Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографическое разделение методы отделения

    Простейшим случаем хроматографического разделения является отделение катиона от аниона. Если целью отделения служит очистка одних ионов от других, то раствор ионов пропускают через ионно-обменную смолу, адсорбирующую ионны, подлежащие удалению из раствора. Примером такого использования хроматографического метода отделения может служить очистка многовалентных катионов, например, трехвалентного железа от фосфат-иона. [c.317]


    Хроматографическое разделение. Для отделения ниобия и тантала от других элементов были предложены методы распределительной хроматографии на целлюлозе и бумажной хроматографии [c.924]

    Второй способ заключается в том, что через колонку пропускают непрерывный поток практически неадсорбирующегося (или нерастворяющегося в неподвижной жидкости) газа и в этот газ-носитель у входа в колонку вводят небольшую порцию анализируемой смеси. В этом случае у выхода из колонки в токе газа-носителя сначала появится наименее адсорбирующийся (или наименее растворимый) компонент этой смеси, далее чистый газ-носитель, затем сильнее адсорбирующийся компонент, снова газ-носитель и т. д. Таким образом, зоны выхода компонентов на хроматограмме оказываются отделенными газом-носителем. Этот метод хроматографического разделения называют проявительным, промывным или элюционным анализом. [c.545]

    Кроме хроматографического разделения ионов одного и того же знака заряда методом ионного обмена в динамических условиях можно отделять ионы одного знака от ионов другого знака. Примером такого разделения является отделение на катионите катионов железа(1И), алюминия(П1), кальция (И) и магния (И), мешающих определению фосфат-ионов при анализе природных фосфатов. [c.322]

    Хроматографическое отделение целевого радиоактивного производного от других компонентов реакционной смеси проводили как с добавлением нерадиоактивного производного (носителя), так и без него. При использовании носителя его количество следует выбирать с учетом возможностей применяемого способа выделения продукта реакции. Если метка индикаторным изотопом не используется, то все операции по удалению из обработанной пробы избытка реагента должны осуществляться количественно. Аликвотную часть конечного раствора подвергают хроматографическому разделению для получения ацетата и определяют его радиоактивность с помощью жидкостного сцинтилляционного счетчика. Для стандартизации этого метода можно провести количественное ацетилирование известной навески анализируемого субстрата тем же самым количеством ангидрида, после чего выделить и проанализировать определенную часть полученного продукта. Количество стероида или стерина М. (в миллимолях) в анализируемой пробе жидкости или экстракта выражается формулой [c.73]

    Одним из богатых по содержанию источников витамина А является жир печени морских животных и рыб, например палтуса [109]. В технике концентраты витамина А получаются методом молекулярной дистилляции [110]. Для выделения витамина А применяется метод омыления жиров раствором едкого кали при 60° С в отсутствие воздуха, извлечение эфиром, удаление растворителя, отделение стеринов от неомыляемого остатка из раствора метилового спирта при большом охлаждении, затем или хроматографическое разделение на окиси алюминия по методу Цвета [1111, или кристаллизация из 10%-ного этилформиата при —35 С [20], а также многократная молекулярная дистилляция. Природный витамин А получен с [c.156]


    Наряду с другими методами находят применение хроматографические методы отделения ртути от других ионов. Сочетание экстракционных методов с хроматографическими, осуществляемыми без разрушения экстракта, делает разделение ионов более эффективным. [c.56]

    ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ ОТДЕЛЕНИЯ И РАЗДЕЛЕНИЯ [c.92]

    Из хроматографических методов отделения наиболее важны методы ионообменной хроматографии как на катионитах, так и на анионитах. Отделение на катионитах основано на регулировании кислотности раствора и на различии в прочности комплексов магния и сопутствующих элементов. При разделении на анионитах используется различие в прочности комплексов. [c.50]

    Анализ методом ХТС был также использован в качестве вспомогательного средства для лучшей оценки изоляционных масел, которые используются в высоковольтных трансформаторах и преобразователях. Изоляционные масла, состоящие из фракций нефти, можно разделить методом ХТС на парафины, нафтены и арома-тику. Однако большее значение имеет возможность обнаружения ингибиторов, служащих для замедления процесса старения таких природных масел. Ряд имеющихся в продаже ингибиторов был подвергнут хроматографическому разделению на пластинках силикагеля, полученных обычным методом (см. табл. 83). При испытании изоляционных масел на стабильность упомянутыми методами возможно проследить поведение ингибиторов без предварительного отделения изоляционного масла. [c.354]

    Ионообменная хроматография — очень распространенный метод, особенно широко применяющийся для разделения редких земель и аминокислот. Термин ионообменная хроматография показывает, что процесс состоит во взаимном разделении ионов, способных обмениваться со смолой. Отделение друг от друга различных катионов основано на различии в константах обмена если подобрать соответствующие условия, эти различия можно использовать для количественного разделения. Аналогичным образом можно использовать для взаимного разделения различных анионов и анионообменные смолы. При хроматографических разделениях желательно пользоваться растворителем, в котором проявляется только один какой-нибудь механизм сорбции как правило, ионообменные смолы хорошо приспособлены к этому требованию. [c.77]

    Важное значение в контроле производства бензольного отделения имеет хроматографический метод определения бензола в поглотительном масле, разработанный в институте. Метод основан на хроматографическом разделении газовой фазы, находящейся в равновесии с анализируемым раствором в замкнутой системе. Продолжительность анализа 2-3 мин. Рассчитанные значения коэффициента вариации для различных концентраций бензола в масле не превышают 2,5 %. [c.60]

    Поскольку кислородные соединения являются полярными веществами, они достаточно полно извлекаются из смеси с углеводородами хроматографическим путем. Для отделения кислых соединений (фенолы и кислоты) используется их склонность к взаимодействию со щелочью. Разделение кислородных соединений нейтрального характера весьма затруднено. Существующие методы их группового выделения и разделения несовершенны. [c.105]

    Малая избирательность реагентов, применяемых для определения платиновых металлов и золота, часто вызывает необходимость предварительного отделения определяемого элемента от сопутствующих ему металлов. В ходе анализа сложных материалов, содержащих все благородные металлы, последние, обычно, концентрируются совместно на одной из стадий анализа. Поэтому часто вначале прибегают к групповому разделению, к отделению друг от друга нескольких металлов, наиболее близких по химическим свойствам, а затем ищут пути разделения отдельных элементов. Для группового разделения используют различия в окислительно-восстановительных свойствах благородных металлов. Окислители (броматы, хлор) служат для отделения осмия и рутения от остальных благородных металлов. Восстановители (каломель, хлористую медь) применяют для отделения платины, палладия и золота от родия и иридия. Наиболее частыми сочетаниями металлов, получаемыми в результате группового разделения, являются осмий и рутений платина, палладий и золото родий и иридий. Для группового разделения, а также для отделения металлов друг от друга наряду с химическими применяют хроматографические и экстракционные методы. [c.218]

    Условия хроматографического разделения органических кислот на анионообменных смолах с использованием в качестве элюента муравьиной кислоты были изучены в работе [54]. Авторы нашли, что степень поперечной сшивки сильноосновной анионообменной смолы дауэкс-1 не влияет на порядок элюирования карбоновых кислот. Молярную концентрацию муравьиной кислоты, необходимую для элюирования 94 кислот из колонки, заполненной дауэксом 1-Х10, определяли по методу Дэвиса и сотр. [55]. Условия элюирования зависели от рК разделяемых кислот. Важна также и растворимость кислот в муравьиной кислоте, потому что она влияет на образование хвостов хроматографических зон. При выборе соответствующего градиента концентрации муравьиной кислоты было достигнуто полное или частичное отделение некоторых кислот (яблочной от мезовинной, янтарной от адипиновой и винной от хинолиновой кислоты), при этом было подавлено образование хвостов . Элюат собирали по фракциям, состав которых анализировали с помощью хроматографии на бумаге после предварительного удаления муравьиной кислоты путем выпаривания досуха в вакууме над силикагелем. [c.177]


    Методом вытеснения нами был исследован химический состав концентрата ароматических углеводородов топлива Т-1 из бакинских нефтей. В качестве адсорбента использовались силикагель марки ШСМ и каталитическая окись алюминия. Результаты хроматографического разделения показывают, что методом вытеснения могут быть отделены парафине вые и нафтеновые углеводороды от ароматических, одпако разделение углеводородов при использовании различных адсорбентов получается не совсем одинаковым. Так, при применении силикагеля методом вытеснения гораздо полнее происходит отделение парафиновых и нафтеновых углеводородов от ароматических, а при применении окиси алюминия — моноциклических ароматических углеводородов от бициклических. [c.94]

    Характерной чертой первой схемы исследования химического состава керосиновых фракций является использование химических и спектральных методов для идентификации углеводородов. Вторая схема отличается более широким использованием хроматографии в сочетании с химическими методами для выделения отдельных групп углеводородов и их производных. По этой схеме предусматривается, например, отделение сернистых соединений от ароматических углеводородов окислительно-хроматографическим методом и хроматографическое разделение на угле пятичленных нафтеновых и изопарафиновых углеводородов. [c.127]

    В соответствии с терминологией, принято в этой книге, ионообменная хроматография включает в себя процессы разделения способных к обмену ионов. Разделение катионов основано на их различной способности поглощаться катионитами при подходящих условиях эти различия можно использовать для количественного отделения катионов друг от друга. Точно так же аниониты могут быть использованы д.чя разделения различных анионов. В гл. 5. 6 отмечалось, что наиболее важным, с аналитической точки зрения, методом хроматографического разделения является элюентная хроматография именно этот метод преимущественно рассматривается в настоящей главе. Если ионы значительно различаются по способности к обмену, то операция их разделения может быть упрощена. Такие упрощенные методы, как селективное элюирование и селективное поглощение, рассматриваются в последних разделах этой главы. [c.179]

    Для разделения кристаллической суммы гликозидов существует ряд перспективных методов, наиболее целесообразно проводить хроматографическое разделение на активном угле [6], полиароматических микросферических гелях [7], силикагеле [8]. Необходимо также принять во внимание возможность разделять смесь гликозидов путём отделения ланатозида А на дезактивированном водой силикагеле с последующим иротивоточпым распределением ланатозидов В и С, например с помощью смеси хлороформ-дихлорэтап-метапол-вода (28 22 30 20) [9]. [c.172]

    NaOH, сурьма количественно проходит в фильтрат, а таллий полностью задерживается катионитом. В щелочной среде сурьма находится в виде анионов ЗЬОз , ЗЬОг , ЗЬОз и, следовательно, не задерживается катионитом. Аналогичное явление наблюдается в присутствии разных комплексообразующих анионов (пирофосфат, цитрат, тартрат, оксалат) таллий количественно адсорбируется катионитом, сурьма переходит в фильтрат [53]. Лучще всего использовать при хроматографическом разделении сурьмы и таллия винную или лимонную кислоты. Этот метод отделения таллия от сурьмы применяется при определении таллия в пылях цинкового и свинцового производств, в цинковом электролите, металлическом кадмии, В ряде работ, посвященных хроматографии на бумаге, имеются данные и о солях таллия. В качестве растворителя наиболее часто применяются амиловый или бутиловый спирты, насыщенные 1—2Л/ раствором НС1, или смеси изопропилового или этилового спиртов с 5Л/ раствором НС1 (9 1). Для характеристики разделения катионов приводим значения Rf [620—622] (табл. 17). [c.74]

    В последние годы все большее распространение получает хроматографическое разделение веществ по их молекулярному весу, причем первое место среди таких вариантов хроматографии принадлежит гель-фильтрации на сефадексах . Сефадекс представляет собой полусинтетический -сорбент полисахаридной природы, гранулы которого обладают порами определенного размера, так что диффузия внутрь этих гранул возможна только для молекул, величина которых не превышает величину пор. Поэтому сефадекс работает как своего рода молекулярное сито , задерживающее проникающие внутрь гранул низкомолекулярные вещества и не задерживающее полимеры. Гель-фильтрация незаменима для быстрого отделения полимера от низкомолекулярных примесей (неорганических солей, мономеров и т. д.). Ее применяют и для разделения полимеров, причем одновременно можно приблизительно оценить их молек лярный вес, так как существует набор сефадексов, различающихся величиной пор. Есть все основания полагать, что в химии полисахаридов этот перспективный метод будет находить все большее применение. Особенно интересным является использование сефадексов для разделения высоко- и низкомолекулярных осколков, образующихся при расщеплении биополимеров различными реагентами , и для выделения полисахаридов из различных природных источников Хроматография на модифицированных сефадексах, обладаюш.их ионообменными свойствами, например на диэтиламиноэтилсефадексе, также может служить эффективным приемом фракционирования полисахаридов . [c.487]

    Методы разделения. Кроме методов отделения тантала и ниобия от других элементов, основанных на осаждении (см. гравиметрические методы), используют экстракционные и хроматографические. Экстракцию тантала из фторидных растворов циклогексаноном или метилизобутил-кетоном в виде соединения НгТаРу используют для отделения его от ниобия, который в растворах с малым содержанием свободной HF склонен к образованию комплексов НгЫЬОРз, которые не экстрагируются. [c.156]

    Электрохроматографическое отделение бериллия. Зайлер, Арц и Эрленмейер [642] применили комбинированный вариант хроматографического разделения на бумаге солей щелочноземельных металлов и бериллия. Эти смеси под вергались сначала хроматографированию восходящим методом (бумага Ватман № 1) в течение 13 час., затем хроматографиро-ванию в электрическом поле при напряжении 600 в, приложенном перпендикулярно движению ионов, и снова без электрического поля в течение 2 час. Электрохроматографирование позволяет разделять катионы и анионы. [c.153]

    Наиболее распространенным приемом предварительного отделения серебра от примесей является осаждение Ag l [122, 203, 225, 262, 332, 381, 488, 1011]. Известен хроматографический метод отделения, при котором серебро адсорбируют в виде Ag l на катионите КРЗ-200 в Н-форме, промывая колонку раствором Na l [1041, 1042]. Применяют и электролитический метод разделения с контролем величины катодного потенциала [659]. [c.215]

    Изучено адсорбционно-хроматографическое разделение дитизонатов С(1 и 2п, С(1 и РЬ, С(1 и В1 с использованием в качестве сорбентов КНСО3 и трехзамещенного цитрата калия [57]. Разработан метод отделения кадмия от мешающих элементов с помощью минерального ионообменника — фосфата кальция [221]. [c.157]

    Широкое распространение среди методов очистки барбитуратов к настоящему времени приобрели хроматографические методы и, в частности, хроматография в тонком слое. Последняя для химико-токсикологического анализа с успехом применяется за рубежом. В нашей стране вопросам применения хроматографии в тонком слое для очистки, разделения барбитуратов, отделения их от метаболитов и предварительной идентификации посвящены работы Н. В. Кокшаровой, Е. В. Метелевой, Г. Ф. Лозовой, А. В. Беловой и И. В. Волковой и др. [c.143]

    В основу методов выделения и разделения смолисто-асфальтеновых веществ положены различные растворимость и сорбционная способность этих компонентов. В настоящее время широко применяется хроматографический (адсорбционный) метод, обеспечивающий по сравнению с другими известными методами (в основном с анализом по Маркуссону—Саханову) наиболее четкое отделение смолистых веществ от углеводородной части нефти. В условиях горячей экстракции значительная часть низкомолекулярных смол переходит в масла при адсорбционном методе такой переход незначителен, поэтому масла получаются более чистыми. Это обстоятельство необходимо учитывать особенно при анализе ма-лосмолнстых нефтей, содержащих в основном низкомолекулярные смолы. Кроме того, адсорбционный метод позволяет проводить разделение смолистых компонентов значительно быстрее. [c.75]

    Грузия. В Грузинском политехническом институте проводились исследования анионитов, модифицированных анионными лигандами, с целью хроматографического отделения редких и переходных элементов (Д. И. Эристави и др.). В качестве сорбентов изучены фторидная, карбонатная и этилендиаминтетраацетатная формы анионитов. Полученные данные легли в основу разработки новых хроматографических методов разделения и отделения элементов. [c.209]

    Известны специальные методы, которые применяются только для данных гетероатомных компонентов нефтей и не имеют общего характера, хотя некоторые из этих методов с небольшими видоизменениями применяются к нескольким или ко всем гетеро-атомным соединениям. К числу таких методов относятся микрогидрогенизация и микрокулонометрическое определение серы и азота, соединенное с хроматографическим разделением этих гетероатомных соединений, а также ионообменная хроматография на смолах, применяющаяся для отделения кислых и основных компонентов нефти. [c.251]

    Хроматографическое разделение никелевых и ванадиевых пор-фириновых комплексов облегчается тем, что последние обладают большей полярностью. Хроматографический метод пригоден для отделения карбоксилированных порфиринов. Для окончательной очистки порфиринов может служить кристаллизация из метилен-хлорида, а также сублимирование и молекулярная перегонка в высоком вакууме. [c.255]

    Определение полидисперсности блоксополимеров включает анализ их распределения по молекулярной массе, составу, примеси соответствующих гомополимеров. Показано [15], что полидисперсность блоксополимеров может быть эффективно исследована с помощью последовательного использования нескольких хроматографических методов. После предварительного фракционирования макромолекул по размеру (методом ГПХ) осуществляют с помощью ТСХ повторное хроматографическое разделение полученных фракций по составу с отделением блоксополимера от примеси гомополимеров и, наконец, используя ПГХ [И], определяется состав ГПХ- и ТСХ-фракций. Описываемая методика использовалась для изучения блоксополимера типа ABA, синтезированного с помощью бифункционального триперекисного инициатора [16] [А — полиметилметакрилат (ПММА), а В — полистирол (ПС)]. [c.250]

    Методы концентрирования. Если применение обычных методов хроматографического разделения недостаточно (например, вследствие невысокой чувствительности детектора или нечеткого разделения примеси и основного компонента), то нримен.чют специальные методы подготовки пробы (в частности, предварительное концентрирование, отделение нримеси от основного комнонента и т. п.). Концентрирование применяют также в тех случаях, когда для идентификации примесей используют пехроматографические методы (спектральные оптические методы, масс-спектроскопия, ядерный магнитный резонанс и т. п.). Поэтому часто необходимым этапом проведения аналитического исследования мономеров и растворителей является концентрирование примесей. [c.67]

    Хади [56] разработал простой и точный метод и аппаратуру для определения растворителей в лаках и смолах без предварительного отделения летучих соединений от полимера и пигмента. Анализируемым образцом лака заполняют часть капилляра (внутренний диаметр 0,05 мм) из легкоплавкого материала (полиэтилен или сплав индия), герметизируют и помещают в никелевую лодочку (длина 50 мм). Лодочку с капилляром вносят в трубчатый реактор с печью (нагретая зона 110x13 мм), герметизируют и продувают потоком газа-посителя (40 мл мин). Затем с помощью магнита перемещают лодочку в горячую зону (для анализа растворителей в лаках температура 180— 200° С является достаточной), где капилляр плавится, и летучие компоненты образца поступают в хроматографическую колонку для разделения. Хроматографическая колонка (360x0,5 см) заполнялась 20% апиезона N или диэтиленгликольсукцинатом на хромосорбе VV (60—80 меш). Хроматографическое разделение проводили при 100° С. Нелетучие остатки оставались в лодочке и извлекались из печи после проведения анализа. Для количественных расчетов использовали метод внутреннего стандарта (см., например, [45]). В табл. 6 приведены относительные времена удерживания обычно используемых растворителей лаков (относительно н-бутанола). [c.118]

    Первые опыты хроматографического отделения ароматических углеводородов от парафино-нафтеновой части в бензино-дигроиновой фракции осуществили Дей I, 2 Энглер [3], Гурвич [4, 5], Тарасов [6]. Позднее Россини, Майер и Форциати [7, 8, а также Великовский, Павлова, Гофман и др. [9] своими исследованиями подтвердили перспективность этого метода применительно к легким и средним фракциям нефти. Хроматография на силикагеле вошла существенной составной частью в предложенный Ландсбергом, Казанским и сотр. [10] метод определения индивидуального углеводородного состава бензинов прямой гонки. Впоследствии многие исследователи стали широко применять хроматографический метод для разделения легких, средних и тяжелых фракций нефти и для разделения крекинг-продуктов [11—13]. Аллибон [14] впервые осуществил хроматографическое разделение масляных фракций на различных сорбентах при большом разведении масла петролейным эфиром. Вслед за ним многие авторы сообщили о преимуществе метода хроматографии перед другими методами разделения [15], о выделении чистых ароматических углеводородов [16, 17], об отделении нормальных парафиновых углеводородов изостроения от нафтеновых [18], о выделении чистых нафтеновых углеводородов [19] и о выделении ряда индивидуальных нормальных парафиновых углеводородов от С21 до С30 [20, 21], [c.28]

    В этой главе рассматривается жидкостная хроматография нитросоединений, мочевины и ее производных, гуанидинов, нит-розаминов, амидов, азосоединений и ароматических гидразосо-единений. Хроматография амидов описывается лишь кратко, так как практическая ценность хроматографического разделения пептидов и их смесей очень велика. Поэтому этим методам посвящена специальная глава [34]. Основной областью применения жидкостной колоночной хроматографии для других указанных соединений является отделение их от соединений других типов. Все современные методы хроматографии можно было бы с успехом применять для разделения разбираемых в этой главе соединений, однако до сих пор этому вопросу уделяли мало внимания. Интересный способ был разработан для нитросоединений, некоторые из них синтезируют непосредственно в хроматографической колонке, где они затем отделяются от других соединений реакционной смеси. [c.296]

    Фирмой Фостер Уилер были произведены технико-экономи-ческие расчеты процесса, сочетающего хроматографическое разделение и изомеризацию, и проведено сравнение с процессом, в котором отделение и-парафинов проводилось ректификацией. При этом было показано, что применение хроматографии на цеолитах снижает капитальные затраты на 17%, уменьшает эксплуатационные расходы на 20% и повышает октановое число бензина но исследовательскому методу (с 0,8 мл1л ТЭС) с 97,5 до 99,5. Изомеризация с хроматографическим разделением позволяет на 32,3% снизить стоимость повышения октанового числа на единицу по сравнению с процессом, где отделение н-нентанов проводится ректификацией. [c.228]

    При разработке новых методов ионообменного разделения аналитик должен выяснить, какие иониты наиболее пригодны для его целей. Некоторые задачи аналитического разделения могут быть решены с помощью как катионитов, так и анионнтов нередко вопрос о иредиочтении того или иного материала является чисто вкусовым. Простым примером может служить отделение щелочных металлов от фосфат-иона. Следует отметить, что даже хроматографическое разделение ионов одного знака часто может быть выполнено с помощью ионитов обоих типов. Например, для разделения некоторых металлов могут с успехом применяться катиониты однако применение для этой же цели анионитов, основанное на разделении комплексов этих металлов, часто бывает проще и быстрее. В этой главе мы не будем, однако, углубляться в рассмотрение подобных вопросов разнообразные примеры такого тина будут разобраны главах 10, 11 и 15. Цель настоящей главы — дать информадшо о свойствах ионитов наиболее важных типов для облегчения выбора подходящего ионита. [c.143]

    Поведение трапсплутониевых элементов при хроматографических разделениях на анионитах также служило предметом исследований. Элементы с атомными номерами большими, чем у кюрия, удерживаются анионитами в среде концентрированной соляной кислоты [73, 120 ], в то время как америций и кюрий немедленно элюируются вместе с редкоземельными элементами. Для анионообменного отделения трапсплутониевых элементов от лантанидов применялись также кон-центрированные растворы хлорида лития [44] и тиоцианатные комплексы [22, 87, 115, 120]. Эти исследования дали ценную информацию о свойствах новых элементов. Анионообменный метод обеспечивает лучшее отделение трансплутониевых элементов от редкоземельных, чем описанный выше катионообменный метод. Примером практического применения анионообменного метода служит отделение прометия от америция, которое очень трудно осуществить другими способами. Полное разделение этих элементов достигается элюированием ЪМ тиоцианатом аммония [96]. [c.345]

    В. И. Кузнецов и Г. В. Мясоедова 207] разработали метод отделения следов молибдена от вольфрама при помощи метода двух реактивов , заключающегося в том, что сперва молибден соосаждают вместе с другими элементами таннином и метил-виолетом ( органические соосадители ), а затем, после озоле-ния и растворения осадка, снова осаждают молибден, но уже не таннином, а роданидом и метилвиолетом, создавая виннокислую среду, в которой вольфрам не осаждается. Этим методом удается определять молибден в присутствии 400 000-кратного избытка вольфрама — например 2,5 мкг молибдена при 1 г вольфрама. Этот же метод позволяет концентрировать малые количества молибдена из больших объемов, например из природных вод. Методы хроматографического разделения молибдена и железа разрабатывались Ф. М. Шемякиным и И. П. Харламовым [202, 208], использовавшими предварительные данные других авторов. Это разделение хорошо проходит на сульфоугле, поглощающем молибден и пропускающем железо. После промывания колонки через нее пропускается раствор едкого натра, выщелачивающий поглощенный сульфоуглем молибден. Ш елочной раствор молибдата переводят в сернокислый и титруют его перманганатом после предварительного восстановления молибдена но пятивалентного при помощи амальгамированного цинка. [c.90]


Смотреть страницы где упоминается термин Хроматографическое разделение методы отделения: [c.82]    [c.222]    [c.213]    [c.23]    [c.421]    [c.163]    [c.281]    [c.922]   
Колориметрические методы определения следов металлов (1964) -- [ c.629 , c.631 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения

Методы отделения хроматографические

Методы разделения

Методы хроматографические

Методы хроматографического разделения



© 2025 chem21.info Реклама на сайте