Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий сернистый, получение

    Никкель и кобальт осаждают одновременно сернистым аммонием из не содержащих железа и алюминия фильтратов, полученных после осаждения цинком [см. далее, 14]. Если присутствует марганец, он тоже осаждается. При обработке осадка сильно разбавленной соляной кислотой (1 6) сернистый марганец растворяется, а сернистый кобальт и никкель остаются в осадке. Их фильтруют, промывают, прокаливают и взвешивают в виде закиси или осаждают электролизом и взвешивают в виде металлов. Во всяком случае прокаленный осадок следует проверить на железо и марганец. Отделение никкеля от кобальта требуется очень редко, тем более, что кобальт не часто встречается в железных рудах в количествах, поддающихся определению. Если разделение необходимо, его производят [c.41]


    Производство очищенного сернокислого глинозема может быть организовано с использованием алюминиевого концентрата, получаемого при предварительном обогащении каолина или глин. Одним из таких методов обогащения является разложение кремнеземистых соединений алюминия сернистым газом. Практический интерес представляет использование при этом отбросного сернистого газа металлургической и химической промышленности и получение высококонцентрированного газа при гидролизе сульфита алюминия. [c.442]

    Получение полиэтилена при среднем давлении. Способ получения полиэтилена при средних давлениях разработан в США фирмой Филлипс Петролеум Компани [61]. Процесс ведется при температуре 180—250° и давлении 35—105 ат. Этилен, предварительно полностью освобожденный от сернистых соединений, кислорода, водяных паров и углекислоты, растворяется под давлением при 20—30° в ксилольной фракции в количестве 7—9% вес. и подвергается полимеризации в трубчатом автоклаве над катализатором из окисей хрома и молибдена, нанесенных на окись алюминия или алюмосиликат. Целесообразнее применять большой избыток растворителя, чтобы полиэтилен оставался в растворе, а не отлагался на катализаторе, пассивируя его. Кроме того, при этом [c.223]

    В качестве носителей серебряных катализаторов используют окись алюминия, окись бериллия, силикагель, пемзу и т. д. При приготовлении катализаторов на носителях последние пропитывают водными растворами нитрата серебра с последующим прокаливанием. Полученный катализатор восстанавливают до металлического серебра. При отравлении катализатора сернистыми соединениями его регенерируют водородом, газообразным аммиаком, парами окиси этилена, разбавленными воздухом или инертным газом. [c.172]

    В окислительных процессах очистки сернистых газов с получением серы используют различные группы катализаторов активный оксид алюминия, природный боксит, алюмосиликат с добавками меди, оксид алюминия с добавками оксида хрома и [c.72]

    В соответствии с существующими требованиями, содержащее сернистых соединений в нефтяных углеродах, используемых в качестве наполнителя анодных масс, не должно превышать 1,5%. При использовании в качестве компонента графитирующихся электродов нефтяных коксов, а также саж содержание сернистых соединений в углеродах не должно превышать 1,0—1,1%. Более высокое содержание серы в такого вида наполнителях вызывает торможение процесса графитации нефтяных коксов, коррозию электродных штырей при электролитическом способе получения алюминия, загрязнение воздуха рабочих помещений, а также преждевременную вулканизацию резин. [c.119]


    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]

    Восстановление кислородных соединений углем, окисью углерода или водородом (получение железа, цинка, титана, мышьяка, сурьмы, хрома, марганца, молибдена и др.). Восстановителем может быть алюминий (алюминотермия — при добывании марганца, хрома) и даже сернистые металлы (например, при получении меди, никеля, свинца). [c.228]

    Для переработки бедных алюминием отработанных анодных сплавов, получаемых в последнее время, пригодны только кислотные методы. Применявшиеся раньше [3] щелочные методы разложения анодных сплавов (выщелачивание раствором едкого натра) дают удовлетворительное извлечение только в применении к сплавам, содержащим 25—30% алюминия. Разлагать сплав можно как выщелачиванием измельченного сплава серной или соляной кислотой, так и анодным растворением [3]. В раствор наряду с галлием и алюминием переходят также железо и частично (за счет окисления кислородом воздуха) медь. Так как железо осаждается купферроном, в этом случае применять для выделения галлия купферрон невыгодно, и перерабатывают растворы экстракционным путем, используя бутилацетат или трибутилфосфат. Если разложение велось серной кислотой, к раствору добавляется соответствующее количество хлорида натрия. Чтобы отделить железо, раствор перед экстракцией обрабатывают каким-либо восстановителем, например железной стружкой. Для реэкстракции галлия из органического слоя последний промывают водой. После экстракции следует очистка от примесей молибдена и олова осаждением сернистым натрием и, наконец, электролиз щелочного раствора галлата с целью получения металлического галлия. [c.257]

    Концентраты, полученные кислотной экстракцией, представляют собой смесь азотистых, сернистых, кислородных и ароматических соединений. Но несмотря на это, популярность метода настолько велика, что количество работ в данном направлении постоянно растет. Недостатки метода, связанные с гидрофобностью АО и образующихся солей, можно устранить использованием хроматографии. Для этой цели широко используют адсорбционную и ионообменную хроматографию. В качестве сорбентов применяют флорисил [73], окись алюминия [74], силикагели [9, 27, 28], ароматические сульфокислоты [75]. Адсорбционные хроматографические методы не являются селективными но отношению к АО и сопровождаются адсорбцией значительного количества СС, КС и ароматических соединений. [c.76]

    Наиболее важный процесс дегидрирования — получение стирола из этилбензола. Но и алканы можно дегидрировать до алкенов, а алкены — до алкадиенов-1,3. Все эти процессы более пригодны для промышленного использования, но иногда могут представлять ценность и для лабораторных синтезов. Обычно для дегидрирования применяют алюмохромовый катализатор, состояш,ий из окислов хрома и алюминия его получают соосаждением гидроокисей. По более простому способу 100 ч. активированной окиси алюминий (6—10 меш) прибавляют к 50 ч. 10%-ного хромового ангидрида в воде, катализатор отфильтровывают и высушивают при 220—230 °С. Специфический катализатор для дегидрирования этилбензола содержит 72,4% MgO, 18,4% FeA. 4,6% uO и 4,6% K.O. Окись калия настолько уменьшает образование углеродистых отложений, что срок работы катализатора достигает 1 года. Дегидрирование этилбензола лучше всего проводить при конверсии 37% и при 600 С, причем над катализатором пропускают углеводород и водяной пар при 0,1 атм. Те же катализатор и условия работы, за исключением того, что разбавителем является не водяной пар, а азот, пригодны для дегидрирования бутенов в бутадиен-1,3. Недавно была достигнута высокая конверсия этилбензола в стирол в результате окисления сернистым ангидридом в присутствии фосфата металла [32], [c.163]


    Тиобензофенон был получен действием тиофосгена на бензол в присутствии хлористого алюминия действием пятисернистого фосфора или этилового эфира тиоацетоуксусной кислоты на бензофенон и действием спиртового раствора сернистого калия или сульфгидрата натрия или тиоуксусной кислоты на дифенил дихлорметан. [c.453]

    Сернистый ангидрид, с одной стороны, мешает горению этилена, а с другой — сам может обесцвечивать розовый раствор марганцовокислого калия. Вот почему при получении этилена обычно прибегают к промывке выделяющегося газа раствором щелочи для очистки от ЗОа- При получении этилена в присутствии окиси алюминия не происходит почернения (обугливания) смеси и, следовательно, образование 80г исключается. [c.34]

    Катализаторы синтеза легко отравляются сернистыми и некоторыми ароматическими соединениями. Поэтому перед синтезом газ тщательно очищают от всех веществ, отравляющих катализатор. Катализаторы синтеза изготавливают путем осаждения содой гидроокисей металлов из растворов нитратов на носитель (кизельгур и др.) с последующей сушкой, формовкой и восстановлением в токе водорода при температуре 350—450° С. Катализаторы изготовляют также сплавлением металлов с алюминием или кремнием. Полученный сплав охлаждают, раздробляют на частицы размером 3—5 мм, обрабатывают раствором ЫаОН и перед применением — водородом. [c.202]

    Окисление сернистого газа в серный ангидрид употреблялся газ, содержавший от 6 до 7,5% сернистого ангидрида, процесс протекал в температурном интервале 350 — 475°, конверсия на 96 — 97% Платина Остатки при получении хлористого алюминия из каолина по методу Будникова 6 [c.454]

    Согласно полученным нами электронно-микроскопическим и электронографическим данным, на ряде типичных коллоидных систем — двуокиси титана, кремнекислоте, сернистом мышьяке, гидроокиси алюминия, пятиокиси ванадия и золоте,— первичным актом образования коллоидной частицы является получение шарообразных или бесформенных частиц, имеющих аморфную структуру кристаллические частицы возникают уже как вторичные образования в процессе старения коллоидной системы. [c.176]

    В 1955 г. появилась обобщающая статья [511, в которой дан краткий обзор американских работ по выделению сернистых соединений рефтей и их идентификации. В статье приведено краткое описание 1 1етодов, применяемых в Американском нефтяном институте нри разработке исследовательской проблемы 48А, т. е. проблемы сернистых соединений пефти. Наиболее широко применялись методы вакуумной перегонки в сочетании с хроматографией на специальным образом приготовленной окиси алюминия. Результаты, полученные при Еспользовапии метода термической диффузии для концентрации сернистых соединений нефти, хорошо согласуются с данными хроматографического разделения па окиси алюминия. Из химических мето- ов, упоминается использование реакции комплексообразования. В, концентратах сернистых соединений (150—220 С) тексасской нефти, полученных в результате применения одного или нескольких методов, были идентифицированы при помощи инфракрасной спектроскопии и масс-спектроскопии 43 сернистых соединения (40 надежно, а 3 предположительно). Выделенные из нефти сернистые соединения чувствительны к металлам (особенно к меди и ртути) и к повышенным температурам. [c.368]

    Фосфогипс содержит небольшие количества (0,3—0,5%) недоотмытой фосфорной кислоты и поэтому может быть использован в качестве удобрения, но лишь в районах, близких к месту его получения, так как перевозка такого низкопроцентного удобрения не экономична. Фосфогипс может применяться для гипсования солонцовых почв или перерабатываться в штукатурный алебастр и литые строительные детали 208,209 Термическим разложением в составе цементной шихты его можно превратить в цементный клинкер и в сернистый газ 210-217 а из последнего получить серную кислоту. Таким путем возможно регенерировать серную кислоту, затраченную на разложение фосфата. Фосфогипс может также служить источником сульфат-иона (взамен серной кислоты) при конверсии его аммиаком и двуокисью углерода в сульфат аммония. Этот процесс представляется перспективным в сочетании с производством сложных удобрений азотно-сернокислотным и азотно-сульфатным методами (стр. 1331). Представляет также интерес высокотемпературная обработка фосфогипса в смеси с каолином и природными фосфатами кальция и алюминия, с получением силикофосфорного и алюмофосфорного удобрения 2>2. [c.919]

    Лепна-Берке водород и для гидрогенизации и для синтеза аммиака получается из водяного газа в генераторах, работающих на буро-угольных брикетах. Для получения чистого водорода водяной газ очищается от сернистых соединений, для чего нередко используются алкацидные растворы. Окись углерода конвертируется в углекислоту, легко отмывающуюся в скрубберах. Гидрирование проводится в две фазы в автоклавах высокого давления, внешним видом напоминающих гигантские орудийные стволы. В первой — жидкой фазе, мелко раздробленный и суспендированный в антраценовом масле или в смоле уголь подвергается гидрированию над подвижным или плаваю-щим> катализатором — окислами железа (болотная руда, отходы производства алюминия и т. д.). При этом угольные компоненты молекулы угля, имеющие, как можно считать в первом приближении, вид пчелиных сот, распадаются. Более мелкие четырех- и трехкольчатые осколки (типа фенантрена и других ароматических углеводородов с конденсированными кольцами), насыщаясь водородом (кольцо за кольцом), будут превращаться вследствие распада образовавшихся жирных колец сначала в двухкольчатые углеводороды (гомологи нафталина) и, наконец, в гомологи бензола или даже, в зависимости от условий гидрирования, в гомологи циклогексана и циклопентана. Само собой разумеется, что при понижении температуры гидрогенизации (проводимой в пределах 550 —380°) и повышении гидрирующей эффективности катализатора, деструктивная гидрогенизация может быть остановлена и на стадии гомологов [c.154]

    Полученные в нашей лаборатории данные но избирательному гидрированию высокомолекулярных конденсированных ароматических соединений из ромашкинской нефти, содержащих 4,4% 8, показывают с несомненностью, что основная часть серы входит в состав гетероциклов. При полном удалении серы общее количество колец на молекулу снижалось в среднем на 1,6 (с 4,8 до 3,2). Условия гидрирования исключали возможность крекинга, т. е. разрыва С — С-связей. Исследование методом ультрафиолетовой спектроскопии фракций, полученных при хроматографическом разделении на окиси алюминия отбензиненной нефти месторождения Вассон (Тексас) [511, показало, что сернистые соединения в отбензиненной нефти (выше 150° С) составляют не менее 15%, причем на долю гомологов тиофена (бензтиофены, дибензтиофены и тиофеннафталины) приходится около 70%. Эти исследователи также подчеркивают, что наиболее высокое содержание серы (4,73—6,11%) приходится на фракцию с конденсированными ароматическими структурами. В гомологах бензола содержалось всего 0,86% 8, причем она почти поровну распределялась между тиофеновой и сульфидной серой. [c.346]

    В качестве катализаторов помимо фосфорной кислоты для полимеризации олефиновых углеводородов применяют сернистую кислоту, хлористый алюминий, фтористый бор, пирофосфат меди, металлорганические соединения и др. Наряду с этим продолжаются совершенствование фосфорнокислотного катализатора, а также разработка новых катализаторов, в том числе и цеолитсодержащих. Так, механическую прочность и активность ортофосфорной кислоты на кизельгуре повышают добавлением 5% цеолита. Последний вначале смешивают с кизельгуром, а затем к смеси добавляют ортофосфорную кислоту и далее приготавливают катализатор обычным образом. Эффективность такого катализатора следующая в продукте, полученном на обычном катализаторе, содержится 85,2% моноолефиновых углеводородов, в том числе 36,5% тетрамера С12Н24, а на катализаторе, содержащем 5% цеолита NaX, — соответственно 96,9 и 83,4%- [c.311]

    Над разделением сернисто-ароматического концентрата, получаемого из нефтяных дистиллятов, работали многие исследователи. Так, на активированной окиси алюминия хроматографировали бензиновую фракцию 38— 100° С [13]. Углеводороды десорбировали изопентаном, сернистые соединения пытались вытеснить этанолом. При этом был получен концентрат сернистых соединений, содержавший значительные количества бензола и толуола. Многократное хроматографирование сернистого концентрата не привело к его очистке. Только путем его микрофракционирования и последующего применения инфракрасной спектроскопии удалось установить присутствие меркаптанов и сульфидов с температурой кипения ниже 85 С. [c.100]

    Реакции Циглера открывают совершенно новые пути использования олефинов синтез полиэтиленов и димеров олефинов для превращения в синтетические каучуки и ароматические углеводороды, получение первичных спиртов, синтетического волокна и т. д. Полимеризация этилена в смазочные масла в Германии проводится с 95—99% этиленовой фракцией путем обработки ее, после очистки от кислорода и сернистых примесей, хлористым алюминием при 180—200° и 10—25 ат. Давление в автоклавах при этом процессе приходится регулировать, так как оно непрерывно растет из-за образования газов (метана, этана и других углеводородов). Сырой полимеризат после дегазации нейтрализуют при 80—90 взвесью извести в метаноле (разложение А1С1,-комплекса), фильтруют центрифугируют. Из остаточных газов выделяют этилен, который поступает обратно на полимеризацию. Для обеспечения низкой температуры застывания и пологой температурной кривой вязкости к таким смазочным маслам прибавляют эфиры адипиновой кислоты или другие добавки [18]. [c.597]

    Акад. Наметкин [5, 61 показал, что гидрирование содействует обессериванию бензинов. Так, бензин, полученный из кашпирских сланцев, был прогидрпрован с двусернистым молибденом, сернистым кобальтом, смесью сернистого кобальта с гидроокисью алюминия (1 1), окислами алюминия и никеля, болотной рудой. При гидрировании (начальное давление 50 атм, температура опыта 350°, максимальное давление 95 атм) с сернистыми катализаторами выход бензина составил 82—86%. Гидрирование при атмосферном давлении при 400° на тех же катализаторах дало. выход бензина от 52 до 84%, но серы осталось около 10,6% вместо максимальных 8,14%, обнаруженных в бензине после гидрирования под давлением. Усовершенствуя метод, удалось снизить количество серы при гидрировании на катализаторе МоЗг до [c.20]

    Некоторые данные термогравиметрического анализа представляют также интерес для количественного анализа. Так, термогравиметриче-скими измерениями было установлено, что температура полного обезвоживания гидроокиси алюминия различна в зависимости от того, какой реактив применялся для осаждения. Гидроокись алюминия, полученная осаждением гидроокисью аммония, полностью обезвоживается только при температуре более 1000°, в то время как применение для осаждения углекислого или сернистого аммония снижает температуру обезвоживания приблизительно до 420 . Этим же методом было найдено, что превращение магнийаммоннйфссфата в пирофосфат магния достигается уже при температуре около 500 Оксихинолинаты многих металлов имеют после высушивания вполне определенный состав, и их можно применять для весового определения ряда элементов. Однако это ке относится к ок-сихинолинату титана, который при повышении температуры не дает горизонтальной площадки на кривой термолиза его вес медленно уменьшается при повышении температуры вплоть до полного превращения в двуокись титана .  [c.89]

    Для окончательных рекомендаций ио выбору огнеупорных материалов и выяснения их влияния иа процесс облагораживания сернистых коксов нами были проведены опыты ио совместному прокаливанию кокса с различными видами огнеупоров. В кокс добавляли мелкоизмельченный (фракция меньше 0,25 мм) порошок огиеупора в различных количествах (до 5%). Полученные смеси прокаливали в печи Таммана одновременно с контрольным образцом (коксом без добавок) при различных режимах. Был исследован сернистый кокс замедленного коксования (содержание серы 3,8%, зольность 0,3%), к которому добавляли следующие огнеупорные материалы высокоглиноземистый марки ВГП-72 и ВГП-64, хромомагнезитовый, магнезитовый и шамотный с низким содержанием окиси алюминия. [c.246]

    К физическим методам относятся получение дистиллятных фракций методами изотермическсй отпарки или периодической перегонки и выделение сероводорода при определении стабильности приготовление концентратов методом адсорбции на силикагеле и окиси алюминия микроперегонка. Уснешно применялись также термо диффузионные методы. Химические методы основаны на выделении пяти классов сернистых соединений, содержащихся в нефтях, при помощи специальных характерных реакций. [c.264]

    Обычно берут значительный избыток (по весу) никеля Ренея (по крайней мере в десять раз больше по весу, чем сернистого соединения) и прибавляют кго в пиде суспензии к раствору вещества, подвергаемого дe yЛLфypизaции. Количество никеля лучше вссго определять путем взвешивания сплава никеля с алюминием до обработки щелочью или же определять объем суспензии никеля. Для получения воспроизводимых результатов никель следует приготовлять за определенное время (за несколько часов или дней) до его использования старение катализатора в течение нескольких недель или месяцев сопровождается заметной дезактивацией. [c.429]

    Фенилгидроксиламин может быть получен восстановлением нитробензола цинковой пылью 1. В этой реакции применялись различные растворители и катализаторы вместо цинковой пыли применялся омедненный и амальгамированный цинк, а также амальгама алюминия 2. Фенилгидроксиламин может быть получен восстановлением нитробензола сернистым аммонием натрием в жидком аммиаке а также окислением анилинмагнийбромида эфирным раствором перекиси водорода Метод, указанный здесь в общих чертах, описан давно , с тем лишь отличием, что ранее охлаждению не придавалось столь большого значения . Описано также получение щавелевокислой соли фенилгидроксиламина . [c.433]

    Исследовался процесс извлечения окислов серы из дымовых газов от сгорания сернистых углей и нефтяных топлив адсорбцией на подщелоченной окиси алюминия при 330° С с последующим превращением окислов в элемент рную серу и регенерацией адсорбента [55]. Испытания в масштабе опытн й установки проводились на аппаратуре, сконструированной для ежи ния 0,5—1,8 кг/ч угля с получением 8—28 л4 /ч газа. Высота адсорбера 7,9 м, диаметр 41 мм. [c.165]

    Быстрый рост производства алюминия и выплавки стали вызывает значительное возрастание потребности в нефтяном электродном коксе, в го время как ресурсы малосернистых нефтей, остатки которых могут испольяоваться для получения электродного кокса, сокращаются. Поэтому должны быть учтены все возможности получения электродного кокса из сернистых нефтей. [c.94]

    Сульфид алюминия может бы.ть получен только сухим путем. Он бледножелтого цвета и разлагается гидроли ически даже холодной водой на сернистый водород и гидроокись алюминия  [c.211]

    Общие способы получения олефинов из спиртов можно разделить на две группы. При способах первой группы пары спирта пропускают при определенной температуре над катализатором например иад окисью алюминия, силикатами алюминия, окисью вольфрама или окисью тория. В способах второй группы спирт в жидком состоянии нагревают с каким-либо дегидратирующим веществом. Для дегидратации этого типа предложено много различных катализаторов, например серная кислота, иногда в присутствии некоторых сернокислых солей, фосфорная кислота, щавелевая кислота, иод и соли слабых оснований с минеральными кислотами. Из этих катализаторов серная кислота имеет широкое применение при получении этилена. Впрочем, даже этот, наиболее удачный пример применения серной кислоты не говорит в пользу ее употребления в качестве катализатора этой реакции, так как получающийся этилен содержит эфир и загрязнен сернистым ангидридом и двуокисью углерода. Количество нежелательных примесей может быть уменьшено прибавлением небольшого количества сернокислой меди или пятиокиси ванадия. Однако, несмотря на многочисленные исследования, проведенные с целью улучшения этого способа, его все eiue нельзя считать таким же удовлетворительным, как каталитический способ и даже как способ с применением горячей фосфорной кислоты 87. Способ, основанный на применении серной кислоты, может быть использован для дегидратации бли- [c.127]

    Известняки и уголь, содержащие значительное количество соединений серы, фосфора, мышьяка, магния, кремния и алюминия, не пригодны для производсгва карбида, как в том случае, когда последний должен быть употреблен для получения ацетилена, так и тогда, когда он идет в производство цианамида кальция. Если карбид содержит соединения серы, фосфора, кремния и мышьяка, то при разложении его водой вместе с ацетиленом выделяются водородистые соединения этих элементов. Водородистые соединения фосфора и кремния—легко разлагающиеся вещества они воспламеняются сами собой при обыкновенной комнатной температуре. Ясно, что их присутствие в ацетилене может быть причиной взрыва последнего. Кроме того, ацетилен, загрязненный водородистыми соединениями фосфора, мышьяка и серы, оказывает весьма вредное действие на организм человека. Мышьяковистый водород является сграшным ядом, который даже при вдыхании в весьма малых количествах причиняет смерть. Менее опасны, но все же очень вредны, фосфористый водород и сернистый водород. Их присутствие в аммиаке, выделенном из - цианамида кальция, крайне нежелательно, так как при окислении аммиака в азотную кислоту, они способны отравлять катализаторы, вследствие чего, процесс окисления замедляется и может остановиться вовсе. [c.88]

    Катализаторы — сернистый молибден — приготовлялись описанными ниже методами катализатор А — гель окиси алюминия, пропитанный 25% молибдата аммония, который превратился в сернистый молибден в процессе работы катализатор В — гранулированный тиомолибдат аммония катализатор С — гранулированный дисульфид молибдена, приготовленный добавлением разбавленной серной кислоты К раствору молибденовой кислоты и сернистого аммония и нагреванием полученного осадка в атмосфере водорода при 427° С катализатор D— гранулированный тиомолибдат аммония, прогретый в сернистом водороде при 430° С. Катализатор С был не только самым активным, ной самым устойчивым. [c.205]

    Катализаторы и их модификации обусловливают выходы, свойства и химический состав получаемых бензинов. Холл и Каулей [9] приводят-следующие данные по химическому составу бензинов гидрогенизации, полученных из среднего масла низкотемпературной смолы в присутствии гранулированного катализатора — сернистого молибдена и того же катализатора, осажденного на гель окиси алюминия (табл. 91), [c.205]


Смотреть страницы где упоминается термин Алюминий сернистый, получение: [c.368]    [c.129]    [c.276]    [c.306]    [c.23]    [c.593]    [c.246]    [c.152]    [c.242]    [c.72]   
Лабораторные работы по неорганической химии (1948) -- [ c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий получение

Алюминий сернистый

Сернистый газ получение



© 2025 chem21.info Реклама на сайте