Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронно-колебательно вращательные состояния многоатомных молекул

    Уравнение Шредингера для колебательных состоянии многоатомных молекул в гармоническом приближении. Колебательные состояния многоатомной молекулы в приближении разделения электронного, колебательного и вращательного движений будут определяться уравнением Шредингера  [c.389]

    Для не очень сложных молекул так же, как в абсорбционных УФ спектрах и спектрах люминесценции, при достаточном разрешении может наблюдаться колебательная структура фотоэлектронных спектров. Имея в виду наличие у молекул (и многоатомных ионов) различных электронно-колебательно-вращательных состояний, соотношение (VI.2) для энергии связи электрона в молекуле (на какой-то молекулярной орбитали) можно переписать так  [c.144]


    Все это обусловливает сложность спектров многоатомных молекул, в особенности их электронно-колебательно-вращательных спектров, исследование которых необходимо для определения всей совокупности энергетических состояний молекулы. Сложность спектров многоатомных молекул и недостаточная разрешающая сила современных спектральных приборов являются причиной того, что до настоящего времени спектры даже наиболее простых многоатомных молекул изучены недостаточно полно, а теоретические представления об их энергетических состояниях, особенно об электронных состояниях многоатомных молекул, нуждаются в дальнейшей разработке. [c.57]

    Поскольку при обычных температурах, прн которых, как правило, записывают инфракрасные спектры веществ, возбужденные колебательные состояния заселены в незначительной степени, то спектры поглощения отвечают переходам из основного состояния в различные возбужденные состояния. Каждому такому переходу соответствует набор линий поглощения, поскольку колебательные переходы могут сопровождаться различными переходами между вращательными состояниями. При записи спектров в жидкой фазе эта система линий сливается в одну широкую полосу поглощения. Таким образом, как и электронные спектры многоатомных частиц, колебательные инфракрасные спектры представляют собой систему полос, число которых определяется в первую очередь числом колебательных степеней свободы. Только двухатомные молекулы имеют одну колебательную степень свободы. Волновые числа, соответствующие переходу в первое возбужденное состояние для некоторых двухатомных частиц, приведены ниже  [c.155]

    ЭЛЕКТРОННО-КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНЫЕ СОСТОЯНИЯ МНОГОАТОМНЫХ МОЛЕКУЛ [c.30]

    Гак же как и для двухатомных молекул, каждая электронно-колебательная полоса имеет тонкую вращательную структуру, возникающую при переходах между отдельными вращательными подуровнями верхнего и нижнего электронно-колебательных уровней. Для простейших молекул колебательная и вращательная структуры разрешены и полностью интерпретированы. Из колебательновращательной структуры спектров многоатомных молекул могут быть определены энергия возбуждения верхнего электронного состояния, колебательные и вращательные постоянные и геометрическая конфигурация молекулы в основном и возбужденном электронных состояниях. В табл. 52 для иллюстрации приведены некоторые данные, полученные при исследовании электронно-колебательно-вращательных спектров простых молекул. [c.435]


    Следует отметить, что энергетические состояния многоатомных молекул, а следовательно и их спектры, существенно зависят от строения и симметрии молекулы. В зависимости от того, какими элементами симметрии обладает многоатомная молекула в своей равновесной конфигурации, соответствующей минимуму потенциальной энергии, она относится к той или другой точечной группе симметрии. Молекулы, принадлежащие к одной и той же точечной группе, т. е. имеющие одинаковые элементы симметрии, имеют много общего в характере их электронных, колебательных и вращательных состояний. Укажем основные классы точечных групп, к которым принадлежит большинство простых многоатомных молекул. [c.57]

    Существуют два основных препятствия при описании фотохимии больших молекул с той же точностью физических формулировок, что и для простых. Во-первых, структура спектров поглощения сложных частиц становится уже трудноразрешима, вследствие чего довольно трудно проводить как идентификацию состояния, так и распознавание оптической диссоциации и предиссоциации. Размытость спектральной структуры, естественно, является результатом как усложнения спектра и уплотнения колебательных и вращательных уровней, так и увеличения числа электронных состояний. Рис. 3.4 показывает исчезновение разрешаемой структуры спектра при переходе от формальдегида к ацетальдегиду. Во-вторых, для возбужденной многоатомной молекулы существует несколько путей фрагментации. [c.56]

    В отличие от двухатомных молекул, рассматриваемые в Справочнике многоатомные молекулы, как правило, имеют синглетные основные электронные состояния и возбужденные электронные состояния с большими энергиями возбуждения. Поэтому в большинстве случаев можно считать, что статистическая сумма по внутримолекулярным состояниям многоатомной молекулы Qbh равна статистической сумме ПО колебательным и вращательным состояниям основного электронного состояния  [c.111]

    В книге кратко изложены основные результаты теории электронных, колебательных и вращательных состояний молекул (включая свободные радикалы), рассмотрены возможные переходы этих частиц из одних состояний в другие и спектры, возникающие при таких переходах, сведения о молекулярных постоянных, получаемые при интерпретации спектров. Помимо краткого изложения общих вопросов теории состояний и спектров молекул, книга содержит конкретные данные по спектрам, строению и молекулярным постоянным простейших двухатомных и многоатомных молекул, относимых автором к числу свободных, радикалов . В книге наиболее полно и основательно излагаются вопросы, относящиеся к этой области. Многие экспериментальные результаты получены самим Герцбергом и его сотрудниками. [c.6]

    Выше были рассмотрены различные методы расчета колебательных и вращательных составляющих термодинамических функций многоатомных газов. Соответствующие уравнения были получены в предположении, что основные состояния молекул газа являются синглетными, а существованием возбужденных состояний можно пренебречь. Однако ряд многоатомных молекул, в том числе рассматриваемые в настоящем Справочнике, имеют свободные электроны и, следовательно, должны обладать мультиплетными электронными состояниями. Этому обстоятельству при расчетах термодинамических функций газов до последнего времени не уделялось должного внимания, и в большинстве работ вычисления проводились так, как будто основные состояния многоатомных молекул являются синглетными. [c.123]

    У многоатомных молекул и радикалов обрыв вращательной структуры в спектре испускания из-за предиссоциации наблюдался только в одном случае — у радикала HNO. Хотя обрыв структуры и был обнаружен у двух колебательных уровней (ООО и 010) возбужденного электронного состояния [19], невозможно сделать вывод о том, что граница предиссоциации позволяет определить диссоциационный предел, так как разность энергий предиссоциированных уровней довольно велика (/ 300 см" ) и имеет другой знак по сравнению с обычно наблюдаемым для двухатомных молекул (рис. 106). Однако нижний предиссоциированный уровень дает точную верхнюю границу для одной из энергий диссоциации радикала HNO Dq"< 2,11 эВ. [c.189]

    НЫХ молекул активны в близкой инфракрасной области, вследствие чего наблюдаются колебательно-вращательные полосы. Некоторые виды колебаний даже тех молекул, которые являются симметричными в их равновесном состоянии, сопровождаются смещениями ядер, которые разрушают симметрию и приводят к возникновению результирующего дипольного момента. Не все виды колебаний активны, но даже у таких симметричных молекул, как метан, некоторые колебания способны взаимодействовать с инфракрасным излучением. Если многоатомная молекула имеет результирующий дипольный момент в ее основном состоянии, то она может давать как чисто вращательный, так и колебательно-вращательный спектр. Все многоатомные молекулы, подобно двухатомным, способны давать полосатые электронные спектры, независимо от того, полярны или неполярны они в их нормальном состоянии. [c.184]


    В случае I безызлучательный переход происходит между дискретными уровнями одного электронного состояния и непрерывной областью энергии другого. В случаях II и III электронное состояние не изменяется. В случае II имеет место переход в непрерывную область, связанную с каким-либо другим колебанием. В случае III система переходит с верхних вращательных уровней стабильного колебательного состояния в непрерывную область в том же колебательном состоянии. Случай II невозможен для двухатомных молекул, но играет важную роль для многоатомных молекул, ра дикалов и ионов. Большинство мономолекулярных распадов относится к этому случаю. Случай III наблюдался только для двухатомных молекул и вряд ли имеет какое-либо значение для многоатомных радикалов. Как случай II, так и случай III можно рассматривать с пол у классической точки зрения, если проследить за движением фигуративной точки по многомерной потенциальной поверхности. [c.183]

    Одной из главнейших задач современной науки является изучение строения и свойств многоатомных молекул. В последние два десятилетия наряду с традиционными химическими методами все большее, а иногда и решающее значение приобретают различные физические методы исследования, в частности, методы, основанные на изучении энергетических уровней многоатомных молекул. К этим методам относятся методы электронной, колебательной и вращательной спектроскопии, электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР) и др. Одно из основных преимуществ этих методов заключается в возможности изучения молекул и молекулярных ассоциатов в любом агрегатном состоянии, при разных температурах и давлениях и без разрушения молекул, как это обычно имеет место при применении химических методов. [c.168]

    Рассмотренные выше различные модели ядер приводят к спектру состояний ядра, весьма сходному со спектром многоатомной молекулы существуют внутренние состояния (одночастичные для ядер и электронные для молекул), вращательные и колебательные состояния. Однако следует сразу же подчеркнуть, что это сходство в гораздо большей степени обусловлено свойствами взаимодействия ученых с проблемой многих тел , чем каким-либо сходством взаимодействий в молекулах и ядрах. [c.294]

    На основании уравнения (11.167) внутримолекулярные составляющие термодинамических функций многоатомных газов можно принять равными колебательно-вращательным составляющим, вычисленным для основного электронного состояния молекул данного газа. Для тех редких случаев, когда необходимо учесть мультиплетность основного электронного состояния или принять во внимание наличие возбужденных электронных состояний, в расчет необходимо внести соответствующие поправки. Методы вычисления этих поправок рассмотрены на стр. 122. [c.111]

    Структура и силовое поле молекулы ц. разных электронных состояниях могут быть существенно разными. Однако при вычислении термодинамических функций многоатомных газов можно пренебречь этим различием ввиду того, что вклад возбужденных электронных состояний относительно мал. Пренебрегая также относительно малым взаимодействием между колебательными и вращательными состояниями при вычислении термодинамических функций многоатомных газов в первом приближении, полагают, что электронные, колебательные и вращательные состояния молекул газа независимы друг от друга. Тогда согласно общему свойству статистической суммы (см. гл. П1.4) внутренняя составляющая статистической суммы многоатомной молекулы распадается на произведение статистических сумм по электронным, колебательным и вращательным состояниям  [c.232]

    Межмолекулярные соударения не только приводят к частичному рассеиванию колебательной энергии, но вызывают также перераспределение энергии, сконцентрированной на одном определенном колебании, между всеми другими. Подобная же нивелировка происходит также для вращательной энергии молекулы. Электронная энергия не деградирует, потому что не наблюдается какого-либо заметного тушения. Это не только объясняет неизменность испускаемого спектра, но может также обусловить большую его сложность по сравнению со спектром поглощения. Эффективность ударов, особенно когда это относится к молекулам того же рода, по-видимому, очень велика в случае многоатомных молекул, которые должны обладать значительными эффективными сечениями в возбужденном состоянии. Действительно, спектр флуоресценции бензола принимает свой обычный вид, наблюдае- [c.20]

    Поглощение излучения изменяет энергию этих состояний, что обусловливает появление электронных, колебательных и вращательных спектров. На рис. 1 представлена схема энергетических уровней многоатомной молекулы и электронных переходов. Каждый электронный переход (Еп— ,) имеет набор колебательных (у ) и вращательных (/) уровней. Вертикальными стрелками на рис. 1 показан переход с нулевого колебательного уровня основного электронного состояния Ео на различные колебательные подуровни первого возбужденного электронного состояния Е1. [c.7]

    Для большинства простых многоатомных молекул сведения об их возбужденных электронных состояниях отсутствуют или носят разрозненный характер. Колебательные и вращательные постоянные молекул в возбужденных состояниях обычно неизвестны (за исключением нескольких простых молекул типа H N, С2Н2, НСО и IO2), а энергии этих состояний имеют величины порядка 15 000—20 000 и выше. Учитывая, что точность вычисления термодинамических функций многоатомных газов, как правило, ниже, чем двухатомных газов, для учета возбужденных состояний многоатомных молекул при всех температурах может быть применен метод, основанный на предположении, что колебательные и вращательные постоянные молекулы во всех электронных состояниях идентичны. [c.124]

    Подавляющее число спектров испускания связано с излучением двухатомных молекул. Однако известно небольшое количество систем, которые являются результатом излучения трехатомных и многоатомных молекул. В ряде случаев такие системы наблюдались в спектрах поглощения. Оказывается, что большинство возбужденных электронных состояний многоатомных молекул неустойчиво, и поэтому спектры, соответствующие переходам с участием такого рода состояний, не могут быть обнаружены в излучении, в поглощении же наблюдаются только сплошные спектры. В тех же случаях, когда можно наблюдать спектры мн()гоатомных молекул, картина очень сложна и хотя некоторые из этих спектров, как, например, спектры lOj и бензола, имеют довольно правильный характер и могут быть, во всяком случае частично, проанализированы, в общем случае анализ неосуществим. За исключением спектров небольшого числа линейных молекул, которые могут быть рассмотрены теоретически таким же образом как и двухатомные, об электронной и вращательной структуре таких спектров известно очень мало. Анализ колебаний усложняется большим числом частот колебаний трехатомная молекула обладает тремя колебательными степенями свободы, а молекула из N атомов имеет 3iV — 6 степеней правда, число различных частот будет меньше этого числа, если молекула обладает большой степенью симметрии. Попытки вывести правила для определения изменения колебательного квантового числа при электронных переходах были сделаны Герцбергом и Теллером [143] и Ку [180], которые нашли, что разрешенными являются только некоторые из возможных полос. Однако их выводы расходятся с результатами исследования спектра поглощения SO2, и развитие теории может быть, вероятно, осуществлено только после дальнейшей экспериментальной работы. [c.37]

    Поглощение молекулой ультрафиолетового излучения вызывает переход от исходной комбинации колебательной и вращательной энергии ее электронов к соответствующей комбинации этих энергий при возбужденном состоянии электронов. Систематические измерения большого числа органических соединений позволили установить, что только молекулы, содержащие полярные или ненасыщенные группы, поглощают в коротковолновой части ультрафиолетовой области. Для многоатомных молекул эти спектры очень сложны и трудно поддаются расшифрсвке. Учитывая характерный вид ультрафиолетовых спектров ароматических колец, Корбетт и Швэрбрик (23) с помощью ультрафиолетовой спектроскопии установили присутствие ароматических колец в парафиновых п нафтеновых фракциях битумов. [c.52]

    Спектр поглощения должен содержать набор тех же линий, что представлены в спектре испускания. В случае молекул спектр получается более сложным. Это связано с тем, что как энергия основного состояния молекулы, поглощающего электромагнитное излучение, так и энергия электронно-возбужденных состояний, образующихся в результате поглощения излучения, не являются столь однозначно определенными величинами, как для атомов. Они характеризуются набором возможных значений энергии колебаний и вращения молекулы. Поэтому вместо одной линии в спектре поглощения молекулы каждод1у электронному переходу соответствует множество линий, отвечающих различным многочисленным вариантам сопутствующих переходов между колебательными и вращательными состояниями молекулы. Практически за исключением спектров поглощения простейших многоатомных частиц, находящихся в газовой фазе (когда отсутствуют дополнительные возмущения, вносимые нековалентными взаимодействия-I I I II I м [ I I I I I ми), все линии, соответствующие одному [c.152]

    Для атомов Рвнутр учитывает энергию возбужденных электронных состояний, отсчитываемую от энергии основного электронного состояния Гвнутр = Гэл- Для двух- й многоатомных молекул Гвнутр включает электронный, колебательный и вращательный вклады  [c.104]

    Колебательно-вращательные спектры линейных многоатомных радикалов очень похожи, конечно, на спектры стабильных линейных молекул (см. [II], гл. IV), если их основные электронные состояния относятся к типу Е. В этом случае вращательная структура колебательных переходов Ей—Е и Пц—Е для симметричных молекул должна быть в инфракрасной области совершенно такой же, как у электронных полосЕ — Е иП — Е двухатомных радикалов. Для симметричных линейных молекул типа ХУг только колебания va и V3 активны в инфракрасной области (рис. 53). Для несимметричных молекул все колебания активны в инфракрасной области (индексы g тя. и должны быть опущены). У радикалов такие спектры в газовой фазе еще не найдены, однако в твердой матрице при очень низкой температуре фундаментальные частоты в инфракрасной области были получены для ряда свободных радикалов, особенно Миллиганом и Джекоксом. Естественно, при этих условиях вращательная структура не наблюдается.- [c.99]

    Л1, Л 2, Л Л Л 2 ", Е или Е . На рис. 85 приводятся свойства симметрии вращательных уровней молекулы точечной группы /)зл в электронно-колебательных состояниях Ai и Если спин одинаковых ядер равен нулю, то появятся вращательные уровни только типа Л1 (типа Ai для точечной группы Сд , все остальные будут отсутствовать. Это аналогично тому, что в гомоядерной двухатомной молекуле с ядерным спином / = О существуют лишь симметричные (5) уровни. Если же спин одинаковых ядер / = /2, то будут также присутствовать уровни как типа Л 2, так и типа Е с отношением статистичесГких весов 2 1. То же самое относится и к точечной группе причем не имеет значения, один или два штриха содержатся в обозначении типа симметрии. При / = 1 будут существовать все три типа вращательных уровней с отношением статистических весов 10 1 8 соответственно для типов Ль Л2 и Таким образом, наблюдается очень заметное и характерное чередование статистических весов вращательных уровней, отличающееся от чередования у двухатомных и линейных многоатомных молекул. [c.147]

    Если б ж о или И 12 б, д, 1/1/2, т. е. функции смешиваются в отношении 50 50. Если, как обычно, два уровня Е2 при-. надлежат различным системам уровней, то взаимодействие между ними приведет в обеих системах к отклонениям от формул для энергии, выражающих плавную зависимость, т. е. к возмущению. Такие возмущения довольно часто встречаются в системах вращательных и колебательных уровней двухатомных и многоатомных молекул В последнем случае возмущения могут иметь место в системе колебательных уровней даже в основном электронном состоянии, когда вблизи нет других электронных состояний,т. е. возмущаться могут просто колебательные уровни, обусловленные различными колебаниями. Такие возмущения называются резонансами Ферми стр. 88). [c.179]

    Спектроскопические исследования не ограничиваются резонансными линиями металлов и электронным возбуждением. В настоящее время широко изучено излучение электронно-возбужденных многоатомных молекул, например СиОН [41], а также ИК-излучение таких частиц и вращательно-колебательная структура в области электронного перехода. Атомные спектры поглощения использовались в фотометрии пламени для определения заселенности основного состояния в линейной области зависимости Ван-дер-Хельда. Сагден и Джеймс [38] применили наиболее удобный метод атомно-абсорбционной спектроскопии— метод двух пламен —в нелинейной области этой зависимости. В этой области интенсивность пропорциональна корню квадратному из N 1. Если измерить интенсивность двух пламен [c.227]

    Длинноволновые электронные переходы с поглощением излучения или его испусканием (флуоресценция) в органических молекулах расположены в зависимости от сложности последних в спектральном диапазоне примерно от 0,15 до 1,5 мкм. Флуоресцентный переход осуществляется между первым синглетным возбужденным 51 (2) и основным 5о (1) электронным состояниями молекул (рис. 5.7), причем, в отличие от колебательно-вращательных спектров, правилами отбора разрешены электронно-колебательные переходы (для данной колебательной моды) между отдельным колебательным уровнем 51-состояния и всеми другими колебательными уровнями основного состояния 5о. Поэтому при термодинамически равновесном распределении молекул по колебательным (колебательно-вращательным) уровням в и 50-состояниях сравнительно легко может быть получена инверсия заселенностей и генерация излучения на переходах между низшими колебательными уровнями 51-состояния и возбужденными колебательными уровнями 5о-со стояния. Решающим для получения генерации излучения на флуоресцентных электронно-колебательных переходах явилось то обстоятельство, что такое равновесное распределение молекул достигается после акта возбуждения за промежуток времени (10 "—10 с), значительно более короткий, чем врсхмя жизни флуоресцентного 51-состояния (10 —10" с). Это справедливо для молекул в конденсированной фазе (растворы), а в случае сложных многоатомных молекул — и для газовой [c.187]

    Спектры испускания этих ионов будут рассмотрены вместе, так как анализ их спектров имеет много общего. Спектр OI был одним из первых электронных спектров многоатомной молекулы, для которой был проведен вращательный и колебательный анализ. Интерпретации наблюдаемых переходов способствовало в значительной степени развитие теории молекулярных орбит электронных состояний Мелликена. Результаты, полученные Мелликеном ([96], стр. 375) для O , находятся в фактическом соответствии с орбитальными диаграммами, представленными на рис. 5. [c.44]

    Спектры поглощения одноатомных газов (нары металлов), как правило, характеризуются резкими линиями поглощения (линейчатым спектром), ширина их составляет иногда сотые доли ангстрема. С повыщением давления линии поглощения расширяются в полосы, что является результатом взаимодействия атомов. Спектры поглощения многоатомных газов представляют собой ряд по.лосок, а спектры поглощения жидких и твердых тел дают в ультрафиолетовой и видимой областях спектра, как правило, уже широкие полосы. Исследование показывает, что полосы эти являются результатом наложения на электронные переходы колебательных и вращательных состояний молекул. Световые кванты, требующиеся на возбуждение электронных переходов, более значительны, чем колебательные и вращательные кванты. [c.183]

    Существование внутренних степеней свободы частицы обусловлено тем, что частица имеет конечные размеры (возможность вращения) и что сама частица состоит из отдельных более мелких частиц. Свободные атомы и молекулы, как и каждое твердое тело, занимающее определенный объем, обладают тремя степенями свободы вращательного движения. Однако атомы и молекулы не являются сплошными образованиями. Напротив, частицы, из которых они построены, могут в свою очередь находиться в движении относительно друг друга. Поэтому атомы обладают дополнительными степенями свободы, характеризующими движение электронов и атомных ядер. В многоатомных молекулах относительно друг друга могут также двигаться отдельные атомы или группы атомов. Возможность существования таких видов движения в многоатомных молекулах отражает наличие степеней свободы колебательного движения и степеней свободы внутреннего вращения. Почти все внутренние степени свободы частицы в большей или меньшей степени связаны друг с другом. Однако при определенных типах связей, определенных величинах масс и температурах часто бывает возможно предположить, что в первом приближении некоторые из внутренних степеней свободы независимы друг от друга. В этом случае сумму по состояниям внутр Для внутренних степеней свободы и соответственно теплоемкость Сувнутр можно дальше разложить на составные части. В идеальном случае, когда все внутренние степени свободы многоатомной молекулы не зависят друг от друга, можно записать [c.36]

    После отделения обычным методом поступательных степенен свободы от степеней свободы, связанных с внутренними координатами, точное вычисление суммы состояний некоторых сравнительно простых многоатомных молекул ведется способом суммирования. Однако в большинстве случаев принимают, что молекула является жесткой и что вращательные и колебательные степени свободы независимы друг от друга. Объединенная вращательноколебательная сумма состояний получается тогда путем перемножения отдельных составляющих, выражающих вращательные и колебательные суммы состояний. Классификация многоатомных молекул по характеру электронных конфигураций, как это было изложено в Г.11. VI в отношении двухатомных мо.лекул, возможна [c.478]

    Казалось бы, спектр поглощения разреженного пара должен быть хорошо разрешенным, так как он не усложнен действием межмолекулярных факторов, но спектры паров многоатомных соединений исследуются обычно при повышенных температурах (400—600 °К), когда молекулы обладают относительно большим запасом колебательно-вращательной энергии. С ростом же этого запаса происходит усиление внутримолекулярных взаимодействий . Ввиду близкого расположения (по энергии) вращательных уровней в каждом колебательном состоянии и из-за большого числа колебательных уровней даже небольшое уширение спектральных полос, возрастающее с ростом внутримолекулярного взаимодействия, приводит к их перекрыванию и, соответственно, размытию структуры спектра. В тех же случаях, когда удается наблюдать тонкоструктурные спектры поглощения паров ароматических соединенир - они оказываются довольно сложными вследствие большого числа переходов с различных колебательно-вращательных уровней основного электронного состояния на различные колебательно-вращательные уровни возбужденного состояния. [c.36]

    Для расчета термодинамических функций молекулярных газов при заданных значениях температуры по уравнениям (III.249) — (III.257) должны быть известны следующие данные молекулярная масса М, статистический вес основного электронного состояния молекулы go , момент инерции / или вращательная постоянная В для двухатомных и линейных многоатомных молекул и произведение главных моментов инерции IaIbI или вращательных постоянных ЛВС для нелинейных многоатомных молекул, число симметрии молекулы а, полный набор основных частот Vft молекулы и соответствующих им степеней вырождения dk. По известным значениям основных частот согласно (III.253) определяются соответствующие им значения характеристических колебательных температур 0ft. После этого по отнощениям вн/Т находятся соответствующие значения величин jJr.o (0й//), Фг.о(0а/7 ). Sr.o Qk/T) и r.o(QhlT) путем непосредственного вычисления по формулам (III.206) — (111.209) или с помощью таблицы численных значений этих величин, приведенной в приложении. Из этой таблицы видно, что термодинамические функции гармонического осциллятора являются монотонно убывающими функциями переменной 0/Г, при этом функции я г.о (б/Г) и Сг.оСб/Г) убывают от 1 до О, а функции фг,о(0/Г) и Sr.o (0/ ) — от +СХ) до о, когда переменная 0/Г изменяется от О до оо. Это значит, что вклад колебательных движений молекул в величины термодинамических функций состоящего из них газа тем больше, чем меньше частота и чем выше температура. При малых и при больших значениях отношения 0/7 (0/7 <1 и 0/7 >1) уравнения (III.206) —(III.209), определяющие термодинамические функции гармонического осциллятора, могут быть заменены более простыми  [c.248]


Смотреть страницы где упоминается термин Электронно-колебательно вращательные состояния многоатомных молекул: [c.1028]    [c.295]    [c.177]    [c.305]    [c.112]    [c.23]   
Смотреть главы в:

Задачник к курсу строение молекул -> Электронно-колебательно вращательные состояния многоатомных молекул




ПОИСК





Смотрите так же термины и статьи:

Вращательные состояния молекул

Колебательные состояния молекул

Молекулы многоатомные

Молекулы состояние

Состояния электрона

Электронно-колебательно-вращательное



© 2024 chem21.info Реклама на сайте