Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические гидратированно

    При солюбилизации полярных соединений (спирты, нитрилы, амины) происходит внедрение полярной группы в гидратированный адсорбционный слой, а углеводородной части — в ядро мицеллы. При этом образуются смещанные мицеллы. Раствор ПАВ, содержащий какое-либо соединение в солюбилизованном виде, по своим фазовым и термодинамическим характеристикам не отличается от исходного раствора ПАВ и является термодинамически устойчивым (в отличие от эмульсии), так как процесс [c.145]


    Во МНОГИХ анодных процессах образуются растворимые комплексы или слабо растворимые продукты, не являющиеся гидратированными катионами, окислами или оксианионами. Если имеются соответствующие термодинамические данные, то для графического изображения такого рода процессов также можно пользоваться диаграммами зависимости между обратимым потенциалом и pH (рис. 155) .  [c.225]

    Более точный анализ причин различного кислотно-основного поведения галогеноводородов основывается на термодинамической трактовке протолитического процесса. Термодинамически кислотно-основная реакция галогено-водорода в водной среде соответствует изменению состояния системы при переходе гидратированных молекул галогеноводорода НХ в гидратированные ионы  [c.405]

    Известно много примеров стабилизации определенных степеней окисления многовалентных металлов. Однако следует еще обратить внимание на то, что стандартные потенциалы характеризуют термодинамическую тенденцию протекания определенной реакции лишь тогда, когда все компоненты имеют активность, равную единице, а истинная скорость реакции определяется ее кинетикой. Так, хотя вышеприведенные значения предсказывают, что Fe( N)r менее устойчив к окислению, чем гидратированный ион Fe +, но все же цианидный комплекс имеет большую химическую устойчивость, что объясняется малой скоростью окисления в обычных условиях. [c.322]

    Электроны, захваченные растворителем (сольватированные электроны), отличаются от свободных электронов меньшей подвижностью и большей термодинамической устойчивостью и напоминают сольватированные анионы. Они имеют короткое время жизни. Сольватированные электроны характеризуются единичным отрицательным зарядом. Радиус гидратированного электрона ко- [c.281]

    Наконец, можно себе представить третий механизм образования двойного слоя—так называемый ионогенный (рис. 62). Такой слой образуется путем перехода ионов из металла в раствор ДО установления термодинамического равновесия. При этом в металле оказывается избыточное количество электронов. Они и составляют внутреннюю обкладку двойного слоя. Внешней же обкладкой служат гидратированные катионы металла. [c.199]

    Термодинамические расчеты, произведенные для всех возможных соединений германия и кремния, показывают, что при умеренных температурах (О—600° К) и при обычных парциальных давлениях кислорода наиболее устойчивыми соединениями являются гидратированные двуокиси изучаемых элементов [c.105]

    Простейшая кислота, т. е. атом водорода в водном растворе, реагирует с ионом гидроксила по схеме H-t-OH =e aq, где e-aq — гидратированный электрон. Из термодинамических данных следует, что изменение стандартного изобарно-изотермического потенциала А6 ° этой реакции отрицательно (AG° равно приблизительно —0,25 эВ) и порядок константы равновесия составляет 10 моль -л-с-. Для получения электронов в жидких средах рекомендуется применять фотоионизацию воды, ведущую к образованию гидроксо-радикала, иона водорода и электрона, связанных с молекулами воды [c.146]


    Наблюдающиеся время от времени спады прочности на поздних этапах твердения Сз5 (рис. 35) могут быть объяснены развитием кристаллизационного давления и растворением части термодинамически неравновесных контактов в результате изменения условий пересыщения. Следует заметить, что гидратированные образцы СзЗ значительно меньше других минералов, имеющих ярко выраженную кристаллизационную структуру твердения, обнаруживают деструктивные явления. В них значительная часть гелеобразной массы сохраняется длительное время и обеспечивает эластичность пространственной структуры, сохранение высокой прочности. [c.88]

    Термодинамическая устойчивость комплексов определяется несколькими факторами. Одним из важнейших является ионный потенциал центрального иона металла, от которого зависит способность этого иона акцептировать электронные пары лигандов. Впрочем, кроме численного значения ионного потенциала необходимо еще учитывать, мягким или жестким является рассматриваемый ион и какова его поляризующая способность. Эти вопросы обсуждались в разд. 19.3 в связи с гидратацией простых катионов. Многое из того, что сказано там в отношении гидратированных катионов, справедливо [c.412]

    Благодаря гидратированным полярным группам поверхность мицелл имеет гидрофильные свойства и очень малую межфазную свободную энергию. Это создает сродство мицелл к дисперсионной среде и сообщает системе свойства лиофильных коллоидов. Указанные особенности состояния растворов мыл и мылоподобных ПАВ выше ККМ позволяют считать их двухфазными ультрадисперсными системами, которые являют собой пример термодинамически устойчивых лиофильных коллоидных систем. В таких растворах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно растворенной частью, т. е. существует равновесие  [c.110]

    По аналогии с фазовой диаграммой системы лед — вода можно предположить, что при возрастании температуры разница между концентрацией переохлажденных мицелл и гидратированного твердого ПАВ уменьшается. Выше точки Крафта равновесная концентрация мицелл становится меньше, чем концентрация (гипотетического) перегретого гидратированного твердого ПАВ, и поэтому мицеллы являются термодинамически более выгодной формой. Выше ККМ возникают только мицеллы, но не твердое ПАВ и концентрация насыщения остается практически постоянной [19]. С повышением температуры по достижении определенной точки наблюдается быстрое возрастание общей растворимости. Это явление связано с постоянством активности растворенного вещества выше ККМ. При этом в соответствии с принятой моделью [c.16]

    Термодинамической основой такого процесса перехода от безводных форм к гидратированным является повышенная растворимость безводных золевых частиц по отношению к гидратным формам полимерных силикатов. Поверхность вновь образующейся фазы, по нашим оценкам, составляет 1500—2000 м /г. Скорость процесса затухает в течение 1—5 сут в связи с уменьшением pH раствора и появлением отрицательных зарядов на вновь образующейся поверхности или, иными словами, за счет адсорбции гидроксильных ионов на растущей фазе. Описываемый процесс соответствует многочисленным наблюдениям при определении растворимости кремнезема в щелочных средах, когда во многих случаях равновесная концентрация кремнезема устанавливается сверху, т. е. со стороны пересыщенных растворов. Такого же рода процесс происходит при гидратации цементных фаз, где раствор оказывается пересыщенным по отношению ко вновь образующимся гидратным формам силикатов. В высокомодульных полисиликатных системах к моменту затухания процесса большая часть кремнезема остается в исходном безводном состоянии. Таким образом, поли-силикатный раствор, образованный добавлением к золю концентрированной щелочи, состоит из уменьшившихся в размерах частиц исходного золя, высокодисперсной фазы гидратированного кремнезема с размерами частиц не выше 5—7 нм и кремнезема, находящегося в растворе в виде ионных олигомерных форм. [c.67]

    Наибольшее значение из электродов второго рода (см. 23) имеют электроды из галогенидов серебра и ртути, а также окисные электроды . На электродах такого вида могут образовываться гидратированные ионы металла Ме -ад. Этот путь реакции соответствует термодинамическому расчету равновесного потенциала с учетом произведения растворимости. Несмотря на этот термодинамически совершенно правильный способ расчета, можно думать, что образование и восстановление труднорастворимых покрывающих слоев едва ли будет идти через Ме -ад. Во многих случаях равновесная концентрация [Ме " -ад] столь мала, что на границах раздела не достигаются требуемые молекулярнокинетические числа соударений. Кроме того, в этом случае ионы [c.728]

    Разделение тг, В и rf, на ионные вклады производится в предположении о равенстве вкладов К+ и С1 . Простые ионы, которые по значениям А5 , г (разд. З.Г) и спектральным данным (разд. З.Б) относят к структурирующим, дают положительные значения В, отрицательные <1Л и времена переориентации тг, превосходящие эти величины для чистой воды. Такие ионы, следовательно, снижают вращательную и поступательную подвижность соседних молекул воды. Термодинамические и кинетические критерии в данном случае согласуются, указывая на преобладание положительной гидратации для ионов Li+, F , OH и для большинства двух- и многозарядных ионов. Полностью ли подавляется вращение молекул воды в первичной гидратной оболочке этих ионов Некоторые данные указывают на то, что для большин-- гва ионов этого в действительности нет. Время переориентации для совершенно жесткого комплекса М2+ (Н20)6 оценивается примерно величиной 10 10с при 25 °С [26]. тг для положительно гидратирован-ных катионов, хотя и превосходит значение для чистой воды, все же далеко от этого значения. Детальный анализ [430] данных по диффузии и магнитной релаксации 19F и 1Н в водных растворах фторидов также показывает, что изменение положения одного атома Н относительно другого происходит быстрее, чем изменение положения Н относительно F. Такой же результат получен для ионов лития [432]. Наконец, времена диэлектрической релаксации т , хотя и не коррелируют точно с тг, в присутствии любых ионов уменьшаются. Можно предположить, что положительно гидратированные ионы полностью иммобилизуют молекулы воды в первой координационной оболочке по тем степеням свободы, которые определяют ориентационный вклад в диэлектрическую проницаемость. Следовательно, т относятся к более удаленным молекулам воды, которые участвуют в отрицательной гидратации. Одновременное увеличение тг для этих ионов указывает на то, что некоторые из движений, существенных для релаксации 1 Н (например, вращение вокруг оси симметрия С2 молекулы воды в структуре 3), остаются не замороженными в первичной координационной сфере, тогда как движения, определяющие переориентацию электрических диполей воды, подавляются [16]. Только в случае А1 3+ равенство времен переориентации векторов Н-Н и А1—Н указывает на жесткую сольватацию в первичной координационной сфере [432]. [c.289]


    Синтетический латекс представляет собой коллоидную дисперсию типа масло в воде. Частицы каучука (масляная фаза) в латексе имеют обычно размеры от нескольких десятков до сотен нанометров (редко менее 10 и более 1000 нм). Как всякая дисперсная система с развитой поверхностью раздела, латексы термодинамически нестабильны. Для сохранения коллоидных свойств системы в течение длительного времени поверхность раздела следует гид-рофилизовать, что достигается введением в систему дифильных поверхностно-активных веществ (ПАВ), например солей карбоновых кислот различной природы и строения. Адсорбированные на поверхности раздела гидратированные молекулы и ионы ПАВ образуют защитные слои. Эффективная толщина таких слоев, оцененная по данным вискозиметрических [4, 5], дилатометрических [6], термографических [7] измерений, изменяется от нескольких единиц до десятков нанометров в зависимости от природы и количества образующего их эмульгатора, а также от степени заполнения поверхности частиц адсорбированным эмульгатором (так называемой адсорбционной насыщенности). Адсорбционная насыщенность синтетических латексов обычно лежит в диапазоне от [c.587]

    Так, при условиях, соответствующих области, лежащей (ниже линии а, железо находится в термодинамически стабильном состоянии и коррозии не подвергается. В области, заключенной между линиями а и б, железо корродирует с образованием двух- и трехвалентных ионов, а в области коррозии при высоких значениях pH железо корродирует с образованием ферратов железа (НРеОг). Область пассивности (правее линии б) соответствует условиям образования гидратированных или негидратированных окислов железа. В этой области железо термодинамически неустойчиво, но вследствие образования нерастворимых (вернее малорастворимых) продуктов коррозии растворение железа (не происходит и оно находится как бы в пассивном состоянии. [c.5]

    Типичным представителем лиофильных дисперсных систем являются мицеллярные дисперсии ПАВ, в которых наряду с отдельными молекулами присутствуют коллоидные частицы (мицеллы) — ассоциаты молекул ПАВ с достаточно большой степенью ассоциации (числом молекул в мицелле) /я = 20-н 100 и более. При образовании таких мицелл в полярном растворителе (воде) углеводородные цепи молекул ПАВ объединяются в компактное углеводородное ядро, а гидратированные полярные группы, обращенные в сторону водной фазы, образуют гидрофильную оболочку (рис. VIII-6). Благодаря гидрофильности наружной оболочки, экранирующей углеводородное ядро от контакта с водой, поверхностное натяжение на границе мицелла — среда оказывается сниженньшс до значений что и обусловливает термодинамическую устойчивость мицеллярных систем относительно макрофазы ПАВ. [c.267]

    Впервые получено экспериментальное термодинамическое подтверждение клатратообразования при связывании гидрофобных органических соединений твердыми гидратированными белками. [c.153]

    Реакционная способность углеводорода 4 оказалась, с одной стороны, предсказуемой, а с другой — достаточно неожиданной [7а]. Неожиданным было то, что это термодинамически очень неустойчивое соединение обнаруживает высокую стабильность и не вступает в реакции с большинством испытанных реагентов (в резком контрасте со своим термодинамически более стабильным валентным изомером 44). Напротив, другие априорные заключения о его химии подтвердились. Так, анализ молекулярных моделей показал, что для 4 есть только два канала реакций протонирование и окисление. Другие, более объемистые реагенты не могут проникнуть к реакционным центрам через блокирующий корсет заместителей. Протонирование можно осуществить только при действии безводных кислот, источников несольватированного протона, тогда как гидратированная частица (гидроксоний-катион) слишком объемист, и потому не может проникнуть к тетраэдрановому кору молекулы субстрата. Результатом протонирования является разрыв одной из связей С-С тетраэдранового ядра и образование гомоароматической [c.385]

    Изменения избыточных термодинамических характеристик растворов с концентрацией содержат ценную информацию о взаимодействиях между гидратированными молекулами растворенного вещества в реальном растворе. Эта информация может быть получена путем нахождения коэффициентов вириальных разложений функций У (с) в ряды по степеням концентрации. В соответствии с теорией МакМил-лана-Майера эти коэффициенты формально отражают л-кратные (парные, тройные и т.д.) межчастичные взаимодействия. [c.101]

    Ларсен и Виссарс [33] попытались получить данные о свободных энергиях, теплотах и энтропиях обмена для катионов Ыа+ и на фосфате циркония в №-форме. Они использовали образцы фосфата циркония, полученные путем медленного осаждения из раствора 2гОС12 в НС1. При длительном промывании водой образцы теряли часть фосфата до Р04 2г = 1,16. Опыты проводились в статических условиях в 0,1005 н. солянокислых растворах соответствующих хлоридов щелочных металлов при температурах от 1,17 до 44,5° катион щелочного металла замещался ионом меди с целью последующего анализа. Термодинамическая константа равновесия К была получена интегрированием кривой зависимости lg/( от состава ионообменника (стр. 40), при этом предполагали, что результаты могут быть проэкстраполированы на весь интервал изменения состава ионообменника. Изменение свободной энергии рассчитывалось по формуле А0° = —ЯТ пК, а изменение энтропии— из соотношения АС° = АЯ° — 7 А5<, где изменение теплоты обмена А//° было получено из изохоры Вант-Гоффа для соответствующих значений К при различных температурах. Полученные данные (табл. 30) количественно выражают ряд сродства, установленного с помощью коэффициентов распределения, причем АС° становится отрицательным с уменьшением гидратированного ионного радиуса. Значения А5° близки к величинам относительных энтропий ионов в водных растворах [78]. Надежность этих данных не ясна вследствие значительного числа экс- [c.160]

    Харрис [64 ] описывает ряд методов определения воды в некоторых материалах. По его утверждению, абсолютное определение воды во многих смесях невозможно, особенно при проведении экспресс-анализов, например при контроле качества. Поэтому достоверность анализа становится важной проблемой в этом случае результаты анализа могут даваться в относительных единицах, приведенных к определенному стандарту. Имеется насущная необходимость установления национальных и международных стандартов, вероятно, через такие организации, как ASTM (Американское общество испытания материалов) и ISO (Международная организация стандартизации). Калибровку каждого конкретного аналитического метода следует осуществлять путем определения воды в образцах, содержащих строго определенное количество воды и являющихся устойчивыми соединениями. Такими образцами, например, могут служить соответствующие гидратированные соединения. С другой стороны, для калибровки можно использовать результаты прямого измерения термодинамических или электрических величин или других констант. Имеются многочисленные методы получения газовых смесей с заданным составом, пригодных в качестве стандартов для калибровки физических измерений, используемых для определения влажности газов. В работе Гринспена [60] (Национальное бюро стандартов) кратко описывается генератор влажности, который позволяет задавать определенное содержание воды (несколько млрд ) в воздухе и в других газах. Автот утверждает, что ему удалось измерить с точностью до 0,05 °С точку замерзания (—100 °С), что соответствует 14 млн , воды в воздухе при атмосферном давлении. Измерения возможны в интервале давлений от 500 до 200 ООО Па в широком интервале температур. Решкович и Грязина [56] обсуждают условия приготовления и хранения стандартов для определения влажности газов, а также описывают методики определе- [c.30]

    В результате коагуляционных процессов образуются сЕерхмицел. ярные структуры гидратированных гидроксидов алюминия или железа. Их возникновение обусловлено тем, что агрегаты частиц золей этих гидроксидов имеют неправильную форму. На отдельных участках поверхности таких агрегатов наблюдается снижение термодинамического потенциала и концентрации компенсирующих ионов при соприкосновении таких участков агрегаты слипаются. Однако наличие у агрегатов участков с повышенным потенциалом препятствует их полному слипанию. В результате формируются структуры, состоящие из пространственных ячеек, внутри которых заключена вода. Пр соответствующей концентрации дисперсной фазы сверхмицеллярные структуры распространяются на весь объем коагулирующей системы. С постепенным упрочнением связей в определенных участках коагуляционной структуры достигаются предельные напряжения, обусловливающие разрыв сплошной. структуры на отдельные хлопья. [c.613]

    Металлические контакты, хсрошо катализирующие гидрогенизацию или присоединение водорода, считали хорошими примерами дегидрогениза цио иной теории реакций гетерогенного окисления. Из термодинамических соображений следует, что вещества, ускоряющие гидрогенизацию, должны катализировать также дегидрогенизацию. Позднейшие работы Виланда [51, 52], повидимому, указывают, что оба предположения, именно активацию окисляющего вещества и лабилизацию водорода в окисляемом веществе, следует признать правильными при объяснении функций катализаторов в реакциях окисления. Механизм действия металлов при автоксидации альдегидов был настолько модифицирован, что Виланд предполагал, что ионы Ре " дают лабильные комплексы с молекулами окисляемого вещества, т. е. они присоединяются к связи С=0 и активируют ее. Для гидратированных форм предполагается, что ионы идут к [c.575]

    Образование хлопьев при введении в воду минеральных коагулянтов следует рассматривать как совместную коагуляцию гидроксидов алюминия и Железа с находящимися в воде коллоидными частицами минеральными (глинистые минералы, кварц) и органическими (гумусовые и дубильные вещества). Эти частицы в большинстве случаев отрицательно заряжены, а частицы гидратированных гидроксидов алюминия и железа несут положительный заряд. Следовательно, в основе образования хлопьев лежит взаимодействие разноименно заряженных коллоидных частиц— процесс, наиболее энергетически вероятный. Этот процесс можно рассматривать и как адсорбцию высокодисперсных первичных частиц положительно заряженных гидроксидов на активных отрицательно заряженных центрах поверхности более крупных частиц природных коллоидов. Последующая кoaгy Iяцйя может происходить благодаря уменьшению термодинамического потенциала (заряда) поверхности и снижению энергетического барьера между самими коллоидными частицами либо, что более вероятно, между адсорбированными на одних частицах гидроксидами металлов и свободной поверхностью других частиц. При этом образуются агрегаты мозаичной структуры, аналогичные агрегатам, образующимся при флокуляции. [c.117]

    На электроосаждение оказывают влияние следующие явления, связанные с комплексообразованием 1) термодинамический эффект, или сдвиг равновесного потенциала 2) кинетический эффект, или изменение обменного тока. Термодинамический эффект заключается всегда в сдвиге потенциала в отрицательную сторону, следовательно, он затрудняет осаждение [см. уравнение (15-506)]. Кинетический эффект может быть направлен в любую сторону, так как скорость обмена электронами между электродом и комплексом может быть как больше, так и меньше скорости обмена между электродом и гидратированным ионом. В самом деле, если разряд гидратированного иона сопровождается возникновением высокого сверхпотенциала вследствие очень малой величины обменного тока, образование комплекса может настолько повысить обменный ток, что происходящее ири этом падение сверхпотенциала более чем компенсирует сдвиг равновесного потенциала. В этом случае осаждение лучше проводить из раствора комплекса, а не из водного раствора, содержащего гидратированные ионы металла. Прекрасным примером может служить электроосаждение никеля, разряд гидратированных ионов которого на ртутном капельном электроде происходит при величине сверхпотенциала более 0,5 в. В присутствии комплексанта, иапример тиоцианата, пиридина или больших концентраций хлорида, никель восстанавливается значительно легче. [c.344]

    Изменения энтропии, сопровождающие образование бцс-пиридино вых комплексов Ag(I) в водных растворах, также отрицательны (от —12 до —21 энтр. ед.), так как ион Ag(I) не является сильно гидратированным, но эти изменения становятся более благоприятными в ряду ру < 2-Л1е-ру < 2,6-ди-Ме-ру [80] вследствие смещения большего количества воды из окружения катиона. Имеются также термодинамические данные для замещения этилендиамина в его комплексах с Ni(ll) и u(II) на его N-алкильные и N,N -диaлкильныe аналоги в водном растворе [18, 19, 196] и для замеш,ения 4-метил-8-оксихинолина в его комплексах с марганцем, кобальтом, никелем, медью и цинком на 2-метил-8-оксихинолин в 50%-ном диоксановом растворе [151]. Эти данные являются ориентировочными, но, по-видимому, можно заключить, что неблагоприятные изменения свободной энергии обусловлены неблагоприятными изменениями энтальпий, которые сопровождаются небольшими благоприятными изменениями энтропии. Замещение диамина на его С-алкильный аналог, по-видимому, мало сказывается на устойчивости комплексов с протоном, никелем или медью. Небольшое повышение устойчивости может быть следствием в основном благоприятного изменения энтропии, обусловленного усилением влияния лиганда на растворитель с нарушением его структуры [16, 121]. [c.62]

    Иортнером и Нойесом [55] осуществлен подробный термодинамический анализ некоторых процессов с участием гидратированного электрона в воде. Ими предложен следующий гипотетический процесс гидратации электрона [е ] ад = где [е ] обозначает электрон в гипотетическом состоянии, обладающем нулевой энтропией, энтальпией и свободной энергией. Для этого процесса АНТ = —38,1 и АСГ —37.5 ккал моль, а А6Т = —1,9 э. е. Все эти величины рассчитаны из энергетических параметров реакции с участием протона Нг ,, — 2Н+ - 2ей,. [c.74]

    Принимается, что система в исходном состоянии — это водный раствор, содержащий свободные гидратированные ионы. Взаимодействие ионов может. привести к образованию комплексов двоякого рода внещнесферных комплексов (ионных пар, тройников и т. д.) и внутрисферных, т. е. таких комплексов, в которых ион галогена входит во внутреннюю координационную сферу комплексообразователя. Образование внешнесферных комплексов, по-видимому, может произойти либо совсем без изменения состава гидратной оболочки ионов металла и галогена, либо с частичной дегидратацией ионов галогенов при сохранении гидратной оболочки ионов металла [17]. Термодинамические характеристики процессов внешнесферного комплексообразования практически совсем еще не изучены и потому специально здесь рассматриваться не будут. [c.80]

    В отношении термодинамических функций реакций комплексо-обр азования следует отметить, что наблюдаемая величина дубль-дубль-эффекта зависит от разности между ее значениями для комплекса и гидратированного иона следовательно, величина эффекта зависит от взаимного расположения лиганда и воды в не-фелоксетическом ряду. Предпринята также попытка объяснить природу дубль-дубль-эффекта с помощью теории кристаллического поля [50]. [c.306]

    Основным процессом окислительно-восстановительных реакций (ОВ-реакций) является перенос электрона. Термодинамический подход (ер. разд. 3.5). не дает никакой информации относительно скорости и механизма ОВ-процессов, происходящих при задаяных условиях. Гидратированный электрон e aq может существовать в свободном состоянии в воде (полупериод жизни для реакции e aq-fH20—ьН-ЬОН при избытке. воды равен 8>10 с [46]), [c.157]

    Особенностью химичесютх реакций является передача электрона от одного атома или молекулы к другим. Процесс передачи электрона вовсе необязательно реализуется переходом свободного электрона. Электрон может быть отщеплен от реагента, если в его непосредственном соседстве находится электронный акцептор. Прирост свободной энергии при акцептировании электрона должен превосходить энергию, необходимую для его отщепления от электронного донора. Освобождение электрона можно также осуществить, сообщая донорной системе избыточную энергию с помощью теплового, фотохимического или электростатического воздействии. Такой процесс происходит независимо от наличия каютх-либо акцепторов электронов. Отщепленный электрон диффундирует в среде до его захвата в результате одного из двух возможных актов. Он может присоединиться к атому или молекуле, которые обладают положительным сродством к электрону. В то же время, если электрон перемещается в конденсированной среде, состоящей из молекул с нулевым или отрицательным электронным сродством, он оканчивает свой путь в ловушке , образованной его собственным поляризационным полем. Такой захваченный электрон уже не в состоянии свободно перемещаться в веществе. Из своей потенциальной ямы электрон может освободиться только при условии, если он приобретет энергию извне или перейдет в соседнюю ловушку. Электрон, захваченный в растворителе, отличается от свободного электрона меньшей подвижностью и большей локализацией. Кроме того, захваченный электрон характеризуется отрицательной свободной энергией образования, т. е. является термодинамически более стабильным. Эти свойства, напоминающие свойства отрицательного сольватированного иона, позволяют рассматривать электрон как особую гидратированную частицу. В общем смысле электронный акцептор также можно рассматривать как ловушку, в которой электрон локализован гораздо сильнее, чем в ловушке, образованной молекулами растворителя. Электрон, окруженный ориентированными молекулами растворителя, является (и это его наиболее существенная в химическом отношении характеристика) необычайно активным электронным донором. Такое образование, существующее в жидкостях, называется солъватированным электроном е , если же растворителем является вода, то это гидратированный электрон вад. [c.169]


Смотреть страницы где упоминается термин Термодинамические гидратированно: [c.191]    [c.347]    [c.71]    [c.215]    [c.215]    [c.283]    [c.12]    [c.231]    [c.298]    [c.160]    [c.66]    [c.451]    [c.74]    [c.80]    [c.145]    [c.176]   
Краткий справочник физико-химических величин Издание 8 (1983) -- [ c.89 , c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратирование



© 2025 chem21.info Реклама на сайте