепления (крекинг углеводородов). В неорганической химии этот механизм не разбирают (цепные реакции исключены из программы). Расширяется понятие о ионном механизме химической реакции приводятся примеры присоединения неорганических веществ к алкенам (симметричным и несимметричным), реакций замещения при гидролизе галогеналкилов. [c.279]

    Поскольку в неорганическом химическом анализе реакции обычно происходят между ионами, а не молекулами, следует кратко остановиться на процессе ионизации. Многие вещества при растворении их в воде диссоциируют более или менее полно на положительные и отрицательные частицы, называемые соответственно катионами и аниоиами. Такие вещества носят название электролитов они разделяются на сильные и с л а б ы е в зависимости от степени их диссоциации. Согласно первоначальной теории Аррениуса сильные электролиты считались диссоциированными не полностью, причем предполагалось, что степень их диссоциации (ионизированная часть) возрастает -с разбавлением раствора. По современным взглядам, развитым А. Нойесом, Дебаем и Гюккелем, Бьеррумом и др., принимается, что сильные электролиты в растворе полностью диссоциированы. [c.10]

    В широком смысле слова молекулой является всякая микрочастица, обладающая своеобразной химической индивидуальностью. При этом под термином микрочастица понимается такая частица, размеры которой хотя бы в одном измерении лежат за пределами видимости светового микроскопа, т. е. около 2- 0 м. В более узком смысле слова молекулой называют электроней-тральное объединение ковалентно связанных атомов. Нас интересуют аналитические свойства молекул именно в последнем, ограничительном смысле, так как в широком смысле ионы также можно считать молекулами, что не соответствует обычной классификации объектов неорганического химического анализа. [c.246]

    Наряду со сказанным, стала очевидной несосто5 -тельность представления о наличии многозарядных лтомов в молекулах тех или иных соединений, необоснованность существования понятия о положительной и отрицательной валентности, поскольку это не совместимо с ковалентным характером связей в подавляющем большинстве неорганических соединений. Ионную природу химической связи, вероятно, можно принять, и то с некоторыми [c.5]

    Для того чтобы понимать химический текст, иметь возможность научного общения, необходимо ориентироваться в специальных химических терминах. При изучении органической химии важнейшей задачей первичного познания оказывается освоение химического языка и, прежде всего, путей и способов построения названий органических соединений. Если для наименования ионного неорганического соединения достаточно во многих случаях просто перечислить входящие в состав вещества элементы и указать их валентность, то в органической химии, где связи между атомами в большинстве ковалентны, для веществ с одинаковым составом оказывается возможным явление изомерии и, следовательно, по элементарному составу вещества, как правило, невозможно получить сколько-нибудь однозйачное представ- ление о его строении и свойствах. Таким образом, при переходе от мира ионов к миру молекул с ковалентными связями на первый план выходит совокупность правил, позволяющих точно указывать последовательность связей атомов, в том числе и в трехмерном пространстве. [c.7]

    Описанию свойств металлов в каждой главе авторы предпосылают подробные таблицы физико-химических величин как самих металлов, так и их главных неорганических соединений (окислы, гидроокиси, соли, гидриды и т. д.). Значительное место уделено методам открытия] и определения ионов металлов. Химические свойства неорганических соединений металлов излагаются на протяжении всей книги в едином плане с тем, чтобы подчеркнуть генетическую связь Д1ежду различными классами неорганическпх соединений. [c.6]

    За 150 лет, прошедших со времени первых успешных экспериментов Вёлера, органический синтез дал в руки химика арсенал изощренных методик, приводящий даже в некоторое замешательство своим объемом. Однако наблюдая легкость, с которой живые организмы создают сложные структуры в практически водных средах и при температурах немного выше комнатной, химик убеждается, что его прогресс в этой области не столь уж велик. Действительно, химики-органики постоянно стараются создать более быстрые, более простые и более дешевые препаративные методы. Поэтому эта книга является попыткой собрать рассеянные в литературе примеры новой техники проведения органических реакций — техники, которая начала использоваться только в последнее десятилетие. Во многих случаях новая методика снимает обычное требование проведения органических реакций в гомогенных, часто абсолютных , т. е. тщательно высушенных, средах. При межфазном катализе (МФК) субстрат, находящийся в органической фазе, учат ствует в химической реакции с реагентом, который находится в другой фазе — жидкой или твердой. Реакция осуществляется при помощи агента-переносчика. Этот агент, или катализатор, способен солюбилизировать или экстрагировать в органическую среду неорганические и органические ионы в форме ионных пар. [c.9]

    Рассматриваемая тенденция односторонне ориентировать неорганическую химию иа кристаллографическую трактовку веществ неправильна и принципиально (так как каждая наука вправе иметь собственные критерии), и по существу (так как не отвечает задачам исследования химических процессов). При своем дальнейще.м развитии такая (отнюдь не прогрессивная) тенденция привела бы к отрыву ионной неорганической химии от молекулярной органической. Между тем химия едина, и основным ее объектом всегда является молекула. Именно поэтому принятое в химии формульное описание веществ имеет молекулярный характер, обеспечивающий единство, четкость и простоту записи химических реакций. [c.312]

    Для расчета реакторов целесообразно подразделить реакции в жидкостях на две группы 1) очень быстрые реакции, скорость которых на поряд.чи превышает скорости процессов переноса, имеющих место в жидкостных системах 2) реакции, протекающие со скоростями, сравнимыми со скоростями указанных процессов. К первой группе относятся реакции между неорганическими молекулами, диссоциированными на ионы, ко второй — практически все реакции органических соединений. Скорость реакций первой группы не может быть лил1итирующей для всего реакторного процесса. Казалось бы, вид кинетического уравнения и значения самой скорости несущественны для расчета реактора. Действительно, это справедливо для достаточно грубых расчетов, не учитывающих влияния химической реакции на формальные значения коэффициентов массопередачи. Однако прп более точных расчетах, где указанные эффекты учиты- [c.27]

    Взаимное влияние привитых полярных и остаточных групп на поверхности минерального носителя, например, силанольных в случае кремнеземов. Характер таких взаимодействий, к числу которых относятся электростатические, конформационные изменения в цепи привитого лиганда, доннановское исключение ионов, определяется химической природой привитых групп (зарядом, способностью к образованию водородных связей, гидрофобностью) неорганического носителя. Существование таких взаимодействий для аминогрупп с полярной поверхностью кремнезема доказано с помощью методов рентгенофотоэлектрюнной спектроскопии [1], ЯМР-[2-4] и ИК-спектроскопии [5], несмотря на дискуссию относительно типа взаимодействий предполагается, что это могут быть водородные связи (рис. 7.1а) или перенос протона силанольной группы с образованием ионной пары (рис. 7.16). [c.347]

    Кгльций Са, стронций Sr, барий Ва и радий Ra в отличие от ранее рассмотренных элементов имеют относительно большие атомные радиусы и низкие значения потенциалов ионизации (см. с. 470). Поэтому в условиях химического взаимодействия кальций и его аналоги легко терякт валентные электроны и образуют простые ионы Поскольку ионы имеют электронную конфигурацию и большие размеры (т. е. слабо поляризуют), комплексные ионы с неорганическими ли-гандали у элементов подгруппы кальция неустойчивы. [c.479]

    Сорбция ионов сильных электролитов на угле обусловлена наличием на его поверхности химически активных адсорбированных газов. Ионообменные свойства углей имеют важное значение для правильного установления технологического режима очистки сточных вод от ПАВ, поскольку катионоактнвные и анионоактивные ПАВ в определенных условиях ведут себя как электролиты. Степень извлечения ПАВ, проявляющих свойства электролитов, тем больше, чем меньше их степень диссоциации. Последнюю можно регулировать изменениелг pH среды или солесодержанием, а также добавлением неорганических электролитов. [c.216]

    Важное влияние на активность и избирательность ионнтных катализаторов оказывает их способность к абсорбции и в отличие ог неорганических катализаторов к объемному растворению реагентов. Очевидно, что высокая растворимость реагентов в ионите способствует повышению его каталитической активности. Степень растворимости реагента в ионите определяется как химической структурой ионита, так и свойствами применяемого растворителя. Варьируя то и другое, можно добиться высокой избирательности действия ионитов как катализаторов, значительно превосходящей избирательность твердых неорганических кислот. [c.39]

    В настоящее время AЯf, 293 известна примерно для 7500 веществ и частиц (для 5800 неорганических и 1700 оргрических), включая и разные агрегатные состояния и кристаллические формы веществ, а также свободные атомы, радикалы и газообразные ионы. Если к тому же присовокупить все значения, полученные другими разными методами, можно считать, что мы располагаем данными о теплотах образования примерно 8500 веществ и частиц. Легко видеть, что различные сочетания этих данных дают возможность определять путем простого расчета тепловые эффекты многих сотен тысяч разных химических реакций. В этом и заключается [c.54]

    В ненаселенных районах имеется соответствие между концентрациями тяжелых металлов на поверхности почвы и в земной коре, что свидетельствует об их относительно низкой подвижности в естественных условиях. В частности, концентрация кадмия в незафязненной почве сельскохозяйственных районов США колеблется от 0,03 до 0,9 мг/кг н соответствует его содержанию в осадочных породах (0,1-1 мг/кг). Однако в загрязненных почвах химическая среда может контролироваться неравновесными процессами, приводящими к накоплению тяжелых металлов и их миграции. Так, внесение медьсодержащих отходов или неорганических солей меди повьшшет концентрацию в почве ионов Си способных [c.108]

    Рассмотренные в данной главе модели среднестатистических молекул-относительно грубое приближение к молекулярной структуре нефтяных остатков, карбонизующихся масс, пеков и их групповых компонентов, коксов и углеродных волокон, поскольку реальные системы содержат, кроме углерода и водорода, множество других элементов от микроколичеств до нескольких процентов с соответствующими им химическими внутри- и межмолекулярными связями, структурами молекулярных фрагментов и т.д., состоят не только из нейтральных молекул, ко и из органических и неорганических свободных радикалов, ионов и радикал-ионов. Сотообразные ароматические фрагменты молекул могут быть незавершенными из-за образования внутренних и краевых дырок (см. табл. 1.9), относиться к различным гомологическим рядам и отличаться типом связи меж- [c.59]

    Для получения химически чистой бумаги товарные образцы бумаг) обрабатывают различными реагентами, например аминоуксусной кислотой, трилоном Б, 8-окснхинолином и другими, образующими растворимые комплексные соединения с присутствующими в бумаге неорганическими ионами. Получающиеся соединения вымывают затем растворителями. [c.221]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]


Смотреть страницы где упоминается термин Иониты неорганические химическая: [c.60]    [c.34]    [c.5]    [c.4]    [c.53]   
Иониты в химической технологии (1982) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие неорганических ионов с комплексообразующими химически модифицированными материалами. Модели связывания ионов

Неорганические иониты. Иониты

Неорганические иониты. Иониты неорганические

Химическая ионная



© 2025 chem21.info Реклама на сайте