Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкие растворы ионные

    Существуют следующие мембранные методы микрофильтра-цня — процесс разделения коллоидных растворов и взвесей под действием давления ультрафильтрация — разделение жидких смесей под действием давления обратный осмос — разделение жидких растворов путем проникновения через полупроницаемую мембрану растворителя под действием приложенного к раствору давления, превышающего его осмотическое давление диализ — разделение в результате различия скоростей диффузии веществ через мембрану, проходящее при наличии градиента концентрации электродиализ — процесс прохождения ионов растворенного вещества через мембрану под действием электрического ноля. [c.106]


    Представим себе поверхность твердого тела на границе с га-зом. Внутри твердого тела частицы (атомы, ионы или молекулы), образующие его решетку, правильно чередуются в соответствии с кристаллической структурой, причем их взаимодействия уравновешены. Состояние же частиц, находящихся на поверхности, иное—их взаимодействия не уравновешены, и поэтому поверхность твердого тела притягивает молекулы вещества из соседней газовой фазы. В результате концентрация этого вещества на поверхности становится больше, чем в объеме газа, газ адсорбируется поверхностью твердого тела. Таким образом, адсорбция представляет собой концентрирование вещества на поверхности раздела фаз (твердая—жидкая, твердая—газообразная, жидкая газообразная). Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а поглощаемое из объемной фазы вещество называется адсорбатом. Адсорбция из смесей связана с конкуренцией молекул различных компонентов. Например, при адсорбции из бинарного жидкого раствора увеличение концентрации у поверхности одного компонента (сильнее адсорбирующегося) приводит к уменьшению концентрации другого (слабее адсорбирующегося). [c.436]

    По-видимому, это обусловлено тем, что добавление в жидкий раствор ионов с большими зарядами приводит к его сжатию, т. е. к уменьшению числа вакансий, возникающих в результате теплового движения. Происходит известная компенсация вакансий электростатического происхождения, появляющихся при замене двух однозарядных катионов одним двухзарядным. Вследствие этого общее число вакансий может мало изменяться с составом, что и предполагается в модели I. [c.300]

    Образование двойного слоя ионов приводит к появлению определенных электрических потенциалов на границе раздела твердой и жидкой фаз. Ионы первого слоя (внутренней обкладки), фиксированные на твердой поверхности, придают этой поверхности свой знак заряда и создают на ней так называемый поверхностный или ((-потенциал (д -потенциал). Знак ф-потенциала совпадает со знаком заряда потенциалобразующих ионов. Величина ф-потенциала пропорциональна числу зарядов этих ионов на поверхности частиц. Если двойной слой образуется в результате адсорбции ионов или диссоциации твердого вещества, то электрический потенциал на поверхности частиц определяется исключительно концентрацией или активностью этих ионов в растворе, потому что частица действует как обратимый электрод относительно этих ионов. В этом случае ф-потенциал можно выразить уравнением Нернста  [c.398]


    Если такая потеря происходит, то и в жидких растворах ионы сильно сближаются, образуя прочный ассоциат. Такой комплекс весьма стабилен, и его правильнее рассматривать не как ионную пару, а как молекулу (слабые электролиты см. разд. IV.3.2). [c.187]

    Коррозионная среда. Коррозионное растрескивание металлов и сплавов может идти в различных средах — как газовых (воздух, водяной пар), так и жидких (растворы электролитов, органические растворители, расплавленные соли). Обычно это средне- и малоагрессивные среды, которые вызывают у ненапряженного металла незначительную общую коррозию. Отдельные металлы и сплавы подвержены коррозионному растрескиванию только при наличии в среде специфических ионов. Один и тот же ион может ускорять растрескивание одного металла и тормозить растрескивание другого. Например, хлор-ионы вызывают растрескивание аустенитных хромоникелевых сталей, но предотвращают коррозионное растрескивание углеродистых в растворах нитратов. Ион NO3 , наоборот, вызывает растрескивание углеродистых и тормозит растрескивание аустенитных сталей. [c.451]

    Если металлы погружены не в нулевые растворы, то на границах электродов с раствором возникают, кроме того, ионные двойные электрические слои. Таким образом, измеряемая э.д.с. гальванического элемента с двумя электродами и без диффузионных потенциалов между жидкими растворами складывается из контактного (вольта) потенциала металлов в воде как изоляторе и разностей потенциалов в ионных двойных слоях ф1 и ф2, возникающих в результате обмена ионами между металлами и раствором  [c.536]

    Жидкие растворы-очень удобная среда для протекания химических реакций. Благодаря быстрому смешиванию жидкостей предполагаемые реагенты часто сближаются друг с другом, поэтому столкновения их молекул и, следовательно, химические реакции могут осушествляться гораздо быстрее, чем это происходит в кристаллическом состоянии. С другой стороны, данное число молекул в жидкости помещается в меньшем объеме, чем то же число молекул в газе, поэтому реагирующие между собой молекулы в жидкости имеют больше шансов вступить друг с другом в контакт. Вода-особенно подходящий растворитель для проведения химических реакций, поскольку ее молекулы полярны. Молекулы Н2О, а также ионы Н и ОН , на которые вода диссоциирована в небольшой степени, могут способствовать поляризации связей в других молекулах, ослаблять связи между атомами и инициировать химические реакции. Не случайно зарождение жизни на Земле произошло в океанах, а не в верхних слоях атмосферы или на суше. Если бы жизнь была вынуждена развиваться посредством реакций между веществами в кристаллическом (твердом) состоянии, 4,5 миллиарда лет прошедшей до сего времени истории Земли едва хватило бы на то, чтобы этот процесс мог начаться. [c.76]

    Искусственным путем теперь изготовляют цеолиты, являющиеся хорошими адсорбентами и обладающие порами постоянного размера (4Л, 5,Л и др). Соизмеримость размера пор с величиной молекул дает возможность использовать такие цеолиты для разделения компонентов газовых смесей и жидких растворов в зависимости от размеров молекул или ионов этих компонентов. Молекулярные сита, как называют такие адсорбенты, применяются для разделения углеводородов, осушки газов и других целей. [c.373]

    Эти свойства жидкой воды связаны с необычайностью ее структуры, которая и заключается в наличии водородной связи, образующейся в молекулах воды вследствие существования неподелен-ных электронных пар. Электронные пары расположены на двух орбиталях, лежащих в плоскости, перпендикулярной к плоскости НОН (рис. 1.5). За счет неподеленных пар электронов в каждой молекуле воды могут возникнуть две водородные связи. Еще две связи могут обеспечить два водородных атома. Таким образом, только одна молекула воды в состоянии образовать четыре водородных связи. Благодаря этому результирующее распределение зарядов в молекуле воды напоминает тетраэдр, два угла которого заряжены положительно, а два — отрицательно. Результирующий центр положительных зарядов находится посредине между протонами. Он отделен от результирующего центра отрицательных зарядов, расположенного вблизи атома кислорода с противоположной Т5Т протона стороны. Вследствие этого молекула воды оказывается электрическим диполем с дипольным моментом, равным Кл-м (отсюда и высокая диэлектрическая проницаемость воды, и связанная с ней способность растворять ионные вещества). [c.23]

    Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Иначе говоря, в результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий. Однако, поскольку всегда образуется моногидрат иона водорода — ион гидроксония Н3О+, рекомендуется все же указывать его формулу, а не изолированного иона водорода. Тем более, что с образованием и разрушением иона гидроксония связана исключительно высокая подвижность иона водорода в водных средах, а значит, и его влияние на разнообразные химические реакции. Как нам известно из главы 4, для воды характерен некоторый дальний порядок в жидком состоянии за счет наличия между ее молекулами водородных связей. Ион гидроксония из-за своего более поляризованного, чем в молекуле воды, атома водорода участвует в образовании водородной связи, присоединяясь к одной из молекул воды  [c.235]


    В растворах осуществляется контакт реагирующих веществ (частиц), что увеличивает скорость реакции. Реакции между ионами в водном растворе протекают практически мгновенно. Большинство реакций осуществляется в жидких растворах. [c.170]

    Растворение твердых веществ в жидкостях является сложным процессом и состоит из двух стадий. Первая стадия есть переход молекул или ионов, образующих кристаллическую решетку растворяемого вещества, из твердой фазы в жидкий раствор. Молекулы или ионы, находящиеся на поверхности кристалла, обладают наибольшей кинетической энергией, и амплитуда их колебаний около положения равновесия является наибольшей удалившись от соседних частиц кристаллической решетки, они приближаются к ближайшим молекулам растворителя. При этом силы, удерживающие данную частицу в кристаллической решетке, могут настолько уменьшиться, а силы взаимодействия этой частицы с молекулами растворителя настолько возрастают, что она покидает кристаллическую решетку и связывается с молекулами растворителя (сольватируется). Число частиц, переходящих в раствор с единицы площади поверхности кристалла в единицу времени, определяется частицами, обладающими достаточно большой для такого перехода кинетической энергией, и при постоянной температуре является постоянным. Скорость этого процесса очень велика и количество частиц растворенного вещества, находящихся в растворе вблизи поверхности кристалла, будет быстро увеличиваться. Частицы растворенного вещества в растворе сталкиваются с молекулами растворителя, направление движения при каждом столкновении меняется и движение их приобретает хаотический характер. [c.405]

    Если система однородна, т. е. в ее пределах не происходит каких-либо скачкообразных изменений свойств, и в то же время состоит из нескольких различных типов частиц, то она называется раствором. Растворы могут иметь любое агрегатное состояние — газовое, жидкое или твердое. Газы могут смешиваться при не слишком высоких давлениях в любых соотношениях и независимо от их химической природы. Смешение происходит в результате свойственной всем макроскопическим системам тенденции к переходу в более хаотичное состояние. Так как межмолекулярные взаимодействия в газе невелики, этой тенденции ничто не противодействует, что и приводит к неограниченной смешиваемости газов. Возможности образования растворов в твердом состоянии (например, многих сплавов металлов) ограничены. Твердый раствор может образоваться, если два сорта молекул, атомов или ионов могут заменять друг друга в элементарной ячейке кристалла. В дальнейшем в этой книге речь будет идти только о жидких растворах, т. е. термин раствор будет использоваться в узком смысле слова. [c.133]

    В неорганической технологии флотацию используют для обогащения поступающего в переработку сырья, например для извлечения из природных фосфатных руд апатита или фосфоритов, перерабатываемых в минеральные удобрения в производстве калийных солей — хлорида калия из сильвинитов и сульфата калия из полиминеральных калийных руд в производстве соды для разделения гидрокарбоната натрия и хлорида аммония в производстве борной кислоты и боратов и др. Флотацией можно извлекать тонкодисперсные осадки, взвешенные в жидкой фазе флотация осадков), или находящиеся в растворе ионы, способные химически соединяться с добавляемыми поверхностно-активными веществами (ПАВ), которые адсорбируются на воздушных пузырьках и выносятся ими в пенный слой ионная флотация). [c.325]

    В жидких растворах и газовых смесях частицы вешества (молекулы и ионы) обладают подвижностью, т. е. способны перемещаться относительно друг друга в результате теплового движения, а также под действием приложенных внешних сил—электрического, гравитационного или центробежного поля. [c.322]

    Однако энергия теплового движения ионов в жидких растворах значительно выше, чем в кристаллах. Поэтому ионы, взаимодействующие с выбранным центральным ионом, располагаются вокруг него не в виде кристаллической решетки, а в виде сферы, которая называется [c.155]

    Однако энергия теплового движения ионов в жидких растворах значительно выше, чем в кристаллах. Поэтому ионы, взаимодействующие с выбранным центральным ионом, располагаются вокруг него не в виде кристаллической решетки, а в виде сферы, которая называется ионной атмосферой (рис. VI.3). Ионные атмосферы обладают следующими характерными особенностями в их состав входят катионы и анионы. Однако преобладают [c.160]

    Состав солевой массы раствора, изображаемый точкой Рг, должен оставаться неизменным, и поэтому состав кристаллизующегося здесь осадка должен совпадать с составом солевой массы раствора, т. е. также изображаться точкой Р . Но эта точка лежит за пределами треугольника солей СХ—ВХ—ВУ, из которых состоит осадок, и поэтому раствор Р не может быть составлен из этих солей. При взаимодействии же кристаллов ВХ с находящимися в растворе ионами соли СУ соотношение между ионами в жидкой фазе сохраняется неизменным. [c.184]

    Растворами называют гомогенные системы переменного состава, образованные двумя или более компонентами. Жидкие растворы делят на две группы растворы неэлектролитов и растворы электролитов. Каждая из этих групп имеет свои специфические свойства — как макроскопические, так и молекулярные. Теоретические методы исследования растворов электролитов и неэлектролитов значительно различаются. В настоящей главе рассматриваются свойства растворов неэлектролитов — систем, в которых свободные заряженные частицы (ионы) — практически отсутствуют. [c.396]

    Твердые растворы. В отличие от газообразных и жидких растворов на растворимость в твердом состоянии, дополнительно ко всем прочим ранее рассмотренным факторам, оказывают влияние относительные размеры частиц (атомов, ионов, молекул и др.), из которых построены компоненты раствора. [c.236]

    Отождествление свойств компонентов в жидких растворах и в твердом состоянии привело также к неправильным представлениям о ионных радиусах в твердом теле. Например, ионные радиусы Na+ и С1 считались равными 0,097 и 0,181 нм соответственно, в то время как квантовомеханический расчет (орбитальные радиусы, см. табл. 8) дает значения = 0,028 нм, -=0,074 нм. Изучение твердых тел, которое интенсивно развивается в течение последних десятилетий и обусловлено растущими потребностями различных областей новой техники, заставляет с новых позиций подойти к пониманию фундаментальных законов общей химии [c.301]

    Как правило, ионные и полярные вещества растворяются в полярных растворителях, а неполярные вещества — в неполярных растворителях. Ионные соединения обычно легче растворяются в растворителях с высокой диэлектрической проницаемостью, так как при этом требуется меньше энергии для отделения иона от кристалла. Необходимо, однако, сказать, Что до сих пор не создано общей теории, устанавливающей количественные соотношения между свойствами чистых компонентов и свойствами и составом раствора. На пути создания такой теории возникает много трудностей. Прежде всего не удается полностью расшифровать того, что именно происходит в системе и какие формы частиц и структур в ней образуются. Это может быть достигнуто только с помощью использования самых разнообразных химических, физических и физико-химических методов. Достаточно строгие законы пока удается сформулировать только для разбавленных жидких растворов. [c.150]

    Реакции без изменения состояния окисления элементов чаще всего протекают в газовых и жидких растворах с участием ионов. Как известно, ионные реакции обратимы, и теоретически каждой системе ионов при данных условиях отвечает определенное состояние равновесия. Смещение химического равновесия (иногда практически нацело) происходит при уменьшении концентрации каких-либо ионов за счет образования относительно мало ионизирующихся молекул или комплексных ионов малорастворимых или летучих соединений правило Бертолле). Так, в реакции нейтрализации ионное равновесие смещается в сторону образования мало ионизирующихся молекул растворителя, например в водном растворе  [c.207]

    Величина напряжения разложения более или менее точно может быть определена для данного электролита определенной концентрации лишь в случае выделения на электродах чистых твердых веществ. Если при электролизе на электродах образуются гвердые или жидкие растворы и, особенно, при выделении газов, напряжение разложения зависит от формы и размеров эл( ктродов, характера их поверхности, условий удаления газов и многих других обстоятельств, подчас не учитываемых Поэтому величина напряжения разложения не может служи ь однозначной характеристикой для любого электролита при различных условиях, так же как и величины потенциалов разряда ионов. Величина э.д.с. электрохимической поляризании при электролизе отражает э.д.с., реально возникающую при приложении внешней разности потенциалов и противодействующую электролизу независимо от того, протекает электролиз или он подавлен э.д.с. электрохимической поляризации. В частном случае возникающая на электродах предельная поляризация может быть как раз лишь незначительно меньшей, чем приложенная разность потенциалов. Тогда эта разность равна сумме потенциалов разряда ионов (напряжению разложения). [c.615]

    При охлаждении жидких растворов из пих могут кристаллизоваться твердые фазы. Природа затвердевших растворов может быть различной в зависимости от отногиения друг к другу компонептов раствора. При сходстве кристаллических решеток составляющих веществ они взаимно растворимы друг в друге в твердом состоянии из жидких растворов ири охлаждении кристаллизуются твердые растворы, т. е. образуются кристаллы, в з злах решеток которых располагаются попеременно частицы (ионы, молекулы или атомы) различных веществ. При близких параметрах кристаллических решеток этих веществ наблюдается неограниченная растворимость их друг в друге, т. е. могут образоваться твердые растворы с любым содержанием составляющих веществ. В большинстве же случаев приходится встречаться с ограниченной растворимостью веществ друг в друге в твердом состоянии. Это значит, что в твердой фазе содержание одного из веществ не может быть больше определенной величины. Тогда при полном затвердевании жидкого раствора из двух веществ может образоваться неоднородный конгломерат, состоящий из двух твердых фаз, одна из которых представляет собой насыщенный твердый раствор первого вещества во втором, а другая — насыщенный твердый раствор второго вещества в первом. Иногда растворимость веществ друг в друге в твердом состоянии оказывается настолько ничтожной, что отдельные твердые фазы образовавшейся смеси можно считать практически состоящими из индивидуальных веществ. [c.183]

    Большинство известных простых и сложных вешеств в обычных условиях представляют собой твердые тела. Одной из важнейших задач современной неорганической химии является исследование свойств твердых тел в зависимости от их состава и структуры. Классические методы химического исследования базировались главным образом на изучении жидких растворов. При растворении исследуемое твердое вещество теряет свою индивидуальность и поэтому весь фактический материал классической химии описывает свойства не самого вещества, а продуктов его взаимодействия с растворителем. Это привело к ошибочным представлениям о характере химического взаимодействия между компонентами в твердых телах. В частности, образование ионов при растворении солей в воде служило доказательством чисто ионного взаимодействия и в твердой фазе, хотя в настоящее время установлено различными методами, что в твердом Na l доля ионности не превышает 82%, а в таком предельно ионном соединении, как sF,—93%. Действительно, для осуществления чисто ионного взаимодействия в Na l необходимо, чтобы величина сродства к электрону для хлора была больше, чем величина первого ионизационного потенциала для натрия ( i>/i, Na). Фактически определенные величины составляют /i,Na = 490,7 кДж/моль, 01 = 357 кДж/моль, т. е. полный переход электрона от натрия к хлору осуществиться не может по энергетическим соображениям. [c.301]

    Второй путь образования двойного слоя заключается в том, что поверхностные молекулы частиц твердой фазы диссоциируют в жидкости на ионы. Например, метакремниевая кислота НгЗЮз отдает в раствор ион водорода, в результате на поверхности остаются потенциалообразующие ионы с отрицательным зарядом. Из ионов водорода на твердой поверхности возникает адсорбционный слой, который имеет положительный заряд. Наконец, возможна специфическая адсорбция из жидкой фазы на электрически нейтральных поверхностях некоторых минералов [43]. Она обусловлена дисперсионными силами Ван-дер-Ваальса или Лондона, которые зависят от электрической поляризации атомов твердой поверхности пор ионами жидкости и поляризации самих ионов. При этом адсорбируются в первую очередь многозарядные ионы. Этот механизм возможен, например, в известняках. Вообще же примеры таких схем мало изучены. Независимо от пути образования двойной электрический слой имеет одну и ту же структуру. [c.112]

    Исследоваиия каталитической гидрогенизации в гомогенных жидких растворах приобрели в настоящее время важное значение, так как получаемые результаты освещают с новой стороны механизм каталитической активации молекулярного водорода. Другими словами, подобные гомогенные катализаторы представляют интерес пе только потому, что они позволяют открыть или осуществить на практике новые или трудно выполнимые реакции, но также благодаря тем возможностям, которые представ-лянэтся этими системами для выяснения химизма катализа. Как было отмечено выше, поч1и все катализаторы гидрирования являются твердыми телами. Однако природа этих твердых те т очень мало известна и еще в меньшей стенени известны их поверхностные свойства. В противоположность этому природа молекулярных частиц, находящихся в растворе, сравнительно хо-poHJo установлена. Поэтому весьма вероятно, что со временем удастся найти связь между особенностями каталитического гидрирования н гомогенных системах и известными химическими свойствами участвующих в них молекул, ионов или комплексов. [c.177]

    В данной работе для получения волокнистых композиций использован метод гидросмешения углеродных волокон с порошкообразной термореактивной смолой, обеспечивающий получение однородной шихты и позволяющий избежать применения органических растворителей и механического измельчения. Компоненты смешивали в нутч-фильтре [6, с. 253—261] с высокоскоростной пропеллерной мешалкой (рис. 1), где под динамическим воздействием жидкой среды волокна разделялись на филаменты и измельчались до нужного размера. При этом степень измельчения волокон регулировали изменениями скорости вращения и конструкции мешалки. Диспергирование волокон проводили в водном растворе ионного катализатора и поверхностно активного вещества [c.206]

    Предложен метод получения композиционных материалов на основе углеродного волокна и термореактивных связующих, основанный на совместном гидродиспергировании в растворе ионного катализатора углеродных волокон и связующего в нутч-фильтре с высокоскоростной пропеллерной мешалкой. Под динамическим воздействием жидкой среды волокна разделяются на филаменты и измельчаются до требуемых размеров. Этот метод применим для получения различных материалов, армированных углеродными волокнами. Ил. [c.269]

    После окончания основной стадии — насыщения ионита нзвле-каемым из раствора ионом — перед стадией регенерации реакционный раствор, находящийся между зернами, удаляют из слоя ионита промывкой его водой. При подаче воды снизу вверх, т. е. в направлении, противоположном ионообменной стадии, одновременно с отмывкой от раствора происходит разрыхление слоя ионита, зерна перераспределяются по размерам более равномерно, что улучшает распределение жидкого потока по слою в последующей стадии. Кроме того, промывная вода выносит из слоя ионита шлам и другие твердые осадки, которые могли задержаться при фильтровании растворов или образоваться в результате ионообменных или побочных процессов. После регенерации ионита, перед рабочей стадией насыщения, его также необходихмо отмыть водой от регенерирующего раствора. [c.310]

    Образовавщийся NaO остается растворенным в жидком продукте реакции и может быть выделен при нагревании. При действии на цинк 1—2 М HNO3 восстановление ее может дойти до образования аммиака, образующего в кислом растворе ион NH/  [c.188]

    Итак, свойства растворов электролитов зависят от природы присутствующих в растворе ионов. Такие свойства кислот, как кислый вкус, способность окрашивать лакмус в красный цвет, взаимодействовать с некоторыми металлами с выделением водорода, относятся к свойствам иона водорода, точнее, гидроксония Н3О+ и не зависят от природы аниона. Например, для жидкого хлористого водорода НС1 безводных серной или уксусной кислот ни одно из перечисленных кнслотных свойств не характерно. Эти свойства появляются только в водных растворах указанных веществ. Аналогично и свойства щелочей как электролитов обусловлены наличием в водных растворах гид-роксид-ионор и не зависят от природы катиона. Вместе с тем и кислоты, и щелочи как электролиты обладают также индивидуальными свойствами, зависящими от природы аниона или катиона соответственно. Например, если к раствору серной кислоты добавить соль бария, а к соляной — соль серебра, то в обоих случаях образуются белые нерастворимые в воде осадки. Эти свойства серной и соляной кислот обусловлены свойствами их анионов образовывать нерастворимые соли с катионами бария и серебра соответственно. [c.133]

    Гидратированный ион не предстаЕ ляет собой заряженный шарик, облепленный некоторым количеством молекул воды. Он входит в структуру жидкого раствора как полноправный ее участник. Известно, что вода обладает ближним порядком, т. е. представляет собой как бы размытую легко [c.177]

    Коэффициенты диффузии обменивающихся ионов могут значительно различаться. Например, экспериментально установлено, что когда процесс лимитируется внутренней диффузией, обмен между Н-катионитом и находящимся в растворе ионом металла идет быстрее, чем между Ме-катионитом и ионом водорода, коэффициент диффузии которого больше, чем иона металла. Но при этом, несмотря на различие коэффициентов диффузии отдельных ионов, в макроско-пическйх масштабах разделения зарядов при ионном обмене не происходит, электрические поля ионов влияют на их взаимное перемещение, система и в жидкой, и в твердой фазах остается электроней-тральной, а скорость процесса определяется скоростью взаимной диффузии ионов. [c.308]

    Такую закономерность в поведении глинистых минералов можно объяснить следующим. В начальной стадии твердения цементноглинистая суспензия представляет собой многофазную щелочную систему, жидкая фаза которой насыщена ионами a , ОН , 504 , Ре , К" , Na и др. и содержащую частично гидратированные зерна цемента, коллоидные частицы глины. Высокая дисперсность глинистого минерала способствует протеканию физикохимических процессов и химических реакций. На начальном этапе в основном развиваются процессы адсорбции и ионного обмена. Они завершаются относительно быстро и играют подчиненную роль при повышенных параметрах твердения. Это связано с тем, что в таких условиях наличие повышенного количества свободных ионов Са , Ре " и больших величин pH среды ускоряет обменное поглощение продуктов гидролиза гидратации цемента (в основном Са (0Н)2) с выделением в водный раствор ионов, ранее находившихся в поглотительном комплексе глины [3411. [c.129]

    Адсорбированные потенциалопределяющие ионы притягивают из раствора ионы противоположного знака — противоионы (в примере ионы Н+), причем часть их 2(п—х) адсорбируется на частице. Адсорбированные ионы SiOa вместе с адсорбированными противоионами Н+ образуют адсорбционный слой. Другая часть проти-воионов 2хН+ находится в жидкой фазе и образует подвижный диффузный слой. [c.188]

    Материал мембраны может быть либо жидким, либо твердым. Наиболее часто применяют мембраны из специального стекла. Толщина мембраны порядка 0,1 мм. При соприкосновении с водным раствором поверхность стекла до глубины около 10" мм превращается в гидратированный гель. Натриевые ионы геля способны обмениваться с находящимися в растворе ионами гидроксония. Через негидратирован-ный слой стекла ионы гидроксония все же проходить не могут. Однако оказывается, что через этот слой передаются заряды и возникает мембранный потенциал. Для образования разности потенциалов неважно, какими ионами и каким образом через мембрану передаются заряды, важно, что они передаются. Но так как заряды первоначально принадлежали ионам гидроксония, электродная функция стеклянного электрода зависит от pH в растворе 2  [c.265]


Смотреть страницы где упоминается термин Жидкие растворы ионные: [c.502]    [c.148]    [c.569]    [c.341]    [c.129]    [c.40]    [c.341]    [c.265]    [c.47]   
Химия несовершенных кристаллов (1969) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Раствор ионный

Растворы жидкие



© 2025 chem21.info Реклама на сайте