Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факторы, влияющие на определение водорода

    При атаке бромом, сравнительно нереакционноспособным (разд. 2.25), переходное состояние достигается в процессе реакции позднее связь углерод — водород в значительной мере разорвана и органическая группа уже приобрела в значительной степени характер свободного радикала. Делокализация свободного электрона — важный фактор при определении устойчивости переходного состояния (хотя на реакционную способность может сильно влиять и полярный фактор). [c.376]


    Чувствительность рентгенофлуоресцентного определения кальция зависит от многих факторов источника возбуждения, гранулометрического состава образца, посторонних примесей, атмосферы, в среде которой производится фиксирование флуоресцентных спектров, и т. д. Наивысшая чувствительность определения достигается при анализе водных растворов и в случае использования инертной среды (атмосфера водорода, гелия, аргона, криптона). С учетом всех этих факторов чувствительность определения кальция может колебаться от 0,1 [82, 448[ до 0,008% [455]. Предел обнаружения кальция — от 4 [906] до 0,2 мкг [1602]. Одно из достоинств рентгенофлуоресцентного определения кальция — его селективность. Посторонние компоненты, как правило, не влияют на результаты анализа. Не мешают определению [c.154]

    Скорость гетерогенного каталитического жидкофазного гидрирования определяется поведением трех фаз, представляющих собой реакционную систему. Решающее значение при этом имеют свойства используемого катализатора (твердой фазы), изменяющиеся в зависимости от его химического состава, условий приготовления или применения (подбор среды). Приведенные факторы влияют прежде всего на сорбционную способность металлических катализаторов по отношению к водороду, участвующему в образовании активных центров поверхности катализатора. В ряде работ, например [1], обсуждается связь между активностью катализаторов гидрирования и наличием в них водорода (количеством, энергией его связи с поверхностью). Однако до сих пор не удавалось сделать определенных обобщений, поэтому необходимо и далее заниматься вопросами, которые могут разрешить эту проблему. [c.108]

    Наиболее сильное влияние на снижение длительной прочности углеродистых сталей оказывают температура и давление водорода. Как показали исследования, влияет и масштабный фактор, поэтому при изучении влияния водорода на длительную прочность сталей все эти факторы представляют определенный интерес. [c.392]

    В этом разделе будут рассмотрены каталитические реакции, в которых активатор влияет на одну стадию, но таким образом, что затрагивает сразу несколько факторов, определяющих ее скорость. Такие случаи трудно отнести к определенному типу активирования, и действие активаторов здесь можно рассматривать как комбинированное. Нами будет рассмотрено подобное активирование на примере каталитических реакций разложения перекиси водорода и олигомеризации непредельных углеводородов в присутствии ионов металлов. Для первой группы реакций активаторами обычно служат амины, для второй — различные другие лиганды. [c.225]


    При определении токсичности ядовитых веществ необходимо. учитывать их комбинированное действие. Во многих случаях оно выражается простым суммированием токсических свойств, но при их контакте возможно образование новых, более или менее ядовитых соединений. Рядом исследований показано, что токсичность окиси углерода значительно возрастает в присутствии цианистого водорода или сероводорода, или окислов азота. При этом она значительно превышает как величину токсичности каждого из них в отдельности, так и их суммарную токсичность. Необходимо учитывать влияние и других факторов на токсичность (температура, влажность, запыленность и т. д.). Например, чем выше температура в помещении, тем сильнее действие ядовитых веществ. Это и понятно, потому что с повышением температуры, с одной стороны, возрастает летучесть ядовитого вещества, с другой— это повышение температуры влияет также на состояние организма (расширение сосудов, усиление кровообращения и др.), а также на легкость проникновения вредных веществ через потную поверхность кожного покрова. Фармакологи и токсикологи давно уже пытаются найти математическое выражение токсичности и степени токсичности. Габер [1] предложил формулу, дающую возможность приближенно оценивать токсичность некоторых веществ. Обозначив через с (в мг/м ) концентрацию токсического вещества, находящегося в газообразном состоянии, через V — объем вдыхаемого в течение 1 мин организмом воздуха, содержащего токсический компонент, и через t — время пребывания в зараженной атмосфере, получим количество инспирированного и фиксированного в легких токсического вещества [c.37]

    Растворение атомов водорода к металле протекает одновременно-с образованием гидрида на поверхности кристалла, а при определенных условиях первый процесс является доминирующим. На кинетику этих процессов влияют многие факторы, в том числе присутствие других газов в структуре металла, наличие нарушений в решетке, благоприятных для образования зародышей, а также величины энергий активации и энтропий всех этих процессов. Процесс растворения водорода сводится к диффузии между узлами решетки металла, диффузии вдоль границ зерен и вдоль нарушений в решетке металла. [c.210]

    Нейтронная дифракция является основным методом определения степени упорядочения. Рентгеновский анализ труден из-за существенного различия рассеивающих. способностей атомов С и N и большинства переходных металлов. Упорядочение легких атомов удалось обнаружить при изучении фазовых диаграмм методом дифференциального термического анализа (ДТА), а также методом ЯМР. Многие из упорядоченных структур карбидов и нитридов, обсуждаемых в этом разделе, предположительны. Некоторая неопределенность существует главным образом в тех случаях, когда структурный тип был выведен без привлечения метода дифракции нейтронов. Например, высокотемпературной модификации фаз МегС предположительно была приписана структура Ц, в которой атомы углерода расположены беспорядочно. В основу этого предположения положен тот факт, что энтропийный фактор должен увеличиваться при повышении температуры. Однако наличие именно этого структурного типа не соответствует данным нейтронной дифракции. Некоторые из типов упорядочения могут быть также стабилизированы примесями, такими, как кислород или водород. Различия между структурами в основном наблюдаются во второй. координационной сфере, и поэтому изменение энергии между структурами может быть малым и на него может влиять наличие примесей. [c.46]

    Кроме величины поляризации на скорость электродных процессов влияют некоторые другие факторы. Рассмотрим катодное восстановление ионов водорода. Если катод изготовлен из платины, то для выделения водорода с заданной скоростью необходима определенная величина катодной поляризации. При замене платинового электрода на серебряный (при неизменных прочих условиях) для получения водорода с прежней скоростью понадобится ббльшая поляризация. При замене катода на свинцовый поляризация потребуется еще большая. Следовательно, различные металлы обладают различной каталитической активностью по отношению к процессу восстановления ионов водорода. Величина поляризации, необходимая для протекания данного электродного процесса с определенной скоростью, называется перенапряжением данного электродного процесса. Таким образом, перенапряжение выделения водорода на различных металлах различно. [c.294]

    Благодаря применению радиоактивного углерода (в виде СОг) наши знания в области биохимии фотосинтеза с 1940 г. сильно расширились. Работы такого рода основываются на предположении, что и СОг ведут себя в химическом отношении так же, как обычные и СОг. Это предположение оправдано, если исходить из норм качественной химии, однако при количественном подходе оно, очевидно, не может быть строго справедливым разрыв связи между и соседним атомом требует большей энергии активации и, следовательно, менее вероятен, чем разрыв такой же связи с участием С. В последовательном ряду реакций значение этого фактора может постепенно усиливаться. Это обстоятельство отнюдь не обесценивает главные выводы, сделанные на основе опытов с изотопными индикаторами, но его всегда следует иметь в виду. Вполне можно, например, ожидать дискриминации для трития (И ), масса которого в 3 раза больше массы обычного изотопа водорода. Учет возможной дискриминации особенно важен в кинетических опытах. Измерение масс-спектрометром относительных скоростей фотосинтеза в атмосфере с СОг, СОг и СОг дало соответственно 0,85 0,96 1,00. В этих определениях, однако, исходили из допущения, что свет не влияет на выделение СО при дыхании [c.103]


    Выполнимость этих соотношений зависит от эквивалентности природы двух рассматриваемых полос и их зависимости от одних и тех же электрических факторов. Если же эта эквивалентность нарушается образованием водородной связи или другими эффектами ассоциации, которые влияют на одну связь больше, чем на другую, то соотношение перестает выполняться. Это положение подтверждено в случае первичных амииов, у которых один атом водорода группы N1 2 связан, а другой свободен, и это обстоятельство косвенно может служить в качестве чувствительного критерия для определения ассоциаций такого типа. [c.573]

    Отбелка волокна производится раствором, содержащим около 0,5—1,0 г л активного хлора, при pH 9,0—10,0 и температуре 20—25° С. Отбеливающая способность гипохлорита основана на том, что он при гидролизе легко выделяет атомарный кислород, являясь, таким образом, очень сильным окислителем. В связи с тем что для процесса гидролиза необходимы определенные значения pH и температуры, интенсивность отбелки можно регулировать изменением этих факторов. Она ускоряется при снижении pH и повышении температуры. Однако следует иметь в виду, что при очень интенсивной отбелке может иметь место и одновременная деструкция целлюлозы. По окончании процесса отбелки волокно должно быть подвергнуто тщательной промывке и в большинстве случаев обработано раствором, содержащим антихлор (бисульфит натрия или перекись водорода). Если в раствор отбеливателя вводятся добавки моющих веществ, необходимо следить за тем, чтобы они не содержали свободных азотсодержащих продуктов, так как при их наличии могут образовываться труднорастворимые хлорамины, которые, разлагаясь с выделением соляной кислоты, могут отрицательно влиять на физико-механические свойства волокна. [c.318]

    Накопление водорода в металле в процессе сероводородной коррозии постепенно приводит к явлениям, известным как водородное охрупчивание (ВО). Под ВО понимают, прежде всего, значительное снижение пластичности, проявляющееся в определенном интервале температур и скоростей деформации. Сложность процесса ВО может быть следствием коллективного действия многих факторов, которые влияют и на степень охрупчивания и на его вид. Большинство из этих факторов взаимосвязаны, что и затрудняет понимание и прогнозирование процесса в целом. [c.32]

    Независимо от того, получается ли кислород непосредственно путем каталитического разложения перекиси водорода или при взаимодействии последней с окислителем, в результатах могут быть ошибки двух типов, а именно из-за растворимости кислорода в воде и возможности пересыш,ения растворенным кислородом применяемого раствора или запирающей жидкости прибора для измерения газа [73]. При применении бюретки с ртутью на мениск ртути в бюретке наливают 1—2 мл воды, насыщенной кислородом, чтобы собирающийся кислород был насыщен водой при температуре бюретки. Трудности газометрического анализа и методика его рассмотрены на стр. 431. ]1ри анализе (в отличие от измерения скорости) желательно полное разложение этот фактор влияет на выбор необходимого прибора. Описаны подробные методики, обеспечивающие в опытах получение точных результатов [45, 57]. Хайт [74] описал очень простой и доступный метод, основанный на применении аммиачного раствора сернокислой меди для разложения нерекиси водорода в градуированной ферментационной трубке. Матзура [75] предложил определять газ, выделяющийся при разложении перекиси водорода, измеряя количества возникающей пены, стабилизированной сапонином. Меры предосторожности [76], предложенные нри применении метода выделения кислорода в предварительно эвакуированную камеру, по-видимому, не оправдываются. Эллиот [77] показал, что при определении перекиси водорода путем разложения двуокисью марганца при наличии белка получаются завышенвые количества кислорода. [c.466]

    Последовательное замещение атомов водорода в этилене на метильные группы приводит к уменьшению энергии активации реакции гидрирования, что может быть обусловлено двумя конкурирующими факторами 1) теплота адсорбции олефина уменьшается но мере увеличения числа замещающих метильных групп вследствие стабилизации я-связи благодаря эффекту гиперконъюгации 2) число центров, на которых может адсорбироваться водород, постепенно возрастает с увеличением числа замещающих метильных групп, так как усиливающиеся пространственные затруднения могут привести к тому, что более значительная часть новерхности будет подвергаться действию водорода. Таким образом, вполне возможно, что оба эти фактора влияют на истинную энергию активации. Однако трудно определить степень влияния каждого из этих факторов но отдельности и оценить их сравнительное значение. При изучении процессов гидрирования олефинов прежде всего стремятся выяснить характер зависимости энергии активации от температуры. При температурах, превышающих приблизительно 100°, энергия активации непрерывно понижается, при 150° она становится равной нулю, а далее ее величина делается отрицательной. Скорость реакции поэтому возрастает до максимума, отвечающего некоторой определенной температуре Гщах, а затем ностеиенно уменьшается [63—65]. Величина Гщах также уменьшается при снижении парциального давления олефина, поэтому Цур-Штрассен [66] предположил, что теплота адсорбции олефина входит в экспериментально определяемую величину энергии активации. [c.334]

    Камера 2 во всех этих случаях должна перед проведением определения заиолияться чистым воздухом или иным газом, имеющим постоянный состав. Объем камер 1 ж 2 мон ет быть невел4гк. Быстрота реагирования прибора на присутствие в анализируемом газе водорода или метана зависит от отношения ияощади пористо] перегородки к объему камеры. Однако этот жо фактор влияет и иа быстроту последующего выравнивания давлений. [c.247]

    По характеру действия ферменты обладают строгой специфичностью, которая обусловлена структурным соответствием между молекулами субстрата ш фермента. Каждый из них катализирует определенную химическую реакцию. На течение последних влияют условия среды (температура, pH, наличие химических соединений, облучение) и присутствие других ферментов [26]. Под действием факторов среды могут синтезироваться и новые ферменты. Их называют адаптивными, так как они позволяют микроорганизмам приспосабливаться к новым условиям. Ферменты, которые участвуют во внутриклеточных процессах,, называют эндоферментами, а ферменты, выделяемые микроорганизмами в окружающую среду, — экзоферментами. Последние могут являться биоцидами для других микроорганизмов или стимулировать процессы коррозии и биоповреждений материалов техники и сооружений. Каталитическая активность ферментов во много раз превышает неорганические катализаторы. Например, 1 мг железа, входящего в состав фермента каталазы, эквивалентен каталитическому действию 10 т железа в составе неорганического соединения прн разложении перекиси водорода, а 1 г амилазы может превратить 1 т крахмала в сахар при соответствующих условиях. [c.14]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]

    Таким образом, в отдельности или в комбинации, различные электрохимические факторы, способные воздействовать на процессы зарождения и заострения трещин, могут влиять и на скорость КР. Это справедливо даже в рассматриваемом здесь случае, когда в разрушении определенную роль играет водород. Кроме того., если преимущественное разрушение материала происходит в местах выделения второй фазы или связано с другими микроструктурными элементами, то путь трещины может определяться расположением центров зарождения или повторного заострения трещин. Во многих системах сплавов особенно важным является присутствие хлор-ионов [2, 66, 186, 241]. Хорошо известным примером являются полученные Уильямсом и Экелем результаты для аустенитных нержавеющих сталей (рис. 45), указывающие на сложный характер взаимодействия кислорода и хлора. [c.122]

    Скорость депротонирования С—Н-кислоты (/ i в табл. 2.7.19 к- UIносится к обратной реакции) в определенных условиях мож> но использовать как меру кинетической кислотности данной кислоты и устойчивости карбаниона, принимая, что между структурой переходного состояния депротонирования и структурой образующегося карбаниона существует близкая аналогия. К реакциям, скорость которых определяется скоростью депротонирования, относятся катализируемое основаниями галогенирование и изотопный обмен водорода. Скорости подобных реакций действительно представляют собой количественную меру кинетической кислотности, если только внутренняя рекомбинация ионных пар, включающих карбанион, в исходную С—Н-кислоту не существенна и на скорость не влияют другие специальные факторы, например пространственные эффекты в переходном состоянии. Иногда кинетическая кислотность является единственным способом оценки устойчивости карбанионов, например в случае очень слабых С—Н-кислот типа бензола или алканов. Обычно для кинетической и термодинамической кислотностей наблюдается линейное соотношение свободных энергий, и поэтому скорость депротонирования можно использовать для предсказания термодинамической кислотности. Таким путем были определены приведенные ниже величины рКа циклогептатриен 36, бензол 37, циклопропан 39, метан 40, циклогексан 45. Стабилизованные нитрогруппами карбанионы в основном образуются при депротонировании медленнее, чем это можно бы ожидать на основании величин рКл. Обычно это приписывают большой перестройке распределения электронов между переходным состоянием депротонирования и образующимся анионом [56ж]. [c.547]

    Если молекула немезогена содержит несколько анизотропных фрагментов с резко различающейся ориентацией, то это требует отдельного определения 5 для каждого фрагмента [116, 130]. Жесткие молекулы немезогенов имеют значительно большие 5 по сравнению с аналогичными гибкими молекулами [131]. Внутреннее вращение в нежестких молекулах, например и-фторбензальдегнде [132], изменение соотношения между конформа-ционными изомерами [133] и даже замещение водорода на дейтерий [126] или тем более тритий [134] заметно влияет на параметр порядка. Очень чувствителен параметр порядка к комплексообразованию [135]. Таким образом, любое изменение геометрии и межмолекулярного взаимодействия в системах мезоген-немезоген отражается на величинах параметров порядка. К сожалению, несмотря на большой экспериментальный материал, накопленный в этой области [1]. использование его в подавляющем большинстве случаев для детального анализа влияния различных факторов на 5 невозможно из-за. отсутствия во многих работах точных данных о температуре и составе, их влиянии на 5 , а также фазовых диаграмм систем мезоген-немезоген. [c.248]

    Сходный метод превращения воды в водород был использован Алфин-Слейтером, Рокком и Суислокки [29], которые подтвердили необходимость собирания водорода, полученного при полном разложении образца воды, и установили, что отношения, полученные в начале и в конце процесса восстановления, отличаются одно от другого. Авторы исследовали дейтерированные образцы воды с известным содержанием дейтерия измерялось отношение пиков, соответствующих массам 3 и 2. Это отношение увеличивалось с повышением давления образца благодаря увеличению вероятности образования иона Н3 при больших давлениях. Исходя из этого, все полученные значения отношений экстраполировали к нулевому давлению. В работе использовали секторный масс-спектрометр, снабженный магнитом источника. Было найдено, что величина отношения интенсивностей пиков с массой 3 и 2 в большой степени зависела от положения этого магнита и в меньшей степени от других приборных факторов. Прибор был отъюстирован таким образом, чтобы получить максимальную воспроизводимость, а не максимальную абсолютную точность. Для определения обогащения дейтерием образца неизвестного состава использовали калибровочную кривую, построенную на основании заданных и полученных значений обогащения образца. Авторы испытывали затруднения при исключении памяти , связанной с анализом предыдущих образцов водорода они применили методику споласкивания системы обычным водородом и откачивания для удаления всех следов изучаемого образца. Требовалось несколько часов, чтобы такой обработкой удалить образцы, обогащенные дейтерием. Все спектры, показывающие наличие воздуха или воды, исключались из рассмотрения, так как присутствие этих компонентов влияет на отношение пиков масс 3 и 2. [c.85]

    На точность результатов прямого определения кислорода влияет много факторов. Выше говорилось о воздействии угля на кварцевые трубки. При иодометрическом методе наличие водорода в продуктах пиролиза органичеокого соединения приводит к получению повышенных результатов, так как водород, аналогично окиси углерода, восстанавливает J2O5 с выделением иода. В связи с этим возникло стремление заменить иодометрический метод весовым, алкалиметрическим или манометрическим. [c.121]

    Значения а, определенные методом взвешивания капель (или, тем более, путем измерения периода капания) в условиях прохождения фарадеевского тока, не могут правильно передать ход элект-рокапиллярной кривой. Так, в нашей лаборатории сотрудником Болгарской АН Т. В. Дончевым было найдено, что при потенциалах выделения водорода из раствора дифениламина в НС1 период капания капилляра (т) уменьшается в десятки раз по сравнению с т при потенциале электрокапиллярного нуля. Измерения а с помощью электрометра Гуи показали отсутствие какого-либо минимума при этих потенциалах величина а уменьшается в рассматриваемом диапазоне потенциалов всего лишь в 1,1 раза. Аналогично, по П. Зуману и Я- Ходковскому [17], зависимость т от в растворах иона тропилия имеет 2 минимума (рис. 1) в то же время измерения б с помощью электрометра Гуи показали, что зависимость G от в растворах иона тропилия имеет обычный вид (рис. 2). По-видимому, при прохождении фарадеевского тока на период капания и вес капли могут влиять факторы, не имеющие непосредственного отношения к адсорбционным явлениям. Поэтому на основе измерений т нельзя сделать вывода о характере адсорбирующих- [c.25]

    Воздействие электрического поля даже с использованием изолирующих прокладок всегда может сопровождаться генерированием в препарате электрического тока. В случае растворов ПБГ сила тока не превышает 10 А. Возможной причиной считают ионизацию концевых групп (—СООН) молекул ПБГ, причем ионы водорода образуют двойной электрический слой на катоде [56]. Хотя и принимают, что столь слабый электрический ток практически не влияет на ориентацию молекул ПБГ в поле, тем не менее фиксацию созданной в растворах ориентации в высаженных полимерных пленках более корректно проводить с использованием магнитного поля. В таких экспериментах тонкий слой полностью анизотропного раствора (с>с ) помещается на поверхность подложки (стекло, тефлон, ртуть) и медленно (в течение 24—48 ч) высушивается в магнитном поле. Несмотря на то что предельное значение Яззоо в случае магнитной ориентации раствора значительно ниже, чем в случае электрической, в сухих пленках степень ориентации, определенная рентгенографическим методом, одинаково высока (80—85%) в обоих случаях [57]. Это указывает на то, что в магнитном поле на высыхающую пленку действуют некоторые кооперативные факторы, связанные с испарением растворителя и способствующие молекулярной доориентации. [c.137]

    Специфические черты электрохимической кинетики выступают особенно ярко при рассмотрении непосредственно электрохимической стадии ироцесса, протекающей в электрическом поле двойного слоя у поверхности электрода. Именно наличие этсй стадии заставляет выделить кинетику электродных процессов из общих рамок химической кинетики, придает ой в известном смысле самостоятсльпость. Электрическое иоле двойного слоя влияет как на величину энергии активации элементарного акта разряда, так и на эффективную концентрацию реагирующих частиц. Значение первого эффекта было виервьк количественно сформулировано Фоль-мором, второго — автором, которым для случая катодного выделения водорода была построена теория, учитывающая оба фактора и связывающая таким образом кинетику электрохимической реакции со строением двойного слоя [25]. Теория эта применима и к другим электрохимическим реакциям. Она получила подтверждение в ряде экспериментальных работ, особенно в последнее время в опытах В. С. Багоцкого по определению влияния концентрации и pH раст]юра на водородное перенапряжение иа ртутном электроде [16, 26.]. [c.26]

    Предложенный в свое время метод определения кислотности углеводородов и других СН-кислот путем измерения кинетики реакций изотопного обмена водорода в средах с высокой протофальностью получил широкое распространение (см. обзо-ры Ь. Поэтому важно знать, какие факторы могут влиять на установленную таким образон кинетическую кислотность СН-кислот. [c.338]


Смотреть страницы где упоминается термин Факторы, влияющие на определение водорода: [c.307]    [c.142]    [c.366]    [c.303]    [c.228]    [c.37]    [c.29]    [c.170]   
Смотреть главы в:

Современные электрохимические методы и аппаратура для анализа газов в жидкостях и газовых смесях -> Факторы, влияющие на определение водорода




ПОИСК





Смотрите так же термины и статьи:

Водород определение

влияющие фактор



© 2025 chem21.info Реклама на сайте