Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий разделение в растворе с цинком

    Электрохроматография на бумаге. Изучалась возможность разделения смесей никеля, цинка, кобальта и марганца с использованием различных индифферентных электролитов. Эффективное разделение на зоны достигается при использовании раствора цианида калия при pH 6. Применяя в качестве инертных электролитов водные растворы цианида калия, гидроокиси аммония и смеси цианида калия с бромом, можно разделить смеси марганец — кобальт — никель и цинк — кобальт — марганец [1022]. Методом радиальной хроматографии при напряжении на электродах 100—500 в и токе 25 ма разделены ионы ртути, висмута, меди, свинца, кадмия, железа, алюминия, марганца, кобальта, никеля, цинка, бария и магния в 0,1 JV растворах нитратов кружки фильтровальной бумаги пропитывались смесями растворов бифталата калия и едкого натра с pH 4,5 и смесью молочной кислоты с гидроокисью натрия с pH 3,5 и 6,5 [552]. Методом электрофореза на бумаге с использованием а,а -дипиридила и 1,10-фенантролина разделены ионы железа, меди, никеля и кобальта [459]. [c.84]


    Для отделения кадмия от цинка и большинства других металлов удобно адсорбировать кадмий и цинк из 0,1 М раствора НС1 анионообменной смолой дауэкс-1 и затем элюировать их 0,01 М НС1. Цинк элюируется первым, за ним выходит кадмий. Разделение улучшается при добавлении 10—25% метанола [12]. По окончании элюирования цинка элюирование кадмия можно ускорить, уменьшив концентрацию НС в элюенте до 0,001 М. [c.363]

    Для разделения цинка и кадмия часто используют образование тройных комплексов, содержащих ионы металла, электроотрицательный лиганд и органическое основание. В основе разделения лежат различная устойчивость галогенидных и роданидных комплексов металлов. В качестве органических оснований используют хлороформные растворы реагентов, указанных в табл. 25. При этом более слабые основания (р С > 9) образуют экстрагируемые соединения с иодидным комплексом Сси " в кислой среде. Цинк в этих условиях не экстрагируется из-за различия в устойчивости этих комплексов. Сильные органические основания (р С 9) взаимодействуют в слабощелочной среде и с кадмием и с цинком (рис. 32, а). [c.151]

    Вольтамперометрический метод применяют для определения многих металлов. Кадмий, кобальт, медь, свинец, марганец, никель, олово, цинк, железо, висмут, уран, ванадий и многие другие могут быть определены в рудах, концентратах, сплавах и иных природных и технических объектах. При достаточно различающихся потенциалах полуволны (Д /, > 0,10 В) возможно количественное определение нескольких элементов без предварительного разделения. Например, в аммиачном буферном растворе можно полярографировать смесь кадмия ( = 0,81В) и никеля ( /,= — 1,10 В). Существенное практическое значение имеет вольтамперометрическое определение хромат-, иодат-, мо-либдат-ионов и некоторых других, а также многих органических соединений альдегидов, кетонов, азо- и нитросоединений и т. д. Широко используют полярографический метод для анализа биологически важных материалов крови, сыворотки и т. д. [c.236]

    Помимо оксихинолина для определения цинка можно применять также другие органические вещества, например антраниловую кислоту триэтилентетрамин диэтилдитиокарбамат и другие серосодержащие органические соединения, рекомендованные для определения меди, кадмия, свинца, висмута и других элементов и описанные в соответствующих разделах данной главы. Титрование диэтилдитиокарбаматом можно вести с ртутным капельным и с платиновым электродами. В чистых растворах этот реактив дает очень хорошие результаты при титровании не только цинка, но и отдельно взятых кадмия, ртути, меди, таллия, олова, железа, никеля. Для определения цинка в присутствии этих элементов или хотя бы некоторых из них приходится прибегать к весьма сложным методам разделения, включающим несколько осаждений, повторные экстракции и реэкстракции . Если вместе с цинком присутствует только медь (II), то можно титровать ее и цинк раздельно меняя значение pH при титровании меди pH 11, при титровании цинка pH 6. [c.350]


    Методы выделения кобальта электролизом и его отделение от других элементов рассмотрены на стр. 90. Был предложен метод разделения кобальта и цинка [339], основанный на выделении обоих элементов на ртутном катоде и последующем анодном растворении полученной амальгамы. Прн этом цинк переходит из амальгамы в виде ионов в водный раствор, а кобальт выделяется пз амальгамы с большим перенапряжением и поэтому практически полностью остается растворенным в ртути. Проверка метода показала [39], что разделение не количественно, много цинка остается в амальгаме. Для отделения кобальта от цинка и кадмия было предложено проводить электролиз из щелочного раствора, содержащего тартрат натрия-калия и иодид калня последний прибавляется для предотвращения окисления кобальта на аноде до высшего окисла [1449, 1463]. Изучены условия отделения висмута от кобальта электролизом [66а]. [c.87]

    Раствор, в котором находятся кадмий и цинк, обрабатывают в кислой среде сероводородом для осаждения кадмия. (Должна соблюдаться некоторая предосторожность для обеспечения полного разделения.) Осадок отфильтровывают и промывают, фильтрат же сохраняют для последующего определения в нем цинка титрованием ферроцианидом. Осадок сульфида кадмия растворяют в кислоте, прибавляют несколько капель фенолфталеина и раствора едкого натра до появления устойчивого ярко-розового окрашивания. Осадок гидроокиси кадмия обрабатывают раствором цианида калия, прибавляемого лишь в количествз, достаточном для растворения. Полученный раствор подвергают электролизу в течение [c.106]

    Реакции окисления — восстановления. Металлический кадмий восстанавливает все металлы, потенциалы которых в ряду напряжений положительнее водорода Ag, Аи, Hg, Си, Р1, а также В1, Со, РЬ, 8п. Алюминий, магний и цинк выделяют-металлический кадмий из растворов его солей в отличие от меди, он не восстанавливается металлическим железом. Это можно использовать в целях разделения (в раствор вносят железную стружку при этом выделяются красновато-коричневые хлопья восстановленной меди, а ионы d + остаются в растворе) [42, стр. 417]. [c.38]

    Явление комплексообразования открывает большие возможности для разделения элементов. Медь, цинк, кобальт, никель, кадмий и серебро можно отделить от большинства других элементов, используя их способность давать устойчивые растворимые аммиакаты. Выполняя анализ, разделение ионов можно также провести, используя различную величину констант нестойкости некоторых комплексных ионов. Например, кадмий может быть отделен от меди осаждением сероводородом в виде dS из растворов комплексных цианидов. [c.290]

    Осаждения добавлением сульфид-ионов имеют очень важное значение в количественном анализе не только для выделения отдельных элементов, но и для отделения групп элементов друг от друга. Осаждения могут быть проведены при самых различных условиях как в отношении концентрации ионов водорода, так и в отношении других особенностей раствора, в зависимости от преследуемых целей. Например, изменяя концентрацию ионов водорода, можно мышьяк (V) отделить от свинца, свинец от цинка, цинк от никеля, никель от марганца й марганец от магния. В щелочных растворах некоторые сульфиды образуют растворимые соединения, что может быть использовано для разделения элементов внутри группы, например для отделения свинца от молибдена. Разделения внутри группы возможны также путем превращения одного или нескольких ее членов в комплексные анионы, которые не реагируют с сульфид-ионами, например отделение кадмия от меди в растворе цианида, меди или сурьмы (III) от олова (IV) в растворе фтористоводородной кислоты, и сурьмы от олова в растворе, содержащем щавелевую кислоту и оксалат. [c.83]

    При разделении металлов методом ионообменной хроматографии в систему обычно вводят раствор какого-нибудь вещества, которое образует с компонентами разделяемой смеси комплексные соединения различной устойчивости. Ионы, имеющие электронную конфигурацию инертных газов , т. е. ионы щелочноземельных элементов и группы скандий — иттрий — лантан, образуют комплексы преимущественно с оксисоединениями и оксианионами в противоположность таким ионам, как цинк и кадмий, расположенным в периодической таблице после ионов с недостроенной электронной оболочкой и образующим комплексы главным образом с аммиаком, а также с иодид и сульфат-ионами [12]. Комплексообразование ионов щелочноземельных металлов обусловлено главным образом электростатическими силами и поэтому ослабевает с увеличением ионных радиусов. Коэффициенты ионо- [c.197]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]


    Предложите возможный метод разделения а) амальгамы, содержащей цинк я кадмий, б) азотнокислого раствора Zn +, d2+ и Hg2+ на чистые компоненты. [c.461]

    Большие возможности в анализе следовых количеств Си, РЬ, Т1 и 2п в металлическом кадмии появились с применением полярографии переменного тока. Определение до 5"10 % Си можно проводить в фосфорнокислом и азотнокислом растворах без отделения кац-мия. Свинец, отделенный в аммиачном растворе от кадмия на гидроокиси алюминия, может быть определен на фоне соляной, азотной и фосфорной кислот соответственно при потенциале полуволны —0,44 —0,56 и —0,73 в в электролизере с внутренним ртутным анодом. В таких же условиях после экстракционного разделения определяются таллий на фоне кислого хлорида калия ( -/, = —0,47 в) и цинк в ацетатном буферном растворе с pH 4,7 ( 1/, = —1,5 в). Чувствительность определения РЬ, Т1 и 2п — 2- 10 %  [c.386]

    Хлоридные среды применяются также для выделения цинка, который хорошо поглощается анионитами из разбавленных (например, 0,5М) растворов соляной кислоты. Цинк просто отделяется от таких металлов, как медь, железо, кобальт, алюминий и никель [43, 78, 92, 99, 101, 104, 106, 147]. При низких концентрациях соляной кислоты кадмий имеет более высокий коэффициент распределе ния, чем цинк. Для разделения этих элементов сначала элюируют цинк 0,02М НС1 [69], а затем — кадмий разбавленной азотной кислотой. [c.367]

    В зависимости от pH раствора можно провести разделение цинка и кадмия описанным методом экстракции. Из довольно кислых растворов, содержащих роданид, экстрагируется только цинк, тогда как кадмий можно экстрагировать только из слабокислых растворов в присутствии относительно высокой концентрации роданида. При благоприятных отношениях концентраций катионов можно провести последовательную экстракцию цинка и кадмия. Этот метод, однако, становится непригодным при определении малых количеств кадмия, которые в таких условиях отделяют, например, в виде сульфидов. Один из подобных примеров приводится в следующем параграфе. [c.476]

    Разделения с помощью ионитов. Катиониты извлекают таллий (III) при pH 3—5 в присутствии винной или лимонной кислоты и пирофосфата натрия. Железо, медь, цинк, кадмий, свинец и сурьма в этих условиях остаются в растворе. Из катионита затем таллий можно выделить разбавленной (1 1) соляной кислотой. [c.1024]

    Для этой цели Гуд и Кэмпбел [170] применяли фосфатную целлюлозу. Навеску образца в 0,5 г растворяли в соляной кислоте при помощи перекиси водорода и выпаривали раствор досуха. Остаток растворяли в 2 мл 1 М соляной кислоты, переносили в колонку с 3 г фосфатной целлюлозы и вымывали 2 М соляной кислотой. Из колонки вымывались медь, свинец, кадмий и цинк, а на колонке оставались уран и железо. Перед проведением полярографического анализа необходимо разрушить следы органического вещества в фильтрате выпариванием с азотной и хлорной кислотам . Уран можно было бы вымыть раствором карбоната натрия, но тогда ионообменник превращается в студнеобразную массу и не обеспечивает нужной скорости течения раствора. Поэтому для каждого разделения применяли свежую колонку. [c.337]

    Боргидриды могут найти широкое применение в неорганическом и органическом анализе. Восстановительные свойства боргидридов используются, в частности, для разделения сходных элементов. Так, для разделения бария и свинца соль последнего восстанавливают боргидридом иатрия до металла, который и отделяют от раствора [629]. Аналогичным образом разделяют цинк и свинец. Кадмий и ртуть восстанавливают боргидридом натрия в щелочной среде до металлов [533], Затем при подкислении до pH 6 кадмий переходит в раствор, а ртуть остается в осадке. [c.477]

    Разделение дитизоном. Дитизон применяется главным образом для отделения небольших количеств кобальта от посторонних элементов перед его фотометрическим определением в силикатных породах, биологических и растительных материалах и др. Дитизонат кобальта образуется при pH от 5,5 до 8,5. Это дает возможность отделить от кобальта серебро, медь, ртуть (II), палладий (II), золото (III), висмут, т. е. элементы, экстрагирующиеся раствором дитизона в хлороформе или четыреххлористом углероде при pH менее 4. Экстрагирование дитизоном из аммиачного раствора, содержащего цитрат, отделяет кобальт от железа, хрома, ванадия и многих других металлов. Цинк, свинец, никель и кадмий при указанных условиях экстрагируются вместе с кобальтом, однако если экстракт обработать разбавленным раствором соляной кислоты, то дитизонаты цинка, свинца и кадмия разлагаются и переходят в водную фазу, а дитизонат кобальта остается в неводном растворе без изменения [827]. [c.76]

    На этом, например, основано разделение элементов, образующих хлоридные комплексы. Так, свинец, кадмий, цинк, олово, висмут могут быть отделены с помощью анионита ЭДЭ-Юп из 2 М солянокислого раствора, содержащего Mg +, Са +, 5г +, Ва +, N 2+, Мп2+, Со +, А1 , СгЗ+, Ре +, С х +, а также от анионов мышьяковой, фосфорной, серной кислот и других ионов, не поглощающихся при данной концентрации хлор-ионов. Это дает возможность использовать анионит для количественного определения указанной выше группы элементов при анализе руд и сплавов, разлагаемых кис-лотами [16]. [c.308]

    В случае, если цинк, кадмий, свинец, железо и медь одновременно находятся в растворе так, что суммарное отношение таллия к ним равно 1 1000, еще возможно достаточно полное разделение при двухкратной экстракции в органический слой переходит 98% таллия. [c.108]

    Из соединений кадмия, чрезвычайно сходственных с соединениями цинка, должно упомянуть о нодистои кадмии dP, находящем применение в медицине и в фотографии. Эта соль очень хорошо кристаллизуется, приготовляется прямым действием иода, смешанного с водою, иа металлический кадмий. 1 ч. dp при 20° требует для насыщения 1,08 ч. воды. Хлористый кадмий требует, для растворения, при той же температуре 0,71 ч. воды, так что для этого металла иодистое соединение менее растворимо, чем хлористое, тогда как для вышеописанных щелочных или щелочноземельных металлов существует обратное отношение. Сернокадмиевая соль хорошо кристаллизуется и имеет состав 3( dS0 )8№0, ишой, чем цинковый купорос. Окись кадмия, хотя очень мало, однако растворяется в щелочах но в присутствии винной и некоторых других кислот щелочный раствор окиси цинка не изменяется при кипячении, тогда как разбавленный щелочный раствор окиси кадмия в этом случае выделяет dO что и может служить для разделения цинка от кадмия. Кадмий в растворах осаждается из своих солей цинком, а потому из смеси Zn и d кислоты сперва извлекают цинк. Во всех отношениях кадмий менее энергичен, чем цинк. Так, он с трудом разлагает воду и только при сильном накаливании. Даже на кислоты он действует медленно, но все же с ними выделяет водород. Должно обратить здесь внимание на то, что для щелочных и щелочноземельных (из четных рядов) металлов выс(аий вес атома определяет большую энергию, но кадмий (из нечетного ряда), имеющий больший вес атома, чем цинк, менее его энергичен. Соли кадмия [c.406]

    Предложен ряд методов выделения цинка путем анионного обмена на смолах. В одном из методов раствор 0,1 М соляной кислоты, содержащий 10% Na l, пропускают через колонку со смолой дауэкс-1 Цинк и кадмий адсорбируются, а Fe(III), Мп, А1, Ве, Ni, Со, Сг(1П), Си, Ti, редкие земли и щелочноземельные элементы проходят колонку, не поглощаясь. Цинк вымывают из колонки 2 М едким натром, содержащим 2% Na l кадмий остается на смоле, а свинец сопутствует цинку. (Промывание 1 М азотной кислотой удаляет кадмий и оставшийся висмут.) Согласно другому методу, небольшие количества цинка (около 50 у) отделяются от десятикратного количества меди и железа(1П), и по крайней мере от двадцатикратного количества никеля и кобальта сорбцией на дауэкс-1 из 1 М соляной кислоты. Вымыванием 1 М соляной кислотой удаляют упомянутые посторонние металлы, после чего цинк вымывают 0,01 М кислотой Эти методы основаны на различной стабильности хлоридных комплексов разделяемых металлов. Об анионообменном разделении цинка и кадмия в растворах иодидов см. на стр. 861. [c.849]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Komm. Сравните устойчивость аммиакатов цинка и кадмия. Сравните устойчивость ацидокомплексов в ряду цинк — кадмий — ртуть с хлоридным, бромидным, иодидным и тиоцианатным лигандами. Чем обусловлено растворение осадков двойной солей в Пд и Пю Предложите способы а) обнаружения б) разделения катионов цинка(П) и кадмия(П) с использованием изученных вами двойных солей. Предложите способы разделения катионов цинка, кадмия и ртути при их совместном присутствии в растворе. Составьте алгоритм опыта. [c.206]

    Разделение 1-нитрозо-2-нафтолом. Кобальт можно осадить или экстрагировать 1-нитрозо-2-нафтолом из растворов, содержащих ртуть, никель, хром, марганец, свинец, цинк, алюминий, кадмий, магний, кальций, бериллий, сурьму и мышьяк для удержания в растворе сурьмы необходимо прибавить винную кислоту [1467]. Кобальт отделяется вполне удовлетворительно от катионов ртути (II), олова (II), свинца, кадмия, мышьяка, сурьмы, алюминия, марганца, кальция, магния, висмута и никеля [755]. Однако в присутствии больших количеств никеля и олова, особенно если в растворе находится также висмут, осадки содержат большие или меньшие количества этих элементов. Пред-ттолагается, что мешающее влияние олова обусловлено образованием соединения, содержащего одновременно олово и кобальт. Полностью или частично осаждаются вместе с кобальтом медь (pH 4—13), железо (pH 0,95—2,0), ванадий (pH 2,05— 3,21), палладий (pH 11,82) и уран (pH 4,05—9,4). (Указанные границы pH осаждения взяты из работы [1402].) [c.74]

    К анализируемому раствору, содержащему не более 100 мкг кадмия, прибавляют 10 мл 10%-ного раствора тиомочевины, 5 мл 20%-ного раствора К1, 5 мл 5%-ного раствора уротропина до pH 5,8 и разбавляют водой до 50 мл. Прибавляют 20 мл 5%-ного раствора каприквата в хлороформе и встряхивают 3 мин. После разделения фаз экстракцию повторяют. Водную фазу промывают 10 мл хлороформа. К объединенным органическим фазам прибавляют 20 мл 10%-ного раствора КЫОз и реэкстрагируют цинк 2 раза. К органической фазе прибавляют 5 мл 0,1%-ного раствора ПАН-2 в метаноле, 10 жл 10%-ного раствора ЫН4Ы0д и после разделения фаз измеряют оптическую плотность органической фазы при 555 нм относительно экстракта холостого опыта. [c.113]

    Максимумы поглощения индия, кадмия, кобальта и никеля углем. ежат в области концентрации роданида аммония 0,2—0,7 мол дж следовательно, сорбция элементов из растворов роданида аммония происходит при меньщих концентрациях, чем из растворов соляной кислоты. Это объясняется тем, что прочность отрицательно заряженных ро-данидных комплексных ионов металлов значительно выще прочности аналогичных хлоридных комплексных ионов. Из растворов роданида аммония на угле концентрируются индий, висмут, кобальт, кадмий, цинк, свинец. При этом они отделяются от алюминия, марганца, щелочных, щелочноземельных и редкоземельных элементов. Благодаря избирательным свойствам угля возможно разделение таких пар элементов, как кобальт — никель, ггндий— никель и др. [c.133]

    Наиболее трудно отделяемыми компонентами является пара кадмий — цинк. Для разбавленных растворов цинка в кадмии а = = 2,05, для разбавленных растворов кадмия в цинке а = 10,6. Остальные примеси должны сравнительно легко отделяться ректификацией, поскольку их относнтельная летучесть на три иоридка и более превышает коэффициент разделения в системе кадмий — цинк 19]. Интересно отметить, что для примесей Сс1 и РЬ (при очистке цинка) зависимость а. от температуры носит противоположный характер. При снижении температуры коэффициент разделения для кадмия растет, а для примеси свинца падает. Поэтому вакуумная ректификация, протекающая при более низких температурах, не дли всех примесей будет более эффективна, чем ректификация при атмосферном давлении. Однако проведение процесса очистки в вакууме нозволиет легко освободитьси от газов, растворенных в металле, что имеет самостоятельное значение. [c.158]

    Присутствие в растворе цинка, кадмия и свинца мешает экстракционному разделению щ. з.э. с азо-азокси БН и их конечному определению комплексонометрическим методом. Кадмий выпадает в виде гидроокиси. и мешает экстракции, цинк сам экстрагируется, а свинец мешает комплексономет-рическому определению бария в растворе после отделения кальция и стронция [6, 7]. [c.227]

    В этом случае также создаются возможности для разделения ряда элементов. В качестве примера можно привести разделение цинка и кадмия. Из сернокислого раствора, содержащего иодиды, в хлороформный слой с диантипирилметаном извлекается только кадмий. Мы встречаемся здесь с так называемым и прямым и обратным рядами устойчивости металлгалогенидных комплексных анионов. У цинка наиболее устойчив хлоридный комплекс, а иодидный настолько малопрочен, что цинк не извлекается в хлороформ даже из сравнительно концентрированных растворов ио-дида (5—6%). После отделения кадмия п введения в раствор соляной кислоты или хлористого натрия можно полностью извлечь цинк. Реэкстракция обоих элементов протекает очень легко при встряхивании экстрактов с 1—2%-ным раствором аммиака. [c.137]

    Для отделения ртути от большинства элементов группы сероводорода часто применяется метод, основанный на нерастворимости сульфида ртути в кипящей разбавленной азотной кислоте (пл. 1,2—1,3 г см ). Отделение это не удается, если сульфид ртути был осажден в растворе, содержащем медь, кадмий иди цинк, или в присутствии соляной кислоты и хлоридов. В последнем случае надо принять меры к превращению двойного соединения состава 2НдЗ Hg l2 в сульфид ртути кроме того, перед разделением надо отмыть осадок от соляной кислоты и хлоридов. [c.247]

    Методом меченых атомов очень легко проверить любую аналитическую методику разделения элементов. Разделение цинка и кадмия при помощи сероводорода является классическим методом. Разделение обусловлено тем, что при рН>0,4 из раствора осаждается только сульфид кадд1ия, а цинк остается в растворе. Осаждение сульфида цинка происходит при рН>1,5. [c.301]

    Нельсон и Краус [53] исследовали анионообменное поведение щелочноземельных металлов в цитратных растворах и провели разделение бария, стронция, кальция и магния в колонке с анионитом дауэкс-1 в цитратной форме. Щелочноземельные металлы элюируются в следующей последовательности барий, стронций и кальций 0,05М раствором цитрата аммония при pH 7,5 и, наконец, магний — 0,5Ai лимонной кислотой. Смит [72] изучил ступенчатое элюирование большого числа металлов цитратными растворами различной концентрации и кислотности. Ои предложил схему группового разделения. Вначале элюируют ртуть, барий, стронций и кальций 0,1М раствором цитрата триаммония, затем серебро, свинец, кадмий, магний и марганец — 0,5Ж и 1М цитратом триаммония. Следующую группу элементов — кобальт, медь, алюминий, никель и цинк — элюируют iM лимонной кислотой и, наконец, железо и медь — 0,5М соляной кислотой. [c.317]

    Большое внимание уделяется переработке металлического горючего растворением его в расплавленных металлах, таких, как рту ть, цинк, кадмий и алюминий, и выделением очищенного урана в виде твердой фазы из растворов. Помимо той очистки, которая достигается в резу льтате выделения из расплава газообразных продуктов деления, дальнейшая очистка от продуктов деления может быть получена иапользованием операций окислительного шлакования и отмывки продукта. Но основное разделение происходит вследствие выделения либо урана, либо продуктов деления в виде твердой фазы. Примерам такого метода служит раствореиие горючего в ртути в гермекс-процессе. [c.266]

    Ход определения. 2,5 г анализируемой пробы помещают в коническую колбу емкостью 500 мл и смачивают 5 мл воды и 2—3 мл брома. Затем постепенно прибавляют 50 мл концентрированной азотной кислоты и нагревают до кипения. Полученный раствор фильтруют, собирая фильтрат в мерный цилиндр емкостью 250 мл. Остаток на фильтре тщательно промывают горячей водой, сплавляют с бисульфатом калия (KHSO ) и выщелачивают плав водой и снова фильтруют. Оба фильтрата объединяют в мерном цилиндре. После охлаждения цилиндр дополняют водой до метки. Отбирают пипеткой 25 мл полученного раствора, переносят в делительную воронку емкостью 250 мл и нейтрализуют избыток кислоты аммиаком. Затем прибавляют 1—2 г фторида аммония, 2—5 мл насыщенного раствора тиомочевины, 30 мл роданида аммония (500 г в литре), 40 мл метилизобутилкетона и экстрагируют цинк в виде Zn( NS) . После разделения обеих фаз сливают экстракт в химический стакан емкостью 800 мл, прибавляют 30 мл буферного раствора, 50—100 мл ацетона и разбавляют водой до 400 мл. Для маскирования цинка прибавляют 2,5 мл 20%-ного раствора цианида калия и титруют (примеси других катионов) 0,05 М раствором комплексона в присутствии эриохрома черного Т в качестве металлиндикатора. По окончании титрования цинк демаскируют, прибавляя порциями 4%,-ный раствор формальдегида, и титруют его pa iBopoM комплексона. Израсходованное на это второе титрование количество комплексона эквивалентно содержанию цинка. На определение влияет присутствие кадмия, который определяется совместно с цинком (0,11% d ссответст- [c.477]

    Особый интерес представляют растворы соляной кислоты, применяемые при разделении смесей на анионитах. Поскольку благодаря именно соляной кислоте, образующей с ионами металлов анионохлоридные комплексы, эти ионы спсссбны задерживаться на анионитах, казалось бы, что в ее присутствии ионы металлов по той же причине не должны сорбироваться на катионитах. Однако влияние соляной кислоты на катионный обмен не столь уже велико. Сорбционная спсссбнссть смол наиболее сильно проявляется по отношению к ионам высокого заряда именно поэтому аниониты предпочтительно сорбируют полностью координированные хлоридные комплексы как наиболее сильно отрицательно заряженные, в то время как катиониты — незакомплексованные катионы, обладающие наибольшими положительными зарядами. Эта точка зрения обсуждается более полно в гл. 11. Тем не менее для элюирования металлов, образующих устойчивые хлоридные комплексы, таких, как ртуть(П), цинк(И), кадмий(П), железо(П1) [25], цирконий(1У) [26], бериллий [27 и палладий [28], соляная кислота является более сильным элюирующим реагентом, чем азотная и серная кислоты. В присутствии серной кислоты на анионите сорбируется уран(У1),с катионита уран снимают тоже серной кислотой аналогично ведет себя и азотная кислота по отношению к торию(1У) [29]. [c.200]

    При повышении потенциала до 10,2 в в раствор начнет переходить железо из амальгамы. Таким образом, регулируя анодный потенцг.ал при разлол енни амальгамы, можно фракционно перевести в раствор металлы, ра.чее растворенные в амальгаме. Таким путем можно отделить цинк, кадмий и олово от меди, висмута и железа. Этот метод представляет собой дальнейшее развитие метода разделения металлов на ртутном катоде. [c.315]

    Изменяя концентрацию нитрата аммония в растворе, можно отделить цинк, кадмий и кобальт от галлия, индия, свинца, висмута, алюминия и железа путем соосаждения с фосфатом кальция (рис. 2). На этом графике показаны области значений pH раствора, при которыл можно осуществить разделение вышеназванных элементов на группы. После отделения цинка, кадмия и кобальта удается количественно перевести галлий обратно в раствор, промывая осадок 5 н. раствором нитрата аммония и концентрированного аммиака (в отношении 1 1). [c.92]


Смотреть страницы где упоминается термин Кадмий разделение в растворе с цинком: [c.157]    [c.168]    [c.111]    [c.369]    [c.257]    [c.709]    [c.74]    [c.113]    [c.230]   
Лабораторные работы по неорганической химии (1948) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение кадмия и цинка

Растворы разделение



© 2025 chem21.info Реклама на сайте