Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение и межмолекулярное взаимодействие

    В процессе деформации полимера (образованного в пачки, надмолекулярные структуры или глобулярного строения) межмолекулярное взаимодействие может привести к изменению свойств самих макромолекулярных цепей и повлиять на возможность преодоления потенциальных барьеров внутреннего вращения в молекулах. Это обусловлено тем, что возможность преодоления потенциальных барьеров определяется не только внутримолекулярными силами, но и взаимодействием с атомными группами соседних молекул, а это взаимодействие может изменяться при перегруппировках звеньев цепных молекул самих макромолекулярных цепей в процессе деформации. Ограничение свободы движения макромолекул из-за необходимости преодоления потенциальных барьеров в процессе деформации обусловливает сильную зависимость времени релаксации от параметров состояния полимера. [c.62]


    Показатели ККМ и 0ГБ связаны между собой соотношением 0ГБ = 7/ККМ. Объемные и поверхностные свойства ПАВ определяются их химическим строением, а также полярностью и поляризуемостью молекул. Важное значение, кроме того, имеют межмолекулярные взаимодействия. По этим показателям и устанавливают, относится ли то или иное соединение к ПАВ, а также определяют степень его активности на границе раздела фаз. [c.199]

    К цепным высокополимерам относятся также ряд пластмасс, волокнообразующие материалы и другие, однако только эластомеры обладают высокоэластическими свойствами в широкой области температур, важных для практического использования материалов. Эта особенность поведения эластомеров связана с тем, что помимо цепного строения необходимым условием высоко-эластичности является достаточная внутренняя подвижность системы, которая обеспечивается отсутствием значительной кристалличности и сравнительно слабым межмолекулярным взаимодействием цепей. [c.18]

    Отличительной особенностью методов второй группы является попытка установить связь степени неидеальности свойств компонентов смеси с каким-нибудь одним свойством или одним видом межмолекулярного взаимодействия. Такой подход дает полезные результаты в тех случаях, если компоненты смеси сильно различаются по химическому строению и свойствам. В более сложных случаях необходимо учитывать различные составляющие межмолекулярного взаимодействия. [c.286]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучением строения атома. К началу двадцатых годов были разработаны основы электронной теории химической связи (Льюис, Коссель, Борн). Квантово-механическая теория ковалентной связи развита Гейтлером и Лондоном (1927). Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. [c.19]

    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]


    Основываясь на самых общих представлениях о строении вещества, можно считать, что плотность жидкостей при данной температуре определяется их качественным и количественным составом, молекулярной структурой и межмолекулярными взаимодействиями, зависящими от структуры молекулы. Если попытаться вскрыть влияние некоторых из этих факторов на величину плотности сераорганических соединений, то можно отметить следующие закономерности. [c.153]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]

    С проявлением межмолекулярных сил приходится сталкиваться как при рассмотрении поведения нефтяных газов, так и при изучении процессов взаимодействия молекул в жидких нефтяных средах, а также при исследовании процессов адсорбции на поверхности нефтяного углерода и т. д. В основу теории строения ССЕ положена концепция убывания потенциала межмолекулярных взаимодействуй по мере удаления от центра ССЕ и приближения к ее периферии. Поэтому совершенно необходимо краткое изложение современных представлений о молекулярных силах, действующих между молекулами нефтяных компонентов. [c.14]

    Главное отличие мицеллы от сложной структурной единицы состоит, во-первых, в том, что в образовании последней могут принимать участие углеводороды любого строения, в том числе и дифильного, обладающие различным потенциалом межмолекулярного взаимодействия, и, во-вторых, в том, что размеры [c.71]

    Алканы находятся в нефти в молекулярном и ассоциированном состоянии. Энергия межмолекулярного взаимодействия составляет от десятых долей до нескольких килоджоулей на 1 моль, что намного меньше энергии разрыва связей. Алканы, независимо от строения цепи, неполярны. Объясняется это тем, что моменты всех связей С—Н взаимно компенсируются, независимо от симметричности углеводородного радикала. Взаимодействие двух неполярных молекул алканов происходит под действием дисперсионных сил, возникающих при взаимном обмене электронами (энергией) между молекулами. [c.187]

    Фазовые превращения. С изменением температуры алканы подвергаются фазовым превращениям. Это плавление, кристаллизация, переход из одной кристаллической модификации в другую, растворение одной фазы в другой, насыщение или пересыщение одной фазы другой. Они определяются характером сил межмолекулярного взаимодействия. Для длинноцепочечных и слабо разветвленных алканов это аддитивные дисперсионные силы, направленные перпендикулярно оси цепи нормального строения, что обусловливает возможность сближения молекул. [c.190]

    Природа межмолекулярных взаимодействий в асфальтенах. Вопрос о природе межмолекулярных сил, способствующих образованию ассоциатов асфальтенов в растворах, а также формирующих их надмолекулярную структуру, являлся предметом внимания многих авторов и объяснялся с позиций преимущественно ароматического строения асфальтеновой пластины [228, 229, 281]. [c.284]

    Коллоидное или дисперсное строение нефтяных систем обнаруживается на различных стадиях их добычи, транспорта, переработки и применения [9]. Существенное различие в интенсивностях межмолекулярных взаимодействий компонентов нефтяных систем является фактором, предрасполагающим к сложной внутренней организации систем. Кроме того, в ходе технологических операций в нефтяных системах создаются условия [c.29]

    Химическое строение звеньев макромолекулярных цепей влияет на величину сил межмолекулярного взаимодействия. Полимеры, принадлежащие к группе алифатических углеводородов, не имеют полярных групп, поэтому в них связь между отдельными макромолекулами является только результатом действия дисперсионных сил. Дисперсионные силы межмолекулярного притяжения возникают вследствие поляризации молекул под влиянием непрерывного изменения взаимного положения электронов и ядер в каждом атоме, входящем в состав макромолекулы. Величина дисперсионных сил сравнительно мало зависит от температуры, но резко возрастает с уменьшением расстояния между макромолекулами. Силу межмолекулярного взаимодействия характеризуют величиной энергии когезии. Энергией когезии называют энергию, которую необходимо затратить для удаления молекулы из твердого или жидкого тела. Величина энергии когезии приблизительно равна теплоте испарения при постоянном объеме. Для полимеров аморфной и неполярной структуры величина молярной энергии когезии, отнесенной к отрезку [c.27]


    Вязкость растворов полимеров. Хотя растворы полимеров представляют собой молекулярно-дисперсные системы и этим вполне соответствуют условиям истинного растворения, для них характерна исключительно высокая вязкость. Столь высокая вязкость растворов затрудняет их детальное изучение, определение теплот растворения и набухания и величины молекулярного веса полимера. Даже при большом разбавлении (0,25—0,5%) вязкость раствора полимера в 15— 5 раз превосходит вязкость растворителя. Высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Размеры макромолекул в сотни и тысячи раз превосходят размеры молекул растворителя и обладают значительно меньшей подвижностью. Поэтому макромолекулы оказывают сильное сопротивление движению жидкости (растворителя). Сопротивление движению жидкости возрастает с увеличением длины макромолекулы и степени ее вытянутости. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора. Вязкость увеличивается и с возрастанием сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. [c.68]

    Синергизм возникает вследствие межмолекулярного взаимодействия соединений различного строения. Образующееся комплексное соединение [c.27]

    Нефтяные системы характеризуются сложным химическим составом и агрегатным состоянием отдельных компонентов, строением, свойствами и размерами частиц структурных образований, уровнем межмолекулярного взаимодействия в системе и имеют много различий с типичными коллоидными системами. Несмотря на это многие нефтяные и коллоидные системы объединяет одно общее свойство, заключающееся в том, что для них характерны высокоразвитые поверхности раздела фаз и все связанные с этим особенности их поведения в различных условиях существования. Изучение свойств таких систем и основных закономерностей, которым они подчиняются, является предметом коллоидной химии. [c.33]

    Нефтяные масла рассматриваются в виде дисперсных систем. При этом установлено, что в зависимости от способа получения и соответственно вязкости масел, дистиллятных, остаточных, компаундированных в них образуются структурные элементы различного строения [ 10]. Наличием межмолекулярных взаимодействий между компонентами смесей парафино-нафтеновых и тяжелых ароматических углеводородов объясняется неподчинением правилу аддитивности таких их свойств, как диэлектрическая проницаемость и экстинкция. В некоторых работах [И] показано, что бензольное кольцо является специфическим центром межмолекулярных взаимодействий за счет чего ароматические углеводороды в растворах образуют ассоциаты, состав и устойчивость которых зависит от химического строения взаимодействующих молекул. В маслах и топливах обнаружены явления самоассоциации ароматических углеводородов и ассоциации их с присадками [ 12]. [c.35]

    Совершенно другие процессы будут проходить при повышении температуры до уровня, когда в смеси углеводородов будут протекать химические реакции уплотнения углеводородов. При пониженных температурах в изменениях свойств и состава смеси углеводородов основную роль играют слабые межмолекулярные взаимодействия. При повышенных температурах слабые межмолекулярные взаимодействия играют важную роль в создании благоприятной ситуации для химического превращения веществ. При этом слабые межмолекулярные взаимодействия способствуют ориентации молекул друг относительно друга, снижают или повышают степень сольватации, определяют полиэдрическое строение флуктуаций молекул и т.п. [c.62]

    Рассмотрение нефтей и нефтепродуктов в виде растворов высоко молекулярных соединений в низкомолекулярных углеводородах в сочетании с коллоидно-химическими представлениями о строении нефтяных систем, а также учет возможности проявления в них слабых межмолекулярных взаимодействий, позволяют объяснить некоторые аномалии в поведении нефтяных растворов, а также предложить варианты оптимизации физико-химических свойств нефтяных сырьевых композиций. [c.123]

    Шахпаронов М.И. Введение в современную теорию растворов. Межмолекулярные взаимодействия. Строение. Простые жидкости. - М. Высшая школа, 1976. - 296 с. [c.167]

    Волокна шерсти имеют чешуйчатое строение, по химическому составу они представляют собой белки амфотерной природы. Основная составная их часть — кератины. Поперечные связи между молекулярными цепями — дисульфидные. Прочность волокон обусловлена сильным межмолекулярным взаимодействием и наличием поперечных дисульфидных связей. Обычно в качестве наполнителей при- [c.173]

    Из сказанного выше вытекает, что кристаллическое состояние является важным и интересным для изучения, но все-таки одним из частных состояний твердого вещества. Не менее важно и интересно не периодическое, но регулярное состояние вещества. В подобном состоянии находятся высокомолекулярные, в частности, белковые вещества. При таком взгляде на твердое вещество кристаллическая решетка перестает быть основой для его изучения. И все наше внимание сосредоточивается на остове твердого вещества, тем более, что, как отмечалось выше, в отличие от абстрактной кристаллической решетки остов — реальный объект — непрерывная цепь, сеть или каркас, построенные из атомов, соединенных атомными связями. Остов может быть выделен в свободном состоянии, если в него входит достаточное количество вещества, равное, как, например, показывает опыт выделения кремнекислородных и углеродных остовов, по крайней мере 40% массы исходного твердого соединения. Остов — это носитель дальнего порядка, задаваемого межатомным взаимодействием. Отсюда следует, что изучение химического строения, конструирование и сборка атомных моделей вещества — старые надежные методы химического исследования — являются главными методами изучения твердого вещества. Вместе с тем настало время для конструирования и химической сборки твердых веществ и притом не только сравнительно простых, но и самых сложных веществ, в том числе различных материалов. При этом, конечно, следует руководствоваться не только химическими соображениями. Необходимо принимать также в расчет выводы теории устойчивости и прочности материала. Эта теория целиком основывается на учете межатомного и межмолекулярного взаимодействия и химического строения. Например, жесткость материала характеризуется модулем Юнга Е. При этом исходят из того, что, нагружая твердое вещество, мы действуем непосредственно на его межатомные связи. Отсюда ясно, что различие величины Е для разных веществ обусловлено различием жесткости самих химических связей. Модуль Юнга равен для алюминия всего 0,8-10 кГ/мм , для сапфира—4-10 а для алмаза 12-Ю кГ/мм . Именно исключительная прочность и жесткость связей С — С в алмазе делает его самым твердым и жестким из твердых веществ. [c.243]

    Асфальтены и смолы. Это наиболее высокомолекулярные компоненты нефтяных остатков, создающие сложные технологические проблемы при осуществлении каталитического гидрооблагораживання остатков и ряда других процессов. В связи с этим они длительное время и, особенно, в последние годы, подвергаются глубокому изучению. Одним из главных предметов изучения стала проблема их структурного строения и установления характера межмолекулярного взаимодействия между ними. Существующие достижения в этом вопросе будут рассмотрены ниже. Здесь же остановимся на основных отличительных признаках этих классов соединений. [c.18]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    Наибольшей адсорбируемостью на активированном угле обладают парафиновые углеводороды нормального строения, которые характеризуются неравномерным распределением сил межмолекулярного взаимодействия. Наибольшее значение имеют силы, направленные перпендикулярно оси молекул нормальных парафинов. Такой характер распределения сил взаимодействия, а также значительные дисперсионные молекулярные силы в направлении, перпендикулярном оси углеводородной цепи, обусловливают ряд явлений, свойственных углеводородам с прямыми цепями способность ориентироваться параллельно Друг другу с образованием жидких кристаллов и совместная кристаллизация углеводородов разных гомологических рядов. Высказана [4, 5] гипотеза, согласно которой наибольшая адсор бируемость нормальных парафиновых углеводородов на угле обусловлена их взаимодействием с поверхностью угля под влиянием тех же дисперсионных сил, направленных перпендикулярно к оси углеводородной цепи. [c.261]

    Без знания строения атомов и молекул, природы химической связи и межмолекулярного взаимодействия сделать это невозможно. Однако эти сведения лишь необходимы, но не достаточны. Ведь свойства веществ познаются прежде всего во взаимодействии с другими веществами. Поэтому, приступая к изучению химии, нужно знать общие закономерности протекания химических реакций и сопровождающих их процессон. [c.3]

    Содер>кание дисциплины Задача flannofi дисциплины - освоение студентами теоретических основ химии и химии элементов и их соединение . В связи с этим программа состоит из двух разделов. Первы содержит основы теории, без которых невозможно понимание свойств и превращений- неорганических веществ современные представления о природе химической связи, строении ве-вещства и межмолекулярном взаимодействии общие закономерности протекания химических процессов изгалаются с привлечением химической термодинамики и кинетики. Второй раздел поввящен систематическому обзору свойств химических элементов и их соединений и включает общую характеристику элементов, способы получения и свойства элементарных веществ, а также некото Я1х соединений, применяемых в различных отраслях народного хозяйства, особенно в нефтеперерабатывающей промышленности. [c.178]

    Экспериментальные методы изучения вязкостных свойств систем весьма разнообразны [24, 36]. Как отмечалось выше, межмолекулярные взаимодействия в сложных углеводородных системах, к которым относятся нефтяные, представляют собой слабые ван-дер-ваальсовы взаимодействия. Нередко это приводит к развитию молекулярной ассоциации. Наиболее характерны в этом отношении нефтяные масла и индивидуальные масляные углеводороды. Они обладают аномально высокой зависимостью вязкости от температуры. Оказывается, что экспериментальные значения вязкости выше расчетных примерно на порядок [24]. Это означает, что углеводородные жидкости сильно ассоциированы. Вязкость их определяется двумя составляющими молекулярной и ассоциативной. И тот, и другой компонент зависят от химического строения молекул жидкости и энергий их межмолекулярного взаимодействия. Сопоставление молекулярной и ассоциативной динамической вязкости для некоторых углеводородов показано в табл. 11 [24, 94]. [c.52]

    Дисперсное строение нефтяных систем обнаруживается на различных стадиях и.х добычи, транспорта, переработки и применения. Иерархия компонентов нефтяных систем по интенсивности межмолекулярных взаимодействий является фактором, пре Т-располагающим к сложной внутренней организации систем. Кроме того, в ходе технологических операций в нефтяных системах создаются условия для развития фазовых переходов, которые протекают через стадию образования дисперсных частиц. При этом возможно формирование полигетерофазных НДС. В таких случаях несомненно влияние дисперсной структуры нефтяных систем на иротекание в них теплообменных и гидродинамических процессов, на их физико-химические макросвойства. [c.63]

    Физико-химические свойства нефтей и их фракций являются функцией их химического состава и структуры отдельных компонентов, а также их сложного внутреннего строения, обусловленного силами межмолекулярного взаимодействия. Поскольку нефть и ее фракции состоят из большого числа разнообразных по химической природе веществ, различающихся количественно и качественно, свойства нефтепродуктов представляют собой усредненные характеристики, и показатели их непостоянны как для различных и фрякпиы таи- и для одинзковых фрзкций ИЗ разных неф- [c.17]

    Согласно данным ряда авторов [134—136], масляные фракции являются дисперсными системами аренов в циклоалкановых дисперсионных средах, причем в маслах различного уровня вязкости (дистиллятных, остаточных, компаундированных) образуются а.с-социаты различного строения. Неподчинение аддитивности таких физико-химических смесей алканов, циклоалканов и тяжелых аренов, как диэлектрическая проницаемость и экстинкция, обусловлено проявлением межмолекулярного взаимодействия между компонентами смеси. В работе [135] показано, что арены в растворах образуют ассоциаты, состав и устойчивость которых зависят от химического строения взаимодействующих молекул, а бензольное кольцо является специфическим центром межмолекулярного взаи-молействия. [c.34]

    Полимерные цепи (вне зависимости от регулярности их строения) под влиянием.теплового движения и межмолекулярного взаимодействия ассоциируются во флуктуационные, более или менее упорядоченные пачки. Пачки под влиянием теплового движения то воссоздаются, то распадаются. Однако вследствие больших размеров макромолекул время жизни пачек может быть весьма большим. Если продолжительность жизни роя молекул низкомолекулярной жидкости составляет 10" с и менее, то в случае твердого полимера она возрастает до многих лет. Чем менее гибим макромолекулы, тем больше время жизни пачек. [c.153]

    Не только строение отдельных групп, входящих в состав макромолекул, их взаимодействие (виутримолекулярное взаимодействие) и взаимодействие отдельных макромолекул между собой (межмолекулярное взаимодействие), но и строение и форма макромолекул определяют физико-механические свойства материала, обусловливающие области его применения и методы пе-реработки. [c.20]

    Свойства разветвленных полимеров зависят от длины боковых ответвлений, частоты их расположения в цепи и от химического строения звеньев, составляющих основные и боковые цепи. Частое расположение боковых ответвлений препятствует сближению макромолекул друг с другом. Вследствие этого уменьшаются силы межмолекулярного взаимодействия, что приводит к увеличени1о [c.35]

    Карбохромы относятся к неспещ1фическим сорбентам с гладкой, однородной и химически инертной поверхностью. Межмолекулярные взаимодействия адсорбат - карбохром сильно зависят от геомефического строения адсорбирующихся молекул. Взаимодействие тем сильнее, чем ближе к поверхности сорбента последние могут расположиться. Т ис, молекулы с разветвленной углеродной цепью удерживаются слабее, чем изомеры линейного строения. Высокие коэффициенты конценфирования, позволяющие определять органические соединения на уровне ПДК в воде, достигнуты и для циклических углеводородов [59 . [c.187]

    Исходная дисперсность НДС обусловлена склонностью к повышенным межмолекулярным взаимодействиям нефтяных компонентов, в первую очередь, полициклических аренов и гетероорганических соединений, особенно САВ. Достоверно установлено, что к НДС относятся практически все виды природного углеводородного сырья, а также разные типы нефтепродуктов — от моторных топлив до коксов. Следует отметить и изменения самих НДС как объектов исследований из-за исчерпания относительно легко доступных нефтяных и газовых запасов больше внимания уделяется добыче и переработке тяжелых высоковязких нефтей и природных битумов, составляющих большую часть мировых запасов углеводородного сырья. В отличие от обычных нефтей и газоконденсатов, представляющих собой мало-и среднеконцентрированные дисперсные системы, высоковязкие нефти и природные битумы являются высококонцентрированными дисперсными системами. Существенные особенности имеют НДС деструктивного техногенного происхождения (тяжелые продукты деструктивной переработки нефти и разновидности нефтяного углерода), они отличаются от НДС нативного происхождения не только по способам получения, но и по компонентному составу, строению и свойствам [3]. [c.173]

    Электронный парамагнитный резонанс и другие методы магнитохимии приобретают в последние годы широкое распространение для изучения молекулярного строения и изменения конфигураций молекул нефтяных систем, определения структуры входящих в них соединений, оценки уровня межмолекулярных взаимодействий. Методом ЭПР-спектросконии установлено [126, 127, 128], что асфальтены являются концентратами парамагнитных молекул — стабильных свободных радикалов и комплексов парамагнитных металлов, Вследствие большой энергии взаимодействия друг с другом и с диамагнитными молекулами парамагнетики нефтей и остатков объединены в ассоциаты. Сверхтонкая структура спектров ЭПР свободных радикалов нефтей и остатков, впервые полученная авторами работ [126, 127], позволила установить новую химическую характеристику этих соединений, представляющую в виде асфальтенов осадок, получаемый вследствие отторжения парафиновыми растворителями при их взаимодействии с парамегнетиками нефтей и нефтепродуктов, В работе [129] установлено, что с увеличением глубины залегания [c.115]

    Решающее влияние на технологические процессы добычи, транспорта и переработки нефтяных дисперсных систем оказывают фазовые превращения, происходящие в различных реальных внешних условиях, Полиэкстремальные зависимости физико-химических свойств от внешних условий проявляются вследствие аналогичного изменения межмолекулярных взаимодействий между основными структурообразующими компонентами системы. Основной вклад в свойства углеводородных дисперсий вносят фазовые и полиморфные превращения высокомолекулярных соединений. Выявление и регулирование указанных превращений явл51ется важной прикладной задачей нефтяной отрасли. Особый интерес представляет изучение фазовых и полиморфных превращений в нефтяных дисперсных системах в присугствии поверхностно-активных веществ. Последние широко употребляются для регулирования процессов структурообразования в нефтяных дисперсных системах. В настоящее время проводятся интенсивные исследования влияния природы, концентрации и кристаллического строения дисперсной фазы на изменение межмолеку. ярного и контактного взаимодействия между элементами нефтяных дисперсных систем, взаимосвязи параметров фазовых и полиморфных переходов в этих системах, протекающих при изменении внешних условий их существования и различных воздействиях, с изменением физических и структурно-механических свойств рассматриваемых систем. [c.138]

    В эластомерах с основными цепями одинакового строения, но с различными заместителями диффузия и проницаемость газов зависят от межмолекулярного взаимодействия, которое характеризуется значениями энергии когезии. При введении в молекулы полярных заместителей (-СМ, -СООН, -КНг и др.) наблюдается уменьшение газопроницаемости, вызываемое увеличением межмолекулярното взаимодействия. Наличие поперечных связей уменьшает проницаемость, прежде всего за счет уменьшения коэффициента диффузии. Зависимость эта не линейная. [c.115]

    Как известно, из двух главных структурообразующих факторов (ненаправленные силы межмолекулярного взаимодействия, отличающиеся дальнодействием, и направленные короткодействующие межатомные связи) первый представляет собой кристаллообразующее начало, обусловливающее плотную укладку структурных единиц в симметричные периодические структуры, отвечающие минимуму свободной энергии второй ответствен за строение самих структурных единиц, а для твердых атомных соединений — и за порядок их соединения в структуре соответствующих твердых веществ, например полимеров. Подчеркнем, что речь должна идти именно о порядке сборки структурных единиц, что беспорядочное строение аморфных веществ — не фатальная необходимость, а лишь следствие того, что природа не позаботилась вложить во все процессы отвердевания механизмы, примиряющие конкуренцию различных структурообразующих факторов. Но мы знаем, что существуют и такие процессы, в которых действие различных структурообразующих факторов определенным образом направлено в сторону образования регулярных, хотя часто и непериодических структур. Это процессы биологического синтеза. Известно, что в таких процессах действует программирующее устройство — матрица, по структуре которой строятся сложнейшие полимеры, и притом, как правило, с совершенной воспроизводимостью. [c.158]


Смотреть страницы где упоминается термин Строение и межмолекулярное взаимодействие: [c.50]    [c.324]    [c.170]    [c.14]    [c.34]    [c.223]    [c.66]    [c.153]    [c.9]   
Смотреть главы в:

Современные проблемы химии растворов -> Строение и межмолекулярное взаимодействие




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные



© 2024 chem21.info Реклама на сайте