Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амиды кислот как основания, определени

    Никотинамид не изменяется под действием света, тепла, кислот, оснований и воздуха. Для количественного определения никотин-амида применяются его реакции с бромцианом и анилином или другими ароматическими аминами. Образующиеся вещества окрашены в желтый цвет. [c.311]

    Сольватация тесно связана с процессом растворения. Вообще говоря, сольватация включает все типы взаимодействия между растворителем и ионами или молекулами растворенного вещества, поскольку нельзя провести никакого различия между свободными молекулами растворителя и молекулами растворителя, связанными с ионами или молекулами растворенного вещества (см. стр. 26 в работе [294]). Ионы или полярные молекулы в полярном растворителе ориентируются под действием электростатических сил, их энергия уменьшается и система становится более устойчивой. Величины энергии сольватации часто имеют тот же порядок, что и энергия ковалентных связей. Когда катионы или льюисовы кислоты сольватируются нуклеофильным растворителем, молекулы размещаются таким образом, что сольватируемые частицы окружаются оболочкой, вплоть до образования ковалентной связи электронодефицитные молекулы растворителя, не содержащие подвижного водорода (например, жидкая двуокись серы), взаимодействуют с электронодонорными анионами. В случае растворителей, содержащих подвижные, или кислые , атомы водорода, сольватация аниона может быть связана с кислотностью растворителя или его способностью образовывать водородную связь (ср. гл. 6, разд. 38,а и стр. 47 в работе [393]). Устойчивость образующихся таким образом аддуктов может быть самой различной. Вследствие энергетических затрат на образование водородных связей этот процесс понижает свободную энергию, например, аминов или амидов кислот отсутствие образования Н-связей увеличивает основность. Таким образом, становится понятным, что сила кислот и оснований в водных растворителях не всегда сравнима с этими Нле характеристиками, определенными в неводных растворителях. [c.99]


    Принцип метода. Метод основан на обработке почвы 0,5 н. раствором НаЗО на холоду и последующем определении общего количества азота, переходящего в вытяжку. При этом обычно учитывается как минеральный азот (аммиак и нитраты), так и воднорастворимые и гидролизуемые формы органических соединений азота (аминокислоты, амиды кислот, некоторые группы белковых веществ). [c.110]

    Хлорид аммония здесь выступает в качестве кислоты, а амид калия— в качестве основания. Эти представления позволили дать определенную классификацию взаимодействий в неводных растворителях, но такой подход был формальным, и теория сольвосистем не получила широкого распространения. [c.264]

    Для качественного и количественного определения никотиновой кислоты, никотинамида и кордиамина в литературе имеется значительное число работ. Все известные в настоящее время методы количественного определения никотиновой кислоты и ее производных сводятся к различным реакциям ядра пиридина нли карбоксильной группы. Для качественного определения никотиновой кислоты и микрохимического отождествления ее и ее амида предложено несколько методов . Интересен биологический метод определения, основанный иа способности никотиновой кислоты и никотинамида стимулировать рост некоторых микроорганизмов. Однако этот метод пока не получил широкого применения. [c.90]

    При определении углеродного скелета молекулы методом хроматографии от молекулы отщепляют функциональные группы и насыщают ее кратные связи. Подобный метод, описанный в недавно вышедшем обзоре [23], применяли в анализах большого числа различных соединений кислот, спиртов, альдегидов, ангидридов, простых и сложных эфиров, эпоксисоединений, кетонов, аминов, амидов, алифатических и ароматических углеводородов, нитрилов, сульфидов, галогенидов, олефинов и соединений других типов. Область применения этого метода очень широка и потому он обсуждается именно в этом общем разделе, а не в главах, посвященных анализам отдельных функциональных групп. Сам по себе этот метод дает качественные результаты, но его можно использовать и в количественных определениях. Однако основным применением этого метода является определение структуры, для которого часто необходимы количественные анализы функциональных групп. В определении химической структуры молекул важен метод, основанный на индексах удерживания углеродного [c.433]


    Вследствие, относительной устойчивости амидов число известных химических методов их определения невелико. Наиболее общей реакцией, которой подвергаются соединения этого типа, является их кислый и основной гидролиз до соответствующих кислот и аминов. Первичные н вторичные амины могут быть затем ацилированы однако реакции такого типа все еще пе имеют аналитического значения. В следующих разделах книги описываются два сравнительно общих метода 1) макро-метод, основанный на реакции омыления, и 2) колориметрический метод, основанный па образовании гидроксамовой кислоты. [c.66]

    Для определения аминогруппы применяются нейтрализация (прямое ацидиметрическое титрование), образование амидов, бромирование, реакция с азотистой кислотой и другие реакции, причем наиболее широко используется прямое титрование. Почти все амины можно титровать в водной среде или в определенных органических растворителях. Большинство алифатических аминов является достаточно сильными основаниями, и их можно титровать в водном растворе кислотами. Константы диссоциации алифатических аминов находятся в пределах от 10 до 10 . Ароматические и другие слабоосновные амины не удается оттитровать в воде, но они хорошо титруются в растворителях, обсуждаемых ниже. Константы диссоциации этих аминов колеблются в пределах от 10 до 10 . [c.405]

    Метод определения гидроксильных групп [565] в органических веществах в присутствии карбонильных соединений, простых эфиров, аминов, алкоксисоединений и сложных углеводородных смесей основан на прямом титровании амидом лития и алюминия в среде тетрагидрофурана. Гидроксильные группы определяют также при помощи 3,5-динитробензоилхлорида [566], который количественно реагирует с гидроксильными группами с образованием ди-нитробензоата, титруемого в среде пиридина как слабая кислота Шз О о [c.172]

    Еще одним доказательством в пользу этого механизма служит тот факт, что небольшое, но детектируемое количество продукта обмена Ю (см. разд. 10.9) было обнаружено в катализируемом кислотой гидролизе бензамида [461]. (Обмен 0 наблюдался и в катализируемом основанием процессе [462], что согласуется с механизмом Вдс2.) Однако на основании определенных кинетических результатов сделано предположение [463], что катализируемый кислотами гидролиз амидов, по крайней мере в некоторых случаях, частично или полностью происходит через образующийся в небольшом количестве N-пpoтoниpoвaн-ный амид [464]. Кинетические исследования показали, что иа лимитирующей стадии в реакции участвуют три молекулы воды [465]. Следовательно, как и в случае механизма Адс2 для гидролиза сложных эфиров (реакция 10-11), в процессе принимают участие дополнительные молекулы воды, например, следующим образом  [c.118]

    Такой щирокий диапазон изменения Ао (12 порядков) удается охватить в результате большого изменения рАд нитроанилинов в качестве индикаторов в зависимости от заместителей в молекуле. Например, для л<-нитроанилина рАд = 2,50, для 2,4-динитроанилина рАд = -4,53, а для 2,4,6-тринитроанилина рАд = -10,10. Функция кислотности Яо была введена Гамметом и носит его имя. В более поздних исследованиях для определения На использовали и другие классы оснований-индикаторов и получили иные значения кислотности концентрированных растворов кислот (// " для индикаторов N,N-диaлкилнитpoaни-линов Я/ для алкилированных индолов Н для амидов кислот Нц для трифенилкарбинолов). [c.488]

    С уменьшением концентрации сильной щелочи или кислоты /д и /на стремятся к единице, и тогда функция кислотности совпадает с функцией pH. Отношение коэффициентов активности ионизированной и не-ионизированной форм является примерно постоянным- лишь для веществ с одинаковым кислотно-основным центром. В соответствии с этим введено около 20 функций кислотности, каждая из которых отвечает ионизации кислот (или протонизации оснований) определенного химического типа. Так, функция кислотности Но описывает протонизацию первичных нитрозамещенных ароматических аминов, функция Яд — ароматических амидов, функция Я, —индолов, функция Ят — тиосо-единений и т. д. [177, 179]. [c.123]

    Наиболее широкое распространение для определения ангидридов карбоновых кислот в присутствии кислот получили методы, основанные на реакции ангидрида с аминами [1—6] с образованием соответствующего амида и карбоновой кислоты и определении избытка амина одним из существующих методов ацидиметрнчески, диазотированием или титрованием хлорной кислотой в неводной среде. [c.215]

    Принцип метода. Метод основан на обработке ночвы на холоду 0,5-нормальным раствором серной кислоты с последующим определением общего количества азота, перешедшего в вытяжку. В этих условиях учитывают как минеральный азот (КНЧ и КО з), так и легкогидролизуемый органический азот (аминокислоты, амиды кислот, легкогидролизуемые группы белковых веществ), который условно рассматривают как непосредственный источник образования минеральных форм азота в почве в ближайшее время. Определение этой формы азота в карбонатных почвах не дает удовлетворительных результатов ввиду того, что часть кислоты расходуется на нейтрализацию углекислых солей. [c.159]


    Существующий метод определения капролактама основан на разложении амидов кислот гидроксиламином с дальнейшей обработкой их ионами трехвалентного железа. Получаются окрашенные в красно-коричневый цвет соединения, концентрацию которых определяют колориметрически. Но иа ОЧНСТИ1.И с(юруженпя поступают также воды суконно-камвольного комбината, содержаш.ие значительное количество красителей, поэтому такое колориметрическое определение количества капролактама ненадежно. [c.143]

    В мерной колбе емкостью 100 мл с точностью до 1 мг взвешивают 1 г уксусного ангидрида и разбавляют до отметки уксусной кислотой, не содержащей уксусного ангидрида (гл. 8, разд. 47, в и г). Переносят 50 мл 0,1 н. раствора анилина в уксусной кислоте (9,1 мл анилина -[-1000 мл кислоты) в колбу Эрленмейера на 200 мл, отмеряют в нее пипеткой 20 мл исследуемого раствора и оставляют смесь на 40 мин при комнатной температуре, затем после добавления 0,1 мл 0,1%-ного раствора кристаллического фиолетового в уксусной кислоте титруют 0,1 н. хлорной кислотой в уксусной кислоте до появления светло-зеленой окраски. При титровании рекомендуется использовать растворы сравнения, так как образующийся амид кислоты в уксусной кислоте обладает до известной степени такяле и свойствами основания. Расход хлорной кислоты на 50 мл раствора анилина определяется аналогичным образом. Разность между двумя определениями (кислоты и ее смеси с ангидридом) пропорциональна содержанию уксусного ангидрида. [c.239]

    Соединения, содержащие спиртовый гидроксил, обладают очень низкой кислотностью. Однако сопряженная кислота основания, используемого для определения, должна быть еще слабее. Таким образом, например, фенолы можно титровать метилатами щелочных металлов, поскольку метиловый спирт — более слабая кислота, чем фенол. Следовательно, можно ожидать, что амиды металлов (например, литийалюминийамид) будут пригодны для титрования спиртового гидроксила. Кислотность и сродство к протону уменьшаются соответственно в таком порядке  [c.262]

    Довольно надежным критерием ароматического характера молекулы служит высокая степень ее устойчивости за счет делокализации электронов. Но конечно, было бы совершенно произвольным указать какую-то определенную величину энергии делокализации, наличие которой может рассматриваться как признак ароматичности молекулы. Такой подход был бы неверен еще и потому, что имеется ряд соединений, таких, как анионы кислот и амиды, с весьма значительной энергией делокализации [примерно 20 ккал/моль (83,7 Ю Дж/моль)], однако их нельзя рассматривать как ароматические, если только этому термину не уготована судьба терминов кислота, основание, окисление, восстановление и валентность. Тем не менее в целом будет справедливо утверждение о том, что молекулы бензоидного типа имеют высокое значение энергии делокализации. Нанример, значения этой величины для нафталина, бифенила и антрацена равны 60, 74 и 85 ккал/моль (251,2 10 , 309,8 10 и 355,9 10 Дж/моль) соответственно, причем каждый дополнительный я-электрон, по-видимому, добавляет 6 ккал/моль (25,1 10 Дж/моль). По этому признаку можно устанавливать ароматический характер для циклических систем других типов, таких, как гетероциклы (см. гл. 20) и различные карбоциклы, включая азулен (углеводород синего цвета, изомерный нафталину) и трополон (подобная циклическая система встречается в природных продуктах), причем энергии делокализа-ции последних двух углеводородов составляют 30 и 20 ккал/моль (125,6 X X10 и 83,7 10 Дж/моль) соответственно. Молекула азулена имеет явно выраженный диполярный характер, который может быть объяснен тем, что в каждом из колец имеется ароматический секстет вследствие перехода одного электрона из семичленного кольца в пятичленное, в результате чего большой цикл приобретает положительный заряд, а малый — отрицательный. [c.293]

    Первичные, вторичные и третичные амины отличаются от соединений других классов, содержащих азот, присущими им основными свойствами. Даже плохо растворимые в воде амины, основность которых нельзя определить при помощи индикаторной бумаги, образуют соли с минеральными кислотами. Таким образом их -МОЖНО отличить от нейтральных азотсодержащих веществ, например амидов (КСОНИг), М-ациламинов RNH O Hз) или нитрилов (К—СЫ), при помощи простой пробы с кислотой. Соли аминов можно идентифицировать по их взаимодействию с основаниями. Определение основности среды описано ниже в разделе 1. Раздел 2 посвящен реакциям, дающим воз.можность отличать первичные, вторичные и третичные амины. Раздел 3 включает получение кристаллических производных аминов, испОоТьзуемых для их характеристики по температурам плавления. После тренировки на известных веществах эти.м способом можно идентифицировать неизвестные соединения. [c.136]

    Вопрос о форме ассоциатов затрагивает проблему распределения молекул растворенного вещества между молекулами растворителя. Данную, проблему во всей ее полноте разрешить не легко на это указывает ненормально высокая степень ассоциации, которая получается для некоторых пар веществ на основании криоскопических определений даже при довольно незначительных концентрациях, как например для растворов нитробензола в циклогексане и амидов кислот в бензоле . Наиболее вероятной причиной этого является образование субмикроскопической эмульсии, следовательно, начинающийся распад смеси. Этот вопрос более подробно рассмотрен в разделе, посвященном растворимости. Одно лишь определение молекулярного веса, естественно, не может дать ответа на вопрос о характере взаимного расположения молекул в растворе. Для этого должны быть привл1чены другие методы. Если молекулы растворенного вещества дипольны, то многое МОГУТ дать измерения диэлектрической поляризации. [c.227]

    Этот метод пригоден для определения фенил- и 1-нафтилизо-цианатов. Определению мешают кислоты, основания, а также те вещества, которые при взаимодействии с бутиламином образуют слабые основания. Иногда отрицательное влияние кислот и оснований можно исключить, проводя раздельное титрование. Ангидриды мешают определению вследствие образования амидов, а альдегиды — из-за образования иминов. [c.497]

    Аминосоединенжя можно дифференцировать в соответствии со степенью их замещенности, проводя три титрования хлорной кислотой в уксуснокислой среде титруя исходный образец (определение суммы оснований) и аликвотные части образца после их обработки фталевым (перевод первичных аминов в нейтральные фталимиды и определение суммы вторичных и третичных аминов) или уксусным ангидридом (перевод первичных и вторичных аминов в ацетамиды и определение третичных аминов) [184, 195]. Такой подход в сочетании с восстановлением LiAlH использован для группового анализа нефтяных амидов и нитрилов карбоновых кислот [196], при этом амиды, в зависимости от их строения, восстанавливаются в первичные, вторичные или третичные, а нитрилы — только в первичные амины [197, 198). [c.25]

    В 1923 г. Д. Бреистед и Т. Лоури, независимо друг от друга, предложили так называемую протолитичсскую теорию кислот и оснований, получившую в настоящее время наибольшее распространение. Согласно этой теории кислоты — это соединения, молекулы которых в определенных условиях способны быть донорами протонов основания — это соединения, способные присоединять протоны, т. е. быть пх акцепторами. Очевидно, что молекулы, способные отщеплять протоны, должны иметь в своем составе атомы водорода, поляризованные положительно. Следовательно, кислоты в соответствии с протолитической теорией представляют собой водородсодержащие соединения. Такое заключение находится в соответствии с общепринятым практическим представлением о составе кислот. Что касается оснований, то ими могут быть соединения разнообразного состава, так как для того, чтобы присоединять протоны, соединению совсем не обязательно иметь в своем составе какие-то определенные элементы. Основания встречаются среди соединений различных классов гидроксиды, амиды и ими-ды активных металлов, водородные соединения азота, оргаьн1чес-кие амины, азотистые гетероциклические и другие соединения. [c.181]

    Другой вариант использования спектров ЯМР для определения конфигурации основан на образовании диастереомеров и сравнении химических сдвигов диастереотопных групп. Так, например, спирты или амины для определения конфигурации переводят в сложные эфиры или соответственно амиды реакцией с Н- и 5-а-метокси-а-трифторметил-а-фенилуксус-ной кислотой [59]  [c.222]

    Дезаминирование первичных аминов азотистой кислотой сопровождается выделением азота, количество которого можно определить по объему на этом основан метод Ван-Сляйка для количественного определения соединений, содержащих первичную амино- группу (алифатических и ароматических аминов, аминокислот, незамещенных амидов). [c.232]

    Определения кислоты и основания, данные в первой фразе этой главы, в большинстве случаев удовлетворительны для практического использования. Однако предложены и более общие определения, которыми иногда пользоваться удобнее. Согласно одному из таких определений, кислота —это молекула или ион, способные отдавать протон другой молекуле или иону, а основание — это молекула или ион, способные принимать протон. Такое определение используют, например, при рассмотрении реакций в жидком аммиаке. Амид калия КМНг действует как основание он может реагировать с соляной кислотой, образуя аммиак и соль — хлорид калия (или ион калия и хлорид-ион). В жидком аммиаке ион аммония ЫН и амид-ион —аналоги иона гидроксония и гидроксил-иона в водных системах. Некоторые другие неводные системы рассмотрены в разд. 12.9. [c.332]

    Поставим в начале частные вопросы. Как имидазольная группа взаимодействует с амидной группой Может ли карбоксильная группа катализировать перенос фосфата Постепенно стало ясно, что определенные группы хорошо соответствуют определенным реакциям. Например, в реакциях ацеталей всегда требуется кислый катализ, и среди пяти групп, которыми располагают ферменты, только карбоксильная группа представляется достаточно сильной кислотой. С другой стороны, гидролиз амидов — реакция, катализируемая большим числом ферментов, — может катализироваться четырьмя из этих пяти групп. Эти заключения были сделаны как на основании данных по идентификации каталитических групп соответствуюш,их ферментов, так и на основании изучения модельных систем. Основные механизмы, с другой стороны, были первоначально идентифицированы исключительно в простых системах, и в связи с этим следует начать с описания развития этого подхода. [c.459]

    Некоторые слишком слабые основания нельзя титровать в ацетонитриле, нитрометане или уксусной кислоте. Такие основания можно удовлетворительно титровать в непротолитическом растворителе — уксусном ангидриде [11]. Этот растворитель может быть использован для титрования аминов или амидов с р Га(НгО) больше 2,0. В этом растворителе также не происходит выравнивания при титровании аминов с piira(H20) меньше 10 поэтому его можно использовать для совместного определения оснований различной силы. Недостаток уксусного ангидрида заключается в его активности. Первичные и вторичные амины ацетилируются растворителем с образованием более слабых оснований. [c.20]

    В настоящую главу включены методы определения первичных, вторичных и третичных аминов, амидов и таких соединений, как нитрилы, нитросоединения, изоцианаты, изотиоцианаты и четвертичные аммониевые соединения. Четвертичные аммонийные гидроокиси, являющиеся сильными основаниями, могут быть определены прямым титрованием стандартными кислотами. Некоторые четвертичные аммонийные соли также могут быть определены или прямым титрованием, или путем превращения их в соответствующие ацетаты действием ацетата ртути и последующим титрованрюм в ледяной уксусной кислоте [9]. Эта методика была обсуждена в гл. 2. [c.46]

    Метод применим к фенил- и 1-нафтилизоцианатам, а также к метил-, этил- и фенилизотиоцианатам. При определении этим методом мешают кислоты и основания, а также вещества, реагирующие с бутиламииом с образованием слабых оснований. Для кислот и оснований могут быть введены поправки. Ангидриды кислот искажают результаты вследствие образования амидов, в то время как отрицательное влияние альдегидов объясняется образованием соответствующих иминов. [c.74]

    Обзор методов анализа смесей карбоновых кислот и их ангид-зидов дан в статье Джонсона и Функа [60]. Метод, предлагаемый этими авторами, основан на реакции морфолина с ангидридом (с образованием 1 моль амида и 1 моль кислоты на 1 моль ангидрида). При выполнении этого метода прибавляют известное количество морфолина в избытке и избыточное количество его определяют неводным титрованием. Для определения свободной кислоты независимым методом определяют суммарное содержание ангидрида и кислоты. [c.201]

    Кривые потенциометрического титрования, приведенные на рис. 7.24, показывают, что резкость эквивалентной точки в значительной степени определяется природой третичного амина, образую-ш,егося в реакции. Эта зависимость особенно выражена у продукта реакции морфолина со сложными эфирами малеиновой и фумаровой кислот. Кривая 4, относящаяся к этому продукту, показывает, что он является слишком слабым основанием, чтобы его можно было определить визуальным или потенциометрическим титрованием. Низкую основность таких аминов следует объяснить тем, что третичный атом азота находится в а-положении относительно сильной электроноакцепторной группы. Хотя такой кислотный растворитель, как уксусная кислота, повышает основность этих аминов, он усиливает и основность амидов в такой степени, что они начинают мешать титрованию. Все же эти слабые амины удается определить кондуктометрическим титрованием. На рис. 7.25 показаны кривые кондуктометрического титрования аминов, образующихся при реакции морфолина с диэтилфумаратом и ди-(2-этилгексил) малеинатом. В этом случае для определения конечной точки можно воспользоваться кривой титрования, так как по обе стороны от точки эквивалентности кривые титрования прямолинейны. При определении следует пользоваться только точками, лежащими на этих прямолинейных отрезках кривых, пренебрегая точками, лежащими вблизи конечной точки. При этом способе необходимо брать небольшие навески, так чтобы весь объем титранта был не более 20 мл. Так как при каждом анализе необходимо строить отдельную кривую, этот метод трудно приспособить к рутинным серийным определениям. Однако опытными аналитиками при определении чистоты сложных эфиров малеиновой и фумаровой кислот результаты были получены с точностью 0,2%. [c.360]

    Используя разбавленные растворы минеральных кислот, можно подобрать условия гидролиза амидов в присутствии нитрилов. Например, адипамид гидролизуется при кипячении 10%-ной серной кислотой, а адипонитрил в этих условиях практически устойчив. В более концентрированной серной кислоте или щелочи гидролизу подвергаются к ак динитрил, так и диамид адипиновой кислоты. На этом основан метод раздельного определения этих двух соединений при их совместном присутствии Следует отметить, что для каждого нитрила существуют оптимальные условия образования амида или кислоты при взаимодействии с водой. [c.89]


Смотреть страницы где упоминается термин Амиды кислот как основания, определени: [c.128]    [c.348]    [c.150]    [c.66]    [c.347]    [c.241]    [c.236]    [c.147]    [c.541]   
Титрование в неводных средах (1971) -- [ c.313 , c.314 ]




ПОИСК





Смотрите так же термины и статьи:

Амиды кислот

Амиды кислот, определение

Основание определение

Основания и кислоты



© 2025 chem21.info Реклама на сайте