Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы термического расщепления углеводородов

    С целью снижения расхода сырья на образование побочных продуктов за счет термического расщепления углеводородов, а также с целью удлинения срока службы катализаторов и по ряду других причин, рацио- [c.284]

    Процесс осуществляют циклически с предварительным подогревом сырья до температуры реакции без термического разложения углеводородов. Последнее достигают тем, что на поверхность огнеупорных материалов в зоне предварительного подогрева в виде пленки толщиной 0,794 мм наносят металл (никель или кобальт), которому приписывают способность тормозить термическое расщепление углеводородов. Подогретое сырье поступает в зону реакции, заполненную никелевым катализатором. Продолжительность рабочего цикла 2 мин [c.182]


    Активность окисных катализаторов щелочноземельной группы значительно ниже. Превращение протекает по другому механизму. Вероятно, при температурах расщепления углеводородов с водяным паром в присутствии окисных катализаторов, т. е. при 900—1100°, основной реакцией, определяющей превращение, является термическое расщепление углеводородов. В отсутствие катализатора основными продуктами реакции являются низкомолекулярные насыщенные и ненасыщенные углеводороды, свободный углерод и водород. В присутствии окисного катализатора углеродсодержащие фрагменты и углерод взаимодействуют с водяным паром с образованием окиси углерода и водорода [11]. [c.465]

    Крекинг бывает термический и каталитический. При каталитическом крекинге превращение углеводородов осуществляют под воздействием катализаторов, ускоряющих расщепление углеводородов. При применении катализатора продукты получаются по качеству лучше, чем [c.6]

    Крекинг — процесс расщепления углеводородов с длинными цепями на молекулы меньшей длины при высокой температуре в присутствии катализатора (каталитический крекинг) или без катализатора (термический крекинг). [c.216]

    Термическое разложение углеводородов связано с промежуточным образованием термически устойчивого углеводорода — метана. Поэтому скорость процесса термического разложения углеводородных газов с целью получения из них водорода лимитируется реакцией распада метана на элементы по реакции СН4— -С + Шг. Данные о равновесии этой реакции приводились в гл. I. Теоретически разложение метана на 98—99% должно происходить при 1000—1200° С. Однако при таких температурах скорость расщепления метана до элементов еще недостаточна, и для достижения приемлемых выходов водорода процесс приходится вести в интервале 1350—1400° С. Скорость термического разложения метана может быть увеличена при использовании катализаторов, содержащих железо, никель и другие металлы. [c.130]

    Основной реакцией при крекинге является реакция расщепления углеводородов под действием тепла или при совместном действии тепла и катализаторов. Соответственно этому промышленные процессы крекинга делят на две большие группы, а именно на термические и каталитические. [c.225]

    Важным источником получения этилена и его гомологов служат газообразные и жидкие продукты крекинга углеводородов нефти. Крекингом называют процесс расщепления углеводородов с длинными цепями на молекулы меньшей длины, происходящий в присутствии катализаторов (каталитический крекинг) или при нагревании предельных углеводородов до 500—700 °С под давлением (термический крекинг). Например  [c.564]


    Циклические способы газификации жидких топлив на водяной газ обычно предусматривают использование катализаторов. Разработка подходящего катализатора для данного процесса представляет определенные трудности, так как катализатор должен пе только углублять крекинг углеводородов, но и предотвращать выделение углерода, не отравляться серой и восстанавливать свою активность при обработке воздухом. Вместе с тем контактная масса должна хорошо аккумулировать тепло и быть термически устойчивой. Обычно катализатор для вышеуказанных целей готовят на базе никеля (присутствие которого обеспечивает достаточно глубокое расщепление углеводородов) с добавкой окисей щелочноземельных металлов (в частности, соединений кальция), ускоряющих газификацию углерода водяным паром и, таким образом, препятствующих его отложению.. Для хорошего аккумулирования тепла и придания достаточной огнеупорности в качестве носителя чаще всего используется окись магния. [c.200]

    Каталитический крекинг. При каталитическом крекинге расщепление углеводородов осуществляется на алюмосиликатах — типичных катализаторах ионных реакций. В их присутствии реакции расщепления идут не по свободнорадикальному механизму, как при термическом крекинге, а по ионному, через промежуточную стадию положительно заряженных карбокатионов. Последние образуются из олефинов, которые получаются хотя бы в небольшом количестве при термическом распаде сырья, и протонов, генерируемых катализатором кислотного типа  [c.39]

    Катализаторы, применяемые нри жидкофазной гидрогенизации, влияют и па количество сернистых, азотистых и кислородных соединений в жидких продуктах жидкофазной гидрогенизации, которое уменьшается примерно в три раза по сравнению с содержанием их в исходном сырье. Однако как в жидкофазной гидрогенизации, так и в термическом крекинге решающее значение имеют реакции термического расщепления. Это находит отражение в том, например, что образующиеся в большом количестве газообразные углеводороды состоят в основном из метана [15], тогда как на более активном стационарном катализаторе образуется незначительное количество газов, состоящих главным образом из углеводородов С3 и С . [c.224]

    Каталитические процессы подразделяются на каталитический крекинг (катализатор — алюмосиликаты) и каталитический риформинг (катализаторы — платина, оксиды хрома и молибдена). В отличие от термических процессов, где расщепление углеводородов протекает по радикальному механизму, при каталитических процессах происходит ионный распад углеводородов. [c.314]

    В отличие от термического крекинга, при котором превращение углеводородов достигается путем нагрева сырья до повышенной температуры, существуют каталитический крекинг и другие специальные процессы переработки нефти. При каталитическом крекинге превращение углеводородов осуществляют под воздействием катализаторов, ускоряющих нужные реакции расщепления углеводородов. [c.32]

    Каталитический крекинг нефтепродуктов (соляровых и керосиновых фракций) проводят в присутствии катализаторов с получением повышенного выхода бензина высокого качества. Расщепление углеводородов проходит по тем же схемам, что и при термическом крекинге. Катализатор снижает энергию активации реакций крекинга, вследствие чего скорость процесса каталитического крекинга выше термического, и условия крекинга более мягкие (температура 425—520° G, давление 0,35— 3,5 am). Катализаторами процесса служат алюмосиликаты с высокоразвитой адсорбирующей поверхностью. Каталитический процесс складывается из ряда элементарных актов диффузии исходных веществ к поверхности катализатора и адсорбции их образования промежуточных соединений на катализаторе и превращения их в продукты крекинга десорбции крекинг-продуктов с поверхности катализатора и диффузии их в объем. [c.248]

    Каталитический крекинг нефтепродуктов (соляровых и керосиновых фракций) проводят в присутствии катализаторов с получением повышенного выхода бензина высокого качества. Расщепление углеводородов проходит по тем же схемам, что и при термическом крекинге. Катализатор снижает энергию активации реакций крекинга, вследствие чего скорость каталитического крекинга выше термического и условия крекинга более мягкие (температура 450—520 С, давление 0,1 — [c.219]

    В качестве катализаторов дегидрирования парафиновых углеводородов в настоящее время применяются алюмосиликат-ные контакты, окиси металлов — молибдена, цинка, хрома и другие катализаторы. В отсутствии катализатора, только термическим путем дегидрирование обычно не может быть успешно осуществлено вследствие протекания в этом случае реакций крекинга, приводящих к образованию низкомолекулярных парафинов и олефинов, а также выделению углерода в виде сажи. Даже в присутствии катализаторов реакция дегидрирования сопровождается некоторым расщеплением молекулы дегидрируемого углеводорода. [c.45]


    Согласно этому механизму, часть молекул парафинов подвергается термическому расщеплению, а образующиеся олефины присоединяют протоны, находящиеся на катализаторе, и превращаются в карбоний-ионы. Карбоний-ионы являются агентами распространения цепной реакции. В результате целого ряда превращений образуются парафиновые углеводороды меньшего молекулярного веса, чем исходные, и новые большие карбоний-ионы, которые затем расщепляются. > [c.10]

    Механизм расщепления углеводородов сырья в этих двух процессах одинаков. Гидрокрекинг остаточного сырья протекает термически при одновременном каталитическом гидрировании продуктов и непревращенного сырья. Гидрокрекинг же дистиллятного сырья проводится на катализаторе, который обладает как гидрирующей, так и расщепляющей функциями. [c.291]

    Крек ИНГ алифатической боковой цепи. При термическом крекинге алкилированных ароматических углеводородов в отсутствии активных катализаторов происходит интенсивное расщепление боковых цепей, первичных и вторичных алкильных групп, в то время как третичные алкильные группы большей частью деалкилируются. Добрянский и сотрудники [8] нагревали этил-, изопропил-, и-бутил и третичный бутилбензол от 600 до 650° С и, основываясь на составе полученных продуктов, сформулировали следующие правила, применимые к общему случаю термического разложения алкилированных ароматических углеводородов, [c.106]

    Олефиновые углеводороды. Олефиновые углеводороды расщепляются в присутствии катализаторов много легче и при более низких температурах, чем соответствующие парафины. Каталитический крекинг идет приблизительно в тысячу — десять тысяч раз быстрее, чем термический. Главными реакциями являются реакции расщепления углерод-углеродных связей, которые, как и в случае парафинов, приводят к возникновению осколков, содержащих [c.329]

    При получении бензинов путем термического и каталитического крекинга нефтяного сырья в них, кроме парафиновых, нафтеновых и ароматических углеводородов, содержатся также олефиновые углеводороды, образующиеся в результате расщепления крупных молекул насыщенных углеводородов. Помимо расщепления парафиновых углеводородов при крекинге происходит дегидратация нафтенов с образованием ароматических углеводородов. Если состав бензинов прямой перегонки всецело зависит от состава исходной нефти, то состав бензинов крекинга в значительной степени определяется условиями проведения процесса. Определяющим параметром термического крекинга является температура. При каталитическом крекинге углеводородный состав получаемого бензина зависит также и от фракционного состава сырья и свойств катализатора. [c.65]

    Парафины в присутствии катализатора подвергаются крекингу значительно быстрее, чем прн термическом крекинге, причем особенно легко происходит 1 аспад высокомолекулярных углеводородов. Специфичными особенностями каталитического крекинга парафинов, резко отличающими его от термического крекинга, являются 1) тенденция к расщеплению молекул в нескольких местах, благодаря чему получаются углеводороды с низким молекулярным весом последние, однако, состоят из трех и более атомов углерода (главным образом, пропан, пропилен, бутан, бутилены), а содержа- [c.325]

    На сероустойчивых катализаторах, представляющих собой системы типа оксидов металлов на оксиде алюминия или сульфидов металлов на оксиде алюминия и характеризующихся средними гидрирующими свойствами, превалируют реакции гидрогенолиза сероорганических соединений, насыщение водородом непредельных углеводородов и в несколько меньшей мере протекают реакции изомеризации и распада углеводородов. Таким образом, реакции углеводородов в присутствии этих катализаторов близки к реакциям углеводородов в процессе гидроочистки. Однако в связи со сравнительно жесткими температурными условиями и более тяжелым исходным сырьем, применяемым при гидрокрекинге, усиливаются реакции расщепления, в том числе термические в объеме, при относительно высоком уровне реакций гидрирования и изомеризации [244, 245]. [c.237]

    Крекинг углеводородов может быть проведен чисто термически или в присутствии кислых катализаторов. Термическое расщепление протекает, главным образом, с образованием свободных радикалов, а к а т я л и т и ч е с к о е — п р е и м у щ е-ственночерезкарбониевыеионы. В любом случае скорость процесса увеличивается при повьш еиии давления, так как это способствует протеканию цепных реакций. [c.88]

    Вследствие нежелательной конденсации фенола с а-метилстиро-лом и а-кумиловым спиртом при разложении КМГП образуются смолы, для удаления которых проводят а) реакцию остатка с концентрированной серной кислотой и гидрирующее расщепление при 350 °С и давлении 50 кгс/см на кобальт-молибденовом катализаторе (носитель А12О3) с образованием фенола и различных углеводородов [364—365] б) сульфирование остатка серной кислотой и связывание формальдегида катиопобмеиными соединениями [366] в) термическое расщепление остатка при 240—400 °С с получением добавочного количества фенола [367]. [c.283]

    Моор [3] рекомендует получать высокомолекулярные моноолефиновые углеводороды каталитическим крекированием парафинистого сырья в присутствии активированной окиси алюминия в сравнительно мягких условиях, что позволяет легко управлять процессом и значительно повысить степень превращения сырья без существенной роли реакций более глубокого расщепления. Этот метод получения высокомолекулярных олефинов имеет преимущество и перед процессом термического разложения парафиновых углеводородов и перед крекингом в присутствии алюмосиликатного, алюмохромового и гидратированного магнийкальцийсиликатного катализаторов. Выход олефиновых углеводородов в данном случае не зависит от глубины разложения исходного сырья, высокие скорости превращения могут быть осуществлены без заметного снижения качества продуктов, качество исходного сырья в определенных пределах мало влияет на качество и выход продуктов. [c.317]

    Деалкилирование гомологов бензола и нафталина. Большие масштабы потребления бензола и нафталина наряду с нали чием избыточных количеств толуола и метилнафталинов обусловили практическое значение процессов деалкилирования (деметилирование) ароматических углеводородов. В настоящее время этим способом получают значительное количество бензола и нафталина. Деалкилирование ароматических углеводородов основано на их деструктивной гидрогенизации (гидрогенолиз) с расщеплением С—С-связи между ароматическим ядром и алкильной группой. Эту реакцию можно осуществлять без катализатора (термическое деалкилирование) или с гетерогенными контактами (каталитическое деалкилирование)  [c.72]

    Более действенной оказалась комбинация окиси вольфрама и цинка, которые под действием Нг и небольшого количества СЗг (НгЗ) при 200 ат переходят в сернистые соединения. Катализатор работает при температуре, на 50° ниже температуры, при которой применяется упомянутая ранее комбинация Мо—Хп—М , дает вдвое большую производительность при вдвое меньшем количестве газообразных продуктов и почти не отравляется органическими основаниями. Сначала этот катализатор получали довольно трудоемким способом, который был впоследствии заменен термическим разложением суль-фовсльфрамата аммония (КН<)2 54 на и сернистый аммоний при атмосферном д влении. Как показали рентгенографические измерения, образующийся при этом высокоактивный сернистый вольфрам имеет стесненную решетку , напряжение которой, ио-видимому, и сообщает соединению высокую активность. Однако по этому вопросу существуют различные мнения. В присутствии такого катализатора реакции расщепления протекают очень активно, но углеводороды получаемого бензина содержат много водорода. Такой бензии обладает малой детонационной стойкостью и потому не удовлетворяет требованиям, предъявляемым к топливу для двигателей. [c.117]

    В патентной литературе описано получение высших диолефинов путем взаимодействия а,Р-ненасьпценных альдегидов и кетонов со спиртами [32]. Из 2-этил-2-гексеналя и изопропилового спирта синтезированы этилгексадиены. Диолефины получаются также при термическом расщеплении полимеров разветвленных олефинов [33], при воздействии натрия [34] на ненасыщенные эфиры (диаллиловый эфир превращается в 1,5-гексадиен). Путем взаимодействия простых эфиров с олефинами, имеющими небольшое число углеродных атомов, над дегидратирующими катализаторами получаются высшие олефины и диолефины. Так, из бутена и диметилового эфира синтезированы диолефины g, Сб, С, и g [35]. Смеси полиолефиновых углеводородов сложного состава можно получить действием фтористого водорода на нафтены и сильно разветвленные олефины [36]. [c.201]

    Значения температурных коэфициентов скорости реакции и кажущейся энергии активации также зависят от химического состава сырья и особенно от содержания в нем полициклических углеводородов. Блокирование поверхности катализатора упомяну-тьши соединениями, повидимому, обусловливает повышение удельного значения реакций деалкилирования ароматических углеводородов. Не исключено, что при температурах 475—500° роль термического расщепления, протекающего в объеме, окажется также достаточно большой. Температурный коэфициент и энергия активации термической реакции значительно выше, чем для каталитического превращения, что в итоге должно приводить к некоторому повышению результирующих значений этих величин. Для образца № 4 в области температур 450—475° кажущаяся энергия активации общего распада оказалась приблизительно равной 16 ООО, а аналогичное значение для газообразования примерно 30 000 кал моль, что значительно превышает соответствующие значения для других видов сырья. [c.149]

    Практическое значение приведенных выше полон ений очень велико. При получении бензина термическим крекингом нефтяных фракций или парафиновых углеводородов, полученных, нанример, синтезом но Фишеру-Троншу, образуются бензины, олефиновая фракцрш которых в основном состоит из непредельных углеводородов с двойной связью у концевого атома углерода. Это объясняется тем, что (как указывалось при рассмотрении олефинов крекинга) при чисто термическом расщеплении изомеризация двойной связи незначительна или вовсе не происходит. Поэтому олефиновая фракция бензинов, полученных но методу Фишера-Тронша в присутствии железного катализатора и особенно по методу Хайдрокол , состоит в основном из соединений с двойной связью у концевого атома углеродной цепи. [c.715]

    С первых дней существования Института в его стенах трудилась группа видных химиков-органиков и специалистов по хпыпк нефти и физической химии (С. С. Наметкин, Н. Д. Зелинский, К. К. Дубровай, А. В. Фрост, К. П. Лавровский, М, А. Капелюш-ников, В. А. Соколов, В. А. Сулин). Это создало предпосылки того, что уже в 40-е годы Институт активно участвовал в создании научных основ термических и каталитических пропессов превращения углеводородов нефти, химии моторного топлива, химии синтетических масел и присадок и ряда других научных и технологических направлений, которые в дальнейшем составили предмет современной нефтехимии. В Институте в конце 40-х годов проводились исследования крекинга нефтяных фракций в присутствии кислорода, пирогенетических реакций углеводородов, гидрогенизации углеводородов, изомеризации и расщепления углеводородов нефти под влиянием катализаторов, изучение химического состава парафинов и церезинов, окисления парафинов, химизма сернокислотной очистки нефтепродуктов, химизма образования синтетических масел из непредельных углеводородов под влиянием хлористого алюминия. [c.4]

    Крекинг парафиновых и циклопарафиновых углеводородов можно рассматривать как реакцию деалкилирования и механизм его — как механизм,обратный механизму реакции алкилирования. Основной реакцией каталитического крекинга является разложение иона карбония на меньший ион карбония и олофин (правило 2), тогда как для термического крекинга основной реакцией является разложение свободного радикала на меньший радикал и олефин (правило 2 ). В обоих случаях имеет место расщепление связи С—С в бета-положении с образованием трехвалентного атома углерода. Вследствие существенных различий в поведении ионов карбония и свободных радикалов продукты каталитического и термического крекингов заметно отличаются друг от друга. Например [17], при jtpeKHHre гексадеканов в присутствии алюмосиликатных катализаторов [c.235]

    При переработке парафинистого сырья значительную роль играет изомеризация парафиновых углеводородов, благодаря которой также улучшаются вязкостные свойства продукта и увеличи-зается выход масла при депарафинизации (рис. 118). Повышение температуры интенсифицирует реакции дециклизации и изомеризации. Однако интенсификация указанных желательных превращений с ростом температуры имеет предел, связанный с усилением побочных реакций. При достаточно высоких температурах заметную роль начинают играть реакции термического распада, ароматизации, уплотнения, поэтому процесс ведут при температурах не выше 420 С. Углубление превращений возможно в результате уменьшения скорости подачи сырья, но при этом снижается производительность процесса. Условия процесса и наличие катализатора с крекирующими свойствами неизбежно ведут к образованию продуктов расщепления. При повышении температуры или уменьшении скорости подачи сырья углубляются все рассмот- [c.311]

    Такие различия между термическим и каталитическим процессами могут быть объяснены тем, что они имеют разный механизм. Катализатор крекинга способен вызывать образование ионов карбония, так как он является очепь сильной кислотой. Поэтому не удивительно, что каталитический крекинг сопровождается реакциями изомеризации и полимеризации, приводящими к возникновению углеводородов с очень разветвленным скелетом. Способность катализатора крекинга к переносу водорода с насыщением части молекул олефинов следует считать проявлением карбоний-ионного механизма, как уже упоминалось при описании гидрополимеризации олефинов. При этой реакции катализатор способствует передаче водорода от одной молекулы олефина к другой. В результате образуются парафин и диен последний может еще раз явиться донором водорода. В конце концов, олефины либо ароматизируются, либо обуглероживаются, покрывая катали- затор налетом кокса. Эта реакция тоже инициируется олефином, который, присоединяя протон катализатора, превращается в ион карбония. В качестве примера приводится механизм каталитического крекинга к-гексадекана [117]. Образование углеводородов С3 и С4 объясняется тем, что по преимуществу происходит Р-расщепление, связанное с изомеризацией иона карбония. Попы этил- и метилкарбоння возникают с ббльшим трудом. [c.344]


Смотреть страницы где упоминается термин Катализаторы термического расщепления углеводородов: [c.66]    [c.97]    [c.97]    [c.172]    [c.17]    [c.243]    [c.41]   
Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы углеводородов

Расщепление углеводородов



© 2025 chem21.info Реклама на сайте