Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрическое поле ток насыщения

    Адсорбироваться на металлических поверхностях могут и неполярные насыщенные молекулы углеводородов. Адсорбция в данном случае происходит под влиянием поляризации неактивных углеводородных молекул электрическим полем металлической поверхности. Прочность и устойчивость такой адсорбированной пленки мала. Интересно, что если добавить в жидкость, состоящую из неполярных углеводородных молекул, незначительное количество (около 0,1%) поверхностно-активного вещества, то на поверхностях будет образовываться достаточно прочный граничный слой, состоящий из монослоя поверхностно-активных молекул и нескольких слоев строго ориентированных неполярных молекул углеводородов растворителя (рис. 32). [c.60]


    Характер кипения жидкости и рост пузырьков существенно изменяется в электрическом поле [24, 26- 28]. Исследование теплопередачи при насыщенном кипении в электрическом поле частотой 50 Гц изолирующих (бензол, гексан, жидкий азот) и полярных (этиловый и метиловый спирты, деминерализованная вода и др.) жидкостей выявило увеличение коэффициентов теплоотдачи во всех режимах кипения, причем это увеличение было тем больше, чем больше электропроводность жидкости. [c.157]

    При приложении небольших напряжений образующиеся ионы под действием слабого электрического поля ускоряются мало. При этом основное количество ионов рекомбинируется в молекулы, не доходя до электродов. С увеличением приложенного напряжения растет число ионов, попадающих на электроды. В этой области (/) показания прибора пропорциональны напряжению. При дальнейшем увеличении напряжения достигается состояние насыщения, при котором все ионизированные молекулы газа попадают на электроды прежде, чем произойдет их рекомбинация. Область насыщения (2) возникает при напряжении свыше 100 В. Если дальше увеличи-чить напряжение, показания прибора возрастают (область 3), так как ускорение ионов теперь настолько велико, что они сами ионизируют молекулы, сталкиваясь с ними на пути к электродам. Если все образовавшиеся вторичные ионы достигают электродов прежде, чем произойдет их рекомбинация, то на кривой получают вторую область насыщения (4). Новый подъем (5) на кривой наблюдается при резком увеличении вторичной ионизации, вызывающей образование и распространение плазмы в области проволочных электродов. Если плазма стабилизирована по всей длине проволоки, на кривой получают площадку 6). Показания прибора можно рассматривать как функцию только ионизирующего излучения на участках 2, 4 и 6, расположенных параллельно оси абсцисс здесь показания при- [c.385]

    Атомы на поверхности капли ртути, как и у всякой жидкости, имеют ненасыщенные силы сцепления, что является источником избыточной поверхностной энергии. При образовании двойного электрического слоя на поверхности ртути эти силы сцепления в ка-кой-то мере оказываются насыщенными за счет адсорбированных потенциалопределяющих ионов. Таким образом, поверхностное натяжение ртути"становится тем меньше, чем больше ионов адсорбируется на ее поверхности. Этот принцип зависимости поверхностного натяжения ртути от величины заряда ее поверхности и лежит в основе данного опыта. Изменение формы капли ртути в растворе нитрата натрия под влиянием электрического поля происходит по- [c.187]


    Эмиссия с поверхности отрицательного электрода определяется напряженностью электрического поля, создаваемого верхним отрицательным электродом и зоной пространственного положительного заряда, образованного около него. Концентрация положительных ионов в зоне пространственного заряда определяется подведенным потенциалом и концентрацией их в зоне горения. При определенном потенциале все положительные ионы, образованные в процессе горения, участвуют в создании пространственного заряда. При дальнейшем увеличении подводимого потенциала концентрация ионов в зоне пространственного заряда остается постоянной. Ток, текущий через свежую смесь, достигает насыщения. Время сгорания смеси и средняя скорость распространения пламени достигают определенных постоянных значений. На рис. 4 кривая скорости распространения пламени перестает изменяться при потенциале V > 4000 в (ЕЩ 20). [c.85]

    Так как электропроводность определяется двумя факторами, а именно подвижностью носителей зарядов и их числом, то следующий этап исследования состоял в разделении этих переменных. Реакция диссоциации молекулы воды на ионы и подвижности водных ионов во льду и воде были изучены в работе Эйгена и Майер (1964). К тонкому кристаллическому образцу прилагалось электрическое поле такой величины, чтобы все заряды, которые образуются в образце, достигали электродов (измерялся ток насыщения). Величина тока насыщения в первом приближении пропорциональна константе скорости диссоциации молекулы Н2О на ионы и объему образца. Константу скорости рекомбинации они определили методом нарушения равновесия процесса диссоциации мощным электрическим импульсом, имеющим амплитуду 50—150 кв см [c.60]

    Импульсные ионизационные камеры и счетчики. Приборы этого типа основаны на использовании электрического заряда, возникшего при ионизации газа а-частицами. Ионы газа собираются электрическим полем камеры на электродах и вызывают импульсы тока во внешнем электрическом контуре камеры. При некотором значении электрического поля (или напряжения на электродах) могут быть собраны все ионы, образовавшиеся в объеме камеры. В этом случае возникает так называемый ток насыщения, а величина импульсов мало зависит от напряжения питания камеры (плато по напряжению) и пропорциональна ионизации, вызываемой регистрируемыми частицами. Для наполнения таких камер используют как воздух, так и специальные газовые смеси. [c.144]

    Газ подвергается непрерывному воздействию ионизирующего агента в электрическом поле, создаваемом вращающимся сектором, причем это поле является нулевым при начальном вращении сектора и достаточно большим, чтобы произвести полное насыщение при дальнейшем повороте сектора. Результирующий ток за полный цикл этого периодического процесса измеряется электрометром. Пусть Т есть время одного оборота сектора, — часть этого промежуточного времени, в течение которого злектрическое поле не воздействует на газ и Т. = Т — Т — продолжительность действия электрического поля. Тогда в начале процесса число ионов в 1 см составит [c.414]

    Для окончательного фракционирования белков используют также электрофорез, в основе которого лежит разделение кислых и основных молекул белков по их заряду в электрическом поле. Ферменты при достаточной степени очистки их раствора можно получить и в кристаллическом виде. Кристаллизацию ферментов проводят из растворов сульфата аммония, спирта или органических растворителей. К концентрированному раствору фермента осторожно по каплям добавляют насыщенный раствор сульфата аммония или спирт до появления едва заметной мути. Затем раствор на несколько дней оставляют на холоде. Выпавшие кристаллы отделяют и ведут перекристаллизацию до тех пор, пока продолжает увеличиваться активность фермента. [c.203]

    Попытка связать свойства ксерогелей с условиями гелеобразования была предпринята в работе Вейля и Хаузера [96], которые полагают, что в процессе старения орто-кремневой кислоты идут одновременно две реакции полимеризация и конденсация. Первая основана на насыщении электрического поля т. е. на удовлетворении координационного числа кремния. При этом получаются цепи, длина которых зависит от скорости полимеризации. Вторая ведет к уплотнению и обрыву цепей с выделением воды. Пользуясь различной скоростью указанных реакций, [c.25]

    Эффекты поля. На стабильность адсорбированного слоя и вид эмиссионных изображений может влиять, помимо давления и температуры, еще одна переменная величина — электрическое поле. Оно накладывается только в течение коротких промежутков времени ( 10 сек), необходимых для наблюдения регистрируемых здесь изображений. В условиях таких экспериментов, т. е. при температурах ниже 79° К, это поле, по всей вероятности, не вызывает значительных изменений. Однако в области насыщения [c.195]

    Плотность тока насыщения термоэлектронной эмиссии эмиттера с однородной поверхностью при слабом внешнем электрическом поле, не влияюш,ем на работу выхода, определяется уравнением Ричардсона — Деш-мана [31  [c.445]


    Концентрацию ионов определяют измерением проводимости пламени между анодом и катодом. Если электрическое поле между этими электродами велико, 100 В/см или более, то практически все образующиеся в пламени ионы устремляются к электродам, и ионный ток уже не зависит от изменений силы электрического поля, поэтому говорят, что детектор работает в области насыщения. На практике напряжение, накладываемое между двумя электродами, равно около 300 В. Реально обнаруживаемый минимальный ток при самой совершенной усилительной системе равен Ы0 А. Зная к тому же, что эффективность образования и сбора ионов равна 10 моль на 1 моль углерода, введенного в пламя, можно рассчитать чувствительность детектора. Преобразуем значение минимального обнаруживаемого тока (Ю- з А) в минимально обнаруживаемую скорость потока углерода  [c.582]

    Интерпретация диэлектрических измерений еще более затруднена для водных и частично водных ионных растворов. Электрическое поле вокруг иона вызывает диэлектрическое насыщение в молекулах воды, которые приближаются к эффективному заряду ближе 4 А. Поэтому измеренная диэлектрическая константа уменьшается с увеличением концентрации электролита. Для разбавленных растворов, содержащих ионную форму 5г , диэлектрическая константа может быть представлена следующим образом  [c.382]

    Индуктомерный эффект — индуцированный полярный эффект, который является, вообще говоря, единственно возможным в насыщенных соединениях. Таким образом, атакующая нитрогруппа может наводить полярность в метильных группах изобутана, приводя к тому, что третичный водородный атом становится наиболее подвижным. Электромерный эффект заключается в смещении электронных пар в рассматриваемой молекуле по таутомерному механизму иод влиянием внешнего электрического поля. Такое движение электронов должно часто происходить под влиянием атакующего реагента в соединениях с двойными связями. [c.168]

    Повышение напряженности электрического поля противодействует влиянию расстояния за счет большего ускорения движения ионов и уменьшения времени прохождения между электродами. Следовательно, при больших расстояниях ток насыщения наблюдается при больших напряжениях на ячейке. [c.20]

    IX) вычисляют давление насыщенного пара. Скорость испарения О определяют методом Лангмюра. В исследуемое вещество вводят радиоактивный изотоп и определяют полученную удельную активность (имп/мин-г). Затем меченое вещество помещают внутрь вакуумного прибора, откаченного до высокого вакуума. Вещество нагревают в высокочастотном электрическом поле до заданной температуры Т и выдерживают при этой температуре в течение времени I (сек). Испаряющееся вещество оседает на стенках прибора (часто стенки прибора охлаждают водой или даже жидким азотом). После окончания опыта испарившееся вещество количественно смывают со стенок подходящим раствором. Из полученного раствора готовят препарат для измерения активности. Скорость испарения вычисляют по формуле (15—IX)  [c.193]

    Если использовать относительную диэлектрическую проницаемость чистой воды, равную примерно 80 прн комнатной температуре, то получится явно завышенное значение /, равное 31-Ю м. В двойном слое, однако, вода благодаря высоким электрическим полям должна находиться в состоянии, близком к диэлектрическому насыщению и фактическая диэлектрическая проницаемость будет по крайней мере на порядок меньше в этом случае толщина двойного слоя будет практически совпадать с размерами ионов (3-10"" м), что отвечает его модели ио Гельмгольцу, Точно так же подстановка в уравнение (12.4) вместо I радиуса иоиов (п-10 ° м), а вместо е значений, лежащих в пределах от 4 до 8, дает значения емкости двойного слоя, совпадающие с экснеримеи-тальными. Однако уравиения (12.3) и (12.4) не согласуются с наблюдаемым на опыте изменением емкости с потенциалом электрода и с концентрацией ионов в растворе. Теория Гельмгольца, таким образом, дает правильные значения емкости и реальные размеры двойного электрического слон и в какой-то мере отражает истинную его структуру, но она не мо><ет истолковать многие опытные закономерности и должна рассматриваться лишь как первое приближение к действительности, нуждающееся в дальнейшем развитии и усовершенствова1шн. [c.263]

    Повышение температуры более 120°С нерационально, так как при атом увеличивается электрическая проводимость эмульсии и, соответственно, снижается напряженность электрического поля и повышается расход электроэнергии, что значительно осложняет условия работы проходных и подвесных изоляторов. Кроме того, растет давление насыщенных паров и, как результат, давление в аппаратах [4, 5]. Повышение температуры обусловливает также дополнительные затраты на охлаждение воды, дренируемой из электродегид-раторов, перед сбросом ее в канализацию. [c.14]

    Главное требование к проведению исследований — постоянный контакт испытуемой среды с контрольным образцом при движении (перемешивании). Схема установки для исследования сред, насыщенных сероводородом или кислородом, приведена на рис. 121. Установка [7] состоит из двухколенного циркуляционного сосуда, в правой измерительной части которого помещают исследуемый и вспомогательный электроды. Здесь же на капроновой нити подвешивают металлические образцы. В левой смесительной части помещают мешалку с электродвигателем и устройство для ввода в исследуемую среду сероводорода или кислорода. Левую и правую части герметизируют при помощи гидрозатвора. Исследуемые образцы, изготовленные из стальной ленты марки 08 КП или стали 3 КП, подвергают воздействию среды с ингибитором в течение 6 ч. Установка позволяет снимать поляризационную характеристику в гальваностатиче-ском пли потенциостатическом режиме. Для этого она, помимо основных электродов, снабжена электродом сравнения и вспомогательным электродом, при помощи которых замеряют величины дифференциальной емкости и сопротивление на границе раздела металл — электролит. Изменения могут быть с наложением и без наложения внешнего электрического поля. [c.214]

    Когда возрастает ф у обеих частиц, силы электростатического взаимодействия вначале меняются пропорционально квадрату потенциала (при постоянном составе электролита и неизменном расстоянии между частицами). По мере роста ф сила отталкивания стремится к некоторому пределу и при ф> 100 мв практически остается постоянной (рис- 47). Это так называемое насыщение сил объясняется тем, что вместе с ростом заряда внутренней обкладки двойного слоя И потенциала поверхности. усиливается и экранировка обкладки противоионами. Дальнейший рост электрического поля в области прекрывания ионных атмосфер и сил взаимодействия обеих частиц прекращается. [c.122]

    Дискретным уровням атома в твердом теле соответствует всегда дискретная система разрешенных зон, разделенных запрещенными зонами. Если электроны образуют в атомах или моле1<улах законченную группу, то прн образовании из них твердого или жидкого вешества созда ются зоны с полностью заполненными уровнями, поэте му такие вещества при абсолютном нуле имеют свойства изоляторов. Сюда относятся решетки благородных газов, молекулярные и ионные решетки соединений с насыщенными связями. В решетках алмаза, кремния, германия, а-олова, соединений тяпа А" В , А В , Si каждый атом связан единичными ковалентными связями с четырьмя ближайпгими соседними, так что вокруг него образуется законченная группа электронов s p и валентная зона оказывается заполненной. Необходимо подчеркнуть, что полупроводники и диэлектрики отличаются от Металлов тем, что валентная зона у них при Гл О К всегда полностью заполнена электронами, а ближайшая свободная зона (зона проводимости) отделена от валентной зоной запрещенных состояний. Ширина запрещенной зоны АЕ у полупроводников — от десятых долей до 3 эВ (условно), а у диэлектриков — то 3 до 5 эВ (условно). Если между полупроводниками и диэлектриками имеется только количественное различие, то отличие их от металлов качественное. Чтобы проходил ток в металле, не требуется никакого другого воздействия, кроме наложения электрического поля, так как валентная зона в металле не заполнена или перекрывается с зоной проводимости (рис. 71, а). [c.292]

    Проблема утилизации высокоэнергетических материалов и изделий из них является важной народнохозяйственной задачей промышленного комплекса РФ. Одним из основных направлений реализации указанной задачи является создание двойных технологий по переработке ЭНМ в продукцию бьггового и промышленного назначения с использованием комплексов гибкого автоматизированного производства. В современных условиях с учетом специфических свойств ЭНМ достижение максимальной эффективности промышленного изготовления энергетически насыщенных объектов может быть выполнено только на основе интенсивных методов воздействия на перерабатываемые материалы вибрация, ультразвук, СВЧ-энергоподвод, магнитные и электрические поля, центробежные силы, излучение оптических и квантовых генераторов, кинетическая энергия газа и жидкости. [c.152]

    Ток несамостоятельного разряда обычно мал. Так, для нашего случая при расстоянии между электродами 5 см плотность тока насыщения равна 8-10 2 а1см . При дальнейшем увеличении напрял ения насыщение вновь переходит в режим роста тока (участок 2—3 на рис. 1-1). Это значит, что заряженные частицы достигли под действием электрического поля такой скорости, когда кинетическая энергия электронов достаточна для того, чтобы при столкновении с нейтральными частицами газа ионизировать кх. Новые заряженные частицы также направляются к электродам и на своем пути могут снова ионизировать частицы. Количество заряженных частиц растет лавинообразно. В этой фазе разряд самостоятелен, т. е. начавщись под действием какого-либо ионизатора, он далее протекает без помощи последнего. -Условием существования самостоятельного разряда должна быть настолько интенсивная ионизация, чтобы вместо попадающих на электроды, теряемых в окружающую среду и рекомбинирующих в разряде частиц появилось такое же количество новых заряженных частиц и чтобы по крайней мере одна из них достигала электрода. [c.19]

    Зависимость понизационного тока от приложенного напряжения представлена на рис. 29. При увеличении напряжения ток сначала растет (область А), так как все большее число носителей заряда достигает электродов, прежде чем эти носители рекомбинируют друг с другом. Начиная с некоторого напряжения сила ионизационного тока точно соответствует числу носителей заряда, образующихся при ионизации газа, и не растет больше прп увеличении напряжения до тех пор (область насыщения В), пока, наконец, при очень высоких напряжениях не начнется ионизация газа электронами, ускоренными в электрическом поле (область С). [c.137]

    Снлы притяжения, возникающие между этими соединениями (особенно нитрилоэфирами) и неполярными и насыщенными органическими соединениями, невелики, тогда как с полярными и ненасыщенными веществами, которые могут образовывать водородные связи, возникает сильное притягивающее взаимодействие. Последнее объясняется тем, что нитрилы при наличии в них цианогрупп сами сильно полярны (дипольный момент алкилциани-дов составляет (х = 3,60 /), а фенилцианида [х = 4,05 О) и легко поляризуются, в связи с чем может проявляться действие ориентационных сил. В то же время нитрилы, будучи полярным , индуцируют в ненасыщенных, поляризуемых молекулах электрическое поле, в результате чего возникает некоторое притяжение и к этим молекулам. Но еще сильнее проявляются силы донорно-акцепторного типа, и это прежде всего водородные связи. Донорно-акцепторные силы возникают вследствие того, что нитрилы благодаря электроотрицательности групп N действуют как акцепторы электронов и больше задерживают в колонке вещества, обладающие системой я-электронов с низкой энергией ионизации (ароматические вещества) (ср. разд. В.1). Образование водородных мостиков происходит между нитрилоэфирами, с одной стороны, и спиртами, фенолами, карбоновыми кислотами (т. е. соединениями, содержащими группы ОН) и первичными (в меньшей степени также вторичными) аминами — с другой. Как уже было указано выше (см. разд. В), удельные объемы удерживания пропанола при применении , 2,2>-трис-(цианэтокси)пропана и менее полярного диоктилсебацината почти одинаковы, так как в обоих случаях водородные связи с этими веществами приводят к взаимодействиям с большей энергией по сравнению с другими типами взаимодействий. [c.207]

    Погрешность от диффузионных потенциалов при одинаковых растворах электролита ( i a) и ионах одинаковой подвижности (1а 1и) невелика. Это и является причиной частого применения электролитических проводников (солевых мостиков) в виде насыщенных растворов КС1 или NH4NO3. Однако значения I в табл. 2.2 справедливы только для разбавленных растворов. Для концентрированных растворов следует принимать во внимание выражение (2.14). По этим причинам выражение (3.4) дает лишь ориентировочную оценку диффузионных потенциалов, которые впрочем обычно не превышают 50 мВ. Наблюдаемые иногда более значительные расхождения между двумя электродами сравнения в одной и той же среде обычно могут быть объяснены влиянием посторонних электрических полей или же коллоидно-химическими эффектами поляризации твердых компонентов среды, например песка [2] (см. также раздел 3.3.1.). Большие изменения в химическом составе, например в грунтах и почвах, в случае электродов сравнения с концентрированными солями отнюдь не ведут к ощутимым изменениям диффузионных потенциалов. Напротив, у простых металлических электродов, которые иногда применяются в качестве измерительных зондов для выпрямителей с регулируемым потенциалом, следует ожидать изменений потенциала, обусловленных средой. Эти устройства являются в принципе не электродами сравнения, а просто металлами, имеющими в соответствующей среде возможно более постоянный стационарный потенциал. Этот потенциал обычно получается тем стабильнее, чем активнее данный металл, что наблюдается например у цинка, но не у специальной стали. [c.84]

    Газ поступает в нижнюю часть эпектроосадителя. Для равномерного распределения потока по сечению аппарата над выходным патрубком установлена распределительная решетка. Увлажненный газ проходит через сильное электрическое поле, при этом мельчайшие капли, насыщенные SO2 и SO3, заряжаются и оседают на поверхности осади-цельного электрода. Часть капель осаждается на коронирующем электроде. Осевшая жидкость периодически смывается с электродов раствором соды и стекает в нижнюю часть эпектроосадителя в прия-ivfoK, откуда откачивается в отделение приготовления композиции часть раствора используется ка повторное орошение эпектродов. [c.177]

    Следует помнить о некоторых эффектах, связанных с тем, что вблизи электрода реакция диссоциации и обратная реакция рекомбинации происходят ие в гомогенной среде Эти эффекты, обусловленные негомогенностью нз-за наличия двойного слоя, могут заключаться в нзмеиении концентрации ионов в двойном слое по сравнению с концентрацией в объеме раствора, в увели-чеиин скорости диссоциации пот ейгтвнсм электрическою поля, в изменении скорости и положения равновесия реакций в ре зультате диэлекгрического насыщения среды, а также в ускорении нлн замедлении массопереноса ионов под действием поля. [c.70]

    Кислород повышает фон ДПР, при этом чувствительность детектора к различным веществам изменяется по-разному. Повышение содержания кислорода увеличивает чувствительность ДЭЗ к монохлоралканам, полициклическим ароматическим и другим углеводородам, дихлормета-ну и двуокиси углерода. В ДПР увеличение фона означает увеличение напряженности электрического поля, т.е. увеличение энергии электронов, что может привести к снижению чувствительности к полихлорированным углеводородам и к увеличению чувствительности к насыщенным углеводородам. В любом случае повышенное содержание кислорода приводит к увеличению уровня шума и снижению верхнего предела линейности детектора. [c.78]

    Эти формулы относятся только к магнитным частицам. Дискриминация электрического аналога в этих и других формулах будет проводиться и в дальнейшем. Для этого есть ряд веских причин. Первая состоит в том, что имеющаяся во многих случаях идентичность магнитных и электрических эффектов делает излишним дублирование формул. Раз-тичие заключается в вычислении энергии и момента сил, которое иллюстрировано приведенными выше формулами, в частности формулами (3.11.9) и (3.11.10). Вторая причина — различие в досту пности для экспериментирования ориентационного структурирования в электрическом и магнитном полях. Структурирование электрическим полем достигается только в специальных случаях, а возможность измерения электрической поляризации также сопряжено с рядом трудностей. Измерение статической электрической поляризации и вовсе неосуществимо. Магнитное поле в этих отношениях является предпочтительным. Единственное, о чем необходимо позаботиться, — это подбор дисперсной фазы. Она должна быть магнитной. Никаких других ограничений, в том числе отностельно природы среды, не существует. Это может быть диэлектрическая жидкость или раствор электролита высокой концентрации, это может быть даже расплавленный металл, что, кстати, позволяет достичь температуры Кюри магнитного материала и поставить сравнительный эксперимент с одной и той же системой при магнитном и немагнитном состояниях дисперсной фазы. Все эффекты магнитной поляризации и структурирования могут быть реализованы и исследованы экспериментально, тогда как с электрической поляризацией это вряд ли возможно. Наконец, третья причина, по которой далее будет отдаваться предпочтение ферромагнитным системам, — отсутствие трудностей с вычислением и с измерением величины магнитного дипольного момента частиц в случае однодоменных частиц шш в состоянии насыщения многодоменных частиц их магнитный момент легко вычисляется по формуле [c.683]

    С этими соображениями нельзя согласиться прежде всего потому, что интегрирование силы взаимодействия можно, как мы видели (см. гл. VII, 4), при весьма общих предположениях производить аналитически, в частности, для случая независимости потенциала от расстояния между поверхностями и для случая независимости от расстояния шютности поверхностного заряда частиц. Если бы нельзя было аналитически проинтегрировать выражение для силы, то было бы невозможно получить это выражение и через производную от свободной энергии. Принципиальные преимущества силового метода следующие выражение для силы взаимодействия можно получить весьма просто и строго из общих положений электростатики и статистики, используя, например, известную формулу для пондеромоторных сил в электрическом поле это выражение не зависит от того, как меняется потенциал или заряд поверхности с расстоянием между частицами, и, следовательно, носит общий и фундаментальньЛ характер в него легче ввести коррективы, учитывающие влияние диэлектрического насыщения, плотного слоя ионов, зеркальных сил и дискретности ионов, проникновения электрического поля внутрь частиц. [c.184]

    Сравнение рассчитанных по уравнениям (11) и (12) значений ДС°ольв и ДСпер с экспериментальными данными показало, что теория Борна неправильно предсказывает даже знаки величин ДОпер [1] Было предпринято много попыток усовершенствования теории Борна в рамках континуальных представлений, среди которых юстировка ионных радиусов для учета электрострикции, учет изменения диэлектрической проницаемости растворителя вблизи иона (так называемое диэлектрическое насыщение в электрическом поле иона) и т. п. Подробные критические обзоры этих попыток даны в работах [1, 2, 17, 20, 21]. В настоящее время преобладает мнение, что теория Борна может служить достаточно хорошим приближением для оценки ДСсольв ионов с большим радиусом или сольватокомплексов. [c.195]

    Молекула, являясь системой заряженных атомов, окружена- электрическим полем. Значение этого поля быстро убывает с расстоянием, становясь на некотором удалении пренебрежимо малым. Наиболее существенной для оценки границы отдельной молекулы служит та часть ее птэля, в пределах которой происходят процессы, связанные с непосредственным взаимодействием молекул. Неполярные — нейтральные молекулы, попадая в это поле, поляризуются, и в них возникает индуцированный электрический момент. При сближении поляризованной молекулы и молекулы с постоянным электрическим моментом образуется ассоциированный комплекс (см. главу HI). При движении к поверхности он либо увеличивается, либо распадается на отдельные молекулы. Рост комплексной частицы продолжается до состояния энергетического насыщения ядра этого комплекса. [c.501]

    Ван де Краатс. В доцолнение к статье Дести с сотрудниками, возможно, представят интерес наши опыты с пламенноионизационным детектором. Был исследован ряд параметров межэлектродное расстояние, напряжение, расход воздуха и др. и наши результаты при низких концентрациях оказались аналогичными результатам Дести. Но мы применяли детектор не только для капиллярных колонок, но также для обычных набивных колонок при определении следов компонентов, низких концентраций, а также высоких концентраций, когда не было необходимости пользоваться двумя типами детекторов для одного и того же анализа. Многие параметры являются критичными, в особенности для высоких концентраций. Прежде всего было установлено, что когда электрод заряжен положительно, а горелка отрицательно, то напряжения, необходимые для получения тока насыщения, меньше, чем при противоположных зарядах. Однако когда концентрация углеводородов в водороде значительна, например, равна 100 частям на миллион, то требуются высокие напряжения вплоть до 300 в для получения стабильного тока насыщения. В этом случае намного легче получить правильный сигнал, используя положительно заряженную горелку и отрицательно заряженный цилиндрический электрод. С таким устройством можно работать при концентрациях в несколько процентов, возможно 5 мол.% или 50 000 частей на миллион. Мы не могли превысить эти величины с положительной сеткой над горелкой. При высоких концентрациях критическим является также количество воздуха, подводимого к пламени. М-р Дести отмечал, что при устройстве с дополнительной сеткой он во всех случаях получал меньшие сигналы. Я не думаю, что причина этого была в природе электрического поля, так как при повышении напряжения получался тот же сигнал. Здесь существенным является прохождение через пламя воздушного потока, который в этом случае был меньше, чем без сетки, в результате чего сигнал уменьшался. При концентрациях выше 50 частей на миллион мы продували воздух (по [c.87]


Смотреть страницы где упоминается термин Электрическое поле ток насыщения: [c.55]    [c.96]    [c.22]    [c.635]    [c.97]    [c.129]    [c.175]    [c.67]    [c.101]    [c.682]    [c.683]    [c.298]    [c.20]    [c.169]    [c.502]   
Пылеулавливание и очистка газов в цветной металлургии Издание 3 (1977) -- [ c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Поле электрическое



© 2025 chem21.info Реклама на сайте