Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные пары с водородной связью

    Катионы связаны с молекулами воды донорно-акцепторной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные электронные ячейки. Чем больше заряд иона и чем меньше его размер,тем значительнее будет катионная доля поляризующего действия К на Н2О. Анионы связаны с молекулами воды водородной связью. Сильное влияние может привести к полному отрыву протона — водородная связь становится ковалентной. Донорная активность А" будет тем значительнее, чем больше я и меньше га . В зависимости от силы поляризующего влияния К"" и А" на молекулы Н2О будут получаться различные результаты. Так, катионы элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра первых менее эффективно экранируются -электро-нами. [c.202]


    Межфазный катализ включает образование ионных пар, в которых анион и катион довольно тесно связаны. Возможно, поэтому ассиметричное влияние хирального катиона катализатора на реакции анионов приводит к частичному разделению рацематов, т. е. к оптической индукции. Необходимым условием такого эффекта является достаточно тесное взаимодействие аниона и катиона и только в одном из нескольких возможных положений и конформаций. Высокая подвижность аниона по отношению к катиону препятствует этому эффекту. Использование с этой целью четвертичных аммониевых солей с хиральным центром в углеродном скелете, по-видимому, малоперспективно, если только анион-катионное взаимодействие не усиливается дополнительной полярной группой (например, группой ОН, способной образовывать водородную связь). Лучшими катализаторами могут быть соединения с хиральным аммонийным азотом, который с трех сторон стерически экранирован [1173, 1601]. [c.102]

    Координационное число центральных ионов в аквокомплексах в разбавленных растворах (т. е. при достаточном количестве молекул воды) в общем случае соответствует значению характерного координационного числа катиона (акцептора) и аниона (донора). Так, для ионов АР+, СгЗ+, Со + координационное число обычно равно шести, а для Ве + — четырем. В разбавленных водных растворах, следовательно, эти ионы находятся в виде гидратированных комплексных ионов типа октаэдрического [А1(0Н г) в тетраэдрического [Ве(ОН2)4] - Для иона СГ, имеющего четыре неподеленные электронные пары, координационное число, по-видимому, равно четырем, что отвечает образованию четырех водородных связей. [c.129]

    Полярные протонные растворители легко сольватируют как анионы, так и катионы. Неорганические катионы взаимодействуют со свободными электронными парами, тогда как анионы сольватируются путем образования водородных связей. Крупные четвертичные аммониевые ионы не сольватируются [37] или по крайней мере сольватируются не специфично, т. е. сильного непосредственного взаимодействия с растворителем не существует. В этих растворителях имеет место высокая степень диссоциации на свободные сольватированные ионы. Однако многие анионы обладают относительно низкой реакционноспособностью (нуклеофильностью) из-за сильного экранирования сольватной оболочкой. [c.18]

    Катионы связаны с молекулами воды донорно-акцеп-торной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные электронные ячейки. Чем больше заряд иона и чем меньше его ра шер, тем значительнее будет катионная доля поляризующего действия К" на Н2О. Анионы связаны с молекулами воды водородной связью. Сильное влияние может принести к полному отрыву протона— водородная связь становятся ковалентной. До-норная активность А" будет тем значительнее, чем больше п и меньше В зависимости от силы поляризующего [c.208]


    Существуют также системы, в которых взаимодействие между донором и акцептором протона (как правило, это сильные кислоты и основания) ведет к радикальной перестройке молекул и переходу протона. В инертных малополярных растворителях этот процесс приводит к образованию контактной ионной пары, диссоциация которой в этих условиях термодинамически невыгодна [28, 29]. Сам же перенос протона в слабо сольватирующих растворителях, как показывает опыт, вполне возможен. Устойчивость образовавшейся ионной пары А" НВ+ определяется электростатическим притяжением ионов и взаимодействием с растворителем, механизм которого экспериментально пока изучен недостаточно и, видимо, неодинаков в различных растворителях (см. раздел 6). Спектральные данные указывают на существование в ионной паре водородной связи [30, 31], хотя возможность выделения энергии водородной связи из суммарной энергии взаимодействия аниона и катиона является довольно спорной. [c.218]

    Предположение, что Р = 1 для реакции Н3О+ с 0Н , нуждается в дальнейшем рассмотрении. В Н3О+ три из четырех электронных орбиталей вокруг центрального атома кислорода содержат протоны, поэтому геометрический фактор равен /4. В ОН три из четырех внешних орбиталей атома кислорода содержат неподеленные электронные пары, поэтому геометрический фактор также равен /4. Если комплекс столкновения образуется из ионов, ориентированных случайным образом, то Р будет равным ( /4) т. е. /ie, а не 1. Однако такая модель очень мало вероятна. При броуновском движении ионы имеют сильный момент вращения, обусловленный действием решетки жидкости. В результате этого при сближении ионов Н3О+ и ОН происходит вращение с образованием конфигурации [уравнение (6)], в которой между этими ионами образуется водородная связь и поэтому возможен перенос протона. Вследствие этого можно ожидать, что Р будет гораздо больше и очень возможно, что эта величина будет приближаться к ее верхнему пределу, равному единице. [c.210]

    Меньший вклад в связывание антигена с активным центром антитела вносят водородные и ионные взаимодействия. Водородные связи образуются при взаимодействии атома водорода, ковалентно связанного с каким-либо отрицательно заряженным атомом, с неподеленной парой электронов другого отрицательно заряженного атома. В реакции антиген — антитело в качестве таких групп обычно выступают аминогруппы и гидроксильные группы/ Электростатические силы возникают при взаимодействии сильно заряженных ионизированных групп, таких, как ионизированная аминогруппа (—NH3+) и ионизированная карбоксильная группа (С00-). [c.34]

    В жидкой воде молекулы ассоциированы, т.е. объединены в более крупные частицы, причем устанавливается равновесие между молекулами воды, связанными в ассоциаты, и свободными молекулами воды. Наличие ассоциатов повышает температуру и кристаллизации, и испарения воды, и диэлектрическую проницаемость. При увеличении температуры растет доля свободных молекул. При испарении воды ассоциаты разрушаются и водяной пар при невысоких давлениях состоит из свободных молекул Н2О. Однако при повышении давления молекулы воды сближаются и образуют водородные связи, происходит ассоциация молекул. По мере повышения давления пар приближается по своему строению к жидкому состоянию. Это вызывает увеличение растворимости в паре соединений с ионными связями. [c.343]

    В принципе можно рассчитать из известных значений дх, как показано на с. 23. Для грубой оценки можно считать, что относительные константы экстракции для различных катионов и неполярных растворителей очень близки между собой. Это справедливо лишь в редких случаях только как первое приближение и является слишком большим упрощением в других случаях. Часто реагент или одна из ионных пар, участвующих в истинной реакции, присутствуют в концентрации, близкой к насыщению. Тогда следует ожидать отклонений от идеального поведения. Более того, полярность и способность растворителя к образованию водородных связей по-разному влияет на различные анионы. Известны константы селективности /Сх— для конкурентной экстракции хлорида по отношению к бромиду, иодиду и перхлорату из воды в 11 растворителях [121] и для хлорида относительно цианида в 8 растворителях [122]. Как ожидалось, /Сс1—>ск изменяется незначительно, причем максимальный интервал изменения от 0,9 (вода/г ыс-1,2-дихлорэтан) до 3,1 (вода/бензонитрил). Специфичное влияние растворителя более ярко выражено для серий анионов, сильно различающихся по липофильности [121]. Следует особо отметить, что гидроксилсодержащие растворители выравнивают различия  [c.34]


    Нужно упомянуть, между прочим, возможность экстракции кислот НХ в форме ионных пар Р+Х ---НХ. Известны факты практического применения этой экстракции водородными связями для Нр2 , НСЬ и X-. .. НООН (гл. 3). [c.34]

    Эти свойства жидкой воды связаны с необычайностью ее структуры, которая и заключается в наличии водородной связи, образующейся в молекулах воды вследствие существования неподелен-ных электронных пар. Электронные пары расположены на двух орбиталях, лежащих в плоскости, перпендикулярной к плоскости НОН (рис. 1.5). За счет неподеленных пар электронов в каждой молекуле воды могут возникнуть две водородные связи. Еще две связи могут обеспечить два водородных атома. Таким образом, только одна молекула воды в состоянии образовать четыре водородных связи. Благодаря этому результирующее распределение зарядов в молекуле воды напоминает тетраэдр, два угла которого заряжены положительно, а два — отрицательно. Результирующий центр положительных зарядов находится посредине между протонами. Он отделен от результирующего центра отрицательных зарядов, расположенного вблизи атома кислорода с противоположной Т5Т протона стороны. Вследствие этого молекула воды оказывается электрическим диполем с дипольным моментом, равным Кл-м (отсюда и высокая диэлектрическая проницаемость воды, и связанная с ней способность растворять ионные вещества). [c.23]

    Аналогично вюртциту построен лед. Если мы заменим атомы цинка и серы в вюртците молекулами воды, то получим их расположение в структуре льда. Фрагмент этой структуры показан на рис. 141. Каждая молекула в структуре льда соединена водородными связями с четырьмя другими водородные связи молекул имеют тетраэдрическую направленность, обусловленную тетраэдрическим расположением sp -гибридных орбиталей атома кислорода, две из которых дают ковалентную связь с атомами водорода, а две другие заняты неподеленными электронными парами, которые притягиваются ионами водорода соседних молекул НгО. На рис. 141 черные кружки показывают положение водорода, а штриховка — область, где сосредоточен отрицательный заряд. [c.260]

    К этой форме адсорбции примыкает поглощение водяных паров на поверхности многих ионных кристаллов, когда молекулы воды взаимодействуют с этими ионами с образованием донорно-акцепторных или водородных связей или притягиваются ионом в результате ионно-дипольного взаимодействия. В таких случаях поляризующее действие ионов, в особенности при их малом размере и относительно высоком заряде, может значительно усилить способность адсорбированных молекул воды к образованию водородных связей с другими молекулами, которые образуют, так сказать, второй слой адсорбированных молекул. Этот эффект в более слабой степени, по-видимому, может распространяться и на последующие слои .  [c.24]

    В жидкой воде устанавливается равновесие между связанными в ассоциаты и свободными молекулами. При повышении давления молекулы воды сближаются, образуют водородные связи, происходит ассоциация молекул. По мере повышения давления пар приближается по своему строению к жидкому состоянию. Это вызывает увеличение растворимости в паре соединений с ионными связями. [c.83]

    Брендстрём [46, 112] определил большое число кажущихся констант экстракции между водой и различными растворителями для стандартной четвертичной аммониевой соли — бромида тетра -н-бутиламмония (табл. 1.1). Растворитель, используемый в работе по МФК, должен быть не смешивающимся с водой так как в противном случае будут образовываться сильно гидратированные экранированные ионные пары с низкой реакционной способностью. Чтобы избежать образования водородных связей с анионами ионных пар, растворитель, кроме того, должен быть апротонным. Приведенные в табл. 1.1 данные показывают, что величины констант экстракции очень сильно изменяются. Растворители из последней колонки таблицы в целом не подходят для МФК некоторые из них частично смешиваются с водой, другие слишком активны и могут мешать многим процессам. Однако для рассматриваемой стандартной соли, которая обладает средней липофильностью, все эти растворители являются хорошими или отличными экстрагентами. Родственные по структуре, несколько более полярные соединения (например, гомологи) должны иметь сходную способность к экстрагированию ионных пар. Это позволяет сделать важный вывод если в качестве реагентов в реакциях в условиях МФК, например в алкилировании, используются соединения типа приведенных в последней колонке табл. 1.1, то органический растворитель не требуется, так как экстракция ионных пар в чистую органическую фазу будет вполне удовлетворительной. [c.24]

    Водородная связь проявляется в том, что атом водорода может связывать два других атома, являясь мостиком между ними. Например, существует ион НРг. В воде атом водорода, соединенный с атомом кислорода электронной парой, может притягивать и другой соседний атом кислорода из другой молекулы воды. Благодаря этому в юде такие связи распространяются во всех трех измерениях, и при этом образуются как бы бесконечные цепи и кольца, подобные полимерам. Такое строение воды обусловливает ряд ее аномальных свойств (например, максимум плотности при 4°С). Существование водородной связи объясняется весьма малым размером атома водорода. Поэтому его положительно заряженное ядро —протон — отличается исключительно большим электростатическим полем. Воздействие этого поля приводит к притяжению атомов с избытком электронов и возбуждению временных диполей в нейтральных атомах. [c.158]

    Долгое время необычные свойства воды были загадкой для ученых. Выяснилось, что они в основном обусловлены тремя причинами полярным характером молекул, наличием неподеленных пар электронов у атомов кислорода и образованием водородных связей. Молекула воды (рис. X1V.2, а) может быть представлена в виде равнобедренного треугольника, в вершине которого расположен атом кислорода, а в основании — два протона (рис. XIV.2, б). Две пары электронов обобществлены между протонами и атомом кислорода, а две пары неподеленных электронов ориентированы по другую сторону кислорода. Длина связи О—И составляет 96 нм, а угол между связями 105°. Связь О—Н имеет полярный характер, молекула воды также полярна. Благодаря полярности вода хорошо растворяет полярные жидкости и соединения с ионными связями. Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар от атомов водорода [c.371]

    Как видим, ближняя гидратация ионов в водных растворах тесно связана со структурным состоянием воды. Это заключается в том, что усиление упорядоченности воды ведет к ослаблению гидратации ионов. Например, разрушение структуры воды усиливает гидратацию. Роль структурного состояния воды в явлениях гидратации ионов в растворах подчеркивает большое значение короткодействующих сил для свойств растворов. При гидратации ионов собственная структура воды изменяется, возникает новая структура, характерная для раствора. При этом обнаруживается большая устойчивость структуры воды, о вызвано, во-первых, тем, что каждая молекула в воде участвует приблизительно в четырех водородных связях, и, во-вторых, тем, что трансляционное движение молекул Н2О происходит в основном по пустотам структуры. С ростом температуры и давления собственная структура воды становится менее упорядоченной, ближняя гидратация ионов усиливается и затрудняет ассоциацию катионов и анионов и образование контактных ионных пар. [c.277]

    Трудность квантовомеханического расчета водородной связи обусловлена тем, что погрешность вычисления значительно больше величины энергии этой связи. По-видимому, наиболее надежные результаты можно ожидать от ММО. Расчет для иона НРг" дают три трехцентровые молекулярные орбитали СМО, НМО и РМО, Две электронные пары, вначале заселявшие орбитали фтора и во- [c.141]

    Вследствие низкого значения е неполярных растворителей ионогенные ПАВ в них практически не диссоциируют. За образование полярного ядра ответственны силы диполь-дипольного взаимодействия между ионными парами, а также возможные водородные связи. Наличие следов воды, связывающей полярные группы, также способствует мицеллообразованию в неводных средах. [c.325]

    Известны восемь гидратов НСЮ (табл. 1). Моногидрат НзО" СЮ -ионный П. А//2бр 382,0 кДж/моль в кристаллич. структуре остальных гидоатов присутствуют гидратир, протоны НдОз, Н Оз, Н,о/ входящие в состав кристаллогидратов молекулы воды связаны с ионами СЮ водородными связями. При —25°С моногидрат переходит в моноклинную модификацию (пространств, группа Р211п). Азеотроп с водой имеет т. кип 203 °С (0,1 МПа) и содержит 72,4% нею, пар над р-рами выше этой концентрации обогащен НСЮ, ниже-водой. [c.498]

    Существование цепочных полимеров (НР) в парах фтористого зодорода было показано с помон ью метода диффракции электронов эти работы не подтвердили более раннего предположения о существовании кольцевых молекул (НР) . Как выше было указано, простейшим комплексным ионом, содержащим водородную связь, является ион НР . Расстояння Р — Н—р, равные 2,26 А и 2,36 А для КИР и NH Hp2, соответственно, следует сравнить с расстоянием Н — Р 0,92 А в отдельной молекуле НР. При предположении о существовании ионной структуры Р Н+Р- было вычислено, что расстояние между атомами фтора равно 2,32 А, в хорошем согласии с экспериментальной величиной. Для так называемых кислых фторидов щелочных металлов следует ожидать менее симметричных структур, чем для простых фторидов, вследствие несферической формы иона (НРз) . В то время как КР имеет простую структуру каменной соли, структура КНР  [c.295]

    Ре (СН)5Н20]3- 3 [Pe( N)5H20]2 , в то время как Михаэлис считает, что эти кривые соответствуют четырехэлектронной системе с двумя парами частично перекрывающихся ступенек на кривых окислительно-восстановительного титрования. Он предположил, что ионы соединяются водородными связями с образованием 4 [Ре ( N).H20]  [c.141]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    Менее изучена гомогенная реакция, катализируемая цианид-и фторид-ионами. Несмотря на то что некоторые из них были уже давно известны (ср. [411Ь]), только в последнее время они привлекли к себе особое внимание. Например, тетрабутиламмо-нийцианид в ТГФ или ацетонитриле вызывает присоединение нитроалканов, спиртов и хлороформа к а, -ненасыщенным кето-нам и сложным эфирам [413]. В этих растворителях ионные пары нитрил/четвертичный аммоний не защищены водородными связями и ведут себя как основания. Кротонитрил димеризуется, акрилонитрил полимеризуется [413]. [c.219]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    Перекрывание э.лектронных облаков неподеленной электронной нары фтора одной молекулы воды и орбитали водорода другой молекулы воды способствует обра-зованик) ковалентной связи по донорно-ак-цепторному механиз.му. Возникает положительный эффективный заряд на атоме водорода, частично освобождается 1.5-ор-биталь. На нее частично перемещается электронная плотность неподеленной электронной пары атома фтора другой молекулы воды. Поэтому водородная связь помимо ионного носит и ковалентный характер. [c.156]

    Муравьиная кислота представляет собой смешивающуюся с водой бесцветную жидкость (т. пл. 8, т. кип. 101 С) с высоким значением диэлектрической проницаемости (е = 56 при 25°С) и очень резким запахом. Ее собственная электролитическая диссоциация характеризуется ионным произведением [НСООН+] [НСОО"] = 5 10- , а растворенная в ней НСЮ редет себя, как сильная кислота (/С = 5-10- ). В парах муравьиной кислоты имеет место димеризация по схеме 2НС00Н (НСООН)г + 14 ккал за счет образования водородных связей (между гидроксильными водородами и карбонильными кислородами). Присутствие в молекуле муравьиной кислоты (К = = 2- 10- ) при одном и том же атоме углерода связей С—Н и С = 0 ведет к тому, что она (подобно альдегидам) является сильным восстановителем. Соли ее (м у-равьинокислые, или формиаты), как правило, легкорастворимы. Интересно, что Сг(НСОО)г способен, по-видимому, существовать в двух формах — синей мономолекулярной и красной бимолекулярной. Разбавленный (1—1,5%) водный раствор НСООН под названием муравьиный спирт употребляется для втираний при лечении ревматизма. [c.562]

    В водном растворе уксусной кислоты следует учесть, что наличие карбоксильной группы в молекуле СН3СООН (способной к образованию водородных связей с молекулами воды) приводит к тому, что гидратация молекул СН3СООН (I стадия) и диссоциация ионных пар (III стадия) очень велики. Однако, [c.180]

    Молекулы спиртов ассоциированы за счет возникновения между ними водородных связей. Водородная связь возникает там, где есть водород и сильно электроотрицательный элемент — ( ггор, кислород, азот, хлор, сера. Так как электронная плотность от водорода смещена, то водород может взаимодейсгвовать с неподеленной электронной парой другого атома или иона. Эта связь более слабая, возникающая за счет электростатического и донорно-акцепторного взаимодействий. Для водородной связи характерны направленность в пространстве и насыщенность. [c.222]

    Указанный вывод подтверждается также и тем фактом, что частичное сохранение конфигурации в этой системе достигается ЛИШЬ в том случае, если в качестве уходящей группы выступает хлорид ИЛИ нейтральные нуклеофугные группы. Если уходящими группами служат группы, несущие положительный заряд, для которых вероятность образования водородных связей с растворителем намного ниже, сохранения конфигурации не наблюдалось [49]. Частичное сохранение конфигурации возможно и тогда, когда ионная пара экранирована с тыла такими добавками, как ацетонитрил или ацетон [50]. [c.25]

    Хотя водородные связи слабее ковалентных и ионных, они значительно прочнее вандерваальсовых связей и обусловливают ассоциацию молекул воды в жидком состоянии и некоторые аномальные свойства воды, в частности высокие температуры плавления и парообразования, высокую диэлектрическую проницаемость, максимальную плотность при 4 °С, а также особую структуру льда. В кристаллах льда молекула воды образует четыре водородные связи с соседними молекулами воды (за счет двух неподеленных электронных пар у кислорода и двух протонов), что обусловливает возникновение тетраэдрической кристаллической структуры льда. Расположение молекул в таком крис-. талле отличается от плотной упаковки молекул, в решетке много свободных мест, поэтому лед имеет относительно невысокую плотность. При высоких давлениях (выше 200 МПа) обеспечивается более плотная укладка молекул воды и возникает еще несколько кристаллических модификаций льда. При плавлении происходит частичное разрушение структуры льда и сближение молекул, поэтому плотность воды возрастает. В то же время повышение температуры усиливает движение молекул, которое снижает плотность вещества. При температуре выше 4 °С последний эффект начинает превалировать и плотность воды понижается. [c.372]

    Действительно, спектроскопические исследования пикратов замещенных солей аммония показало, что существуют ионные пары с водородной связью. По Дэвису, в паре ВН+...А-, где В — онова-ние, а А — кислота, протон смещается от А к В по мере того, как возрастает сила основания и уменьшается сила кислоты. В конечном счете при полной диссоциации получаются сольватйрованный протон и соответствующий анион. Это означает, что сила кислоты зависит от природы растворителя. Вещество, которое в данном растворителе проявляло себя как типичная кислота, в другом может оказаться очень слабой кислотой или даже обнаружить свойства основания. Так, например, азотная кислота в водном растворе является сильной кислотой благодаря реакции [c.249]

    Образование ионов в неводных растворителях в зависимости от свойств растворителей может протекать по механизму про-толитической диссоциации или в результате других химических реакций. Электролитическая диссоциация возникает в полярных протонных и апротонных растворителях, молекулы которых содержат неподеленные электронные пары. Протонные растворители, благодаря наличию гидроксильных и аминных групп, обладают также протондонорными свойствами и образуют водородные связи как между молекулами растворителя, так и с растворенным веществом. Все это способствует растворению и диссоциации электролита и сольватации ионов. Действие полярных апротонных растворителей, например, диметилсульфоксида, [c.413]


Смотреть страницы где упоминается термин Ионные пары с водородной связью: [c.192]    [c.192]    [c.122]    [c.122]    [c.198]    [c.200]    [c.21]    [c.72]    [c.141]    [c.184]    [c.557]   
Смотреть главы в:

Основы физической органической химии Изд.2 -> Ионные пары с водородной связью

Основы физической органической химии Скорости, равновесия и механизмы реакций -> Ионные пары с водородной связью




ПОИСК





Смотрите так же термины и статьи:

Водородные ионы

Водородные связи

Ион ионы связи

Ионная пара

Ионная связь

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте