Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение некоторых катионов и определение

    V. РАСПРЕДЕЛИТЕЛЬНАЯ ХРОМАТОГРАФИЯ Разделение некоторых катионов на бумаге и определение величины их R  [c.125]

    Работа 30. Разделение некоторых катионов и определение Rj [c.173]

    Разделение и последовательное определение меди и никеля в растворе основано на различии напряжений разложения солей. Так, медь, стандартный потенциал которой (в паре Си +/Си) равен +0,34 в, восстанавливается на катоде значительно легче, чем никель, стандартный потенциал которого (в паре N +/N1) отрицателен ( ° = —0,23 в). При напряжении 2 в медь полностью осаждается на катоде даже из сильнокислых растворов, осаждение никеля в этих условиях не происходит. Для полного выделения никеля из раствора, оставшегося после выделения меди, необходимо не только повысить напряжение до 3—4 в, но и сильно понизить концентрацию Н+-ионов в растворе путем создания аммиачной среды. При этом Ы1 +-ионы превращаются в комплексные катионы [Ы1(ЫНз)4] +, остающиеся в растворе, а Ее +-ионы и некоторые другие катионы (если они присутствуют в растворе), не способные к образованию аммиачных комплексов, осаждаются в виде соответствующих гидроокисей и могут быть отделены фильтрованием. [c.444]


    Групповые реагенты выбирают из общих реактивов, поскольку необходимо, чтобы групповой реагент выделял относительно большое число ионов. В табл. 8.1 показано действие общих реактивов на некоторые катионы. Основной способ разделения — осаждение, т. е. деление на группы основано на различной растворимости осадков катионов в определенных средах. Оценим действие каждого из перечисленных выше групповых реагентов. [c.198]

    При проведении качественного и количественного анализов часто возникают трудности из-за того, что некоторые анионы мешают определению некоторых катионов, и наоборот. Подобная же ситуация возникает при определении многих неэлектролитов в присутствии электролитов, а также электролитов в присутствии неэлектролитов. Такие трудности могут быть устранены простой ионообменной операцией, обеспечивающей разделение раствора на две или более части. [c.19]

    В щелочной среде сероводородом осаждаются они все за исключением мышьяка, олова и сурьмы в нейтральной или слабокислой среде наряду с группой сероводорода могут быть увлечены в осадок некоторые катионы 3-й группы, сульфиды которых малорастворимы в разбавленных кислотах (например ZnS). С другой стороны, в сильнокислой среде вместе с катионами 3-й группы могут казаться неосажденными сульфиды олова и кадмия. Таким образом, важнейшим условием для четкого разделения с помощью сероводорода изучаемой группы от 3-й является достаточно строго определенная кислотность среды. [c.109]

    В аналитической химии буферные растворы используют в весовом, объемном, экстракционном, инструментальном анализе, а также для разделения катионов и анионов, требующего соблюдения определенного pH. Например, катионы III аналитической группы отделяют от II и I групп при pH от 8—8,5. Если осаждать при рН<6, то некоторые катионы III группы полностью не выпадут в осадок, например Мп2+. При рН>9 гидроокись алюминия образует растворимые алюминаты, а при рН>11 гидроокись хрома образует растворимые хромиты. Отделение карбонатов бария, стронция и кальция от ионов Mg + в присутствии смеси хлорида аммония и гидроокиси аммония также представляет собой пример применения буферных растворов.  [c.32]

    В настоящее время существует и другой способ качественной оценки разделения элементов, который основан на измерении величины Rf для каждого исследуемого вещества в определенном растворителе. Идентификация элементов этим способом может быть осуществлена, если проводить хроматографирование и определение для стандартного и исследуемого растворов в одной камере на одинаковых полосках бумаги. После проявления обеих хроматограмм определяют величины Rf исследуемого и стандартного растворов. Сопоставляя эти величины, делают заключение о наличии в исследуемом растворе тех или иных катионов. В табл. 5 приведены значения величин Rf для некоторых катионов в различных растворителях. [c.89]


    В аналитической практике нередко возникает задача разделения катионов и анионов. Например, при определении некоторых катионов необходимо удалить анионы, а некоторые катионы, присутствующие в анализируемом образце, могут мешать определению анионов. Простым и эффективным методом отделения катионов от анионов является метод ионного обмена. [c.148]

    Разделение катионов. Наиболее простой способ, основанный на использовании различной степени поглощения отдельных ионов, не дает удовлетворительных результатов. Обычно вначале поглощают все присутствующие в растворе ионы, а затем подбирают такой раствор, который извлекает только некоторые ионы. Чаще всего при этом используют различные комплексообразователи. Так, например, при разделении редких земель используют различную устойчивость их лимоннокислых комплексов. Устойчивость этих комплексов зависит от кислотности раствора. Слой катионита, поглотивший ряд катионов, промывают раствором лимонной кислоты, доведенным до определенной кислотности. Таким образом удается перевести в раствор одни ионы, тогда как другие остаются в катионите. [c.74]

    Осаждение гидроокисей. Осаждение гидроокисей широко применяется и в качественном, и в количественном анализе для открытия, отделения и определения катионов. В некоторых случаях разделение катионов основано на амфотерном характере некоторых окислов металлов. Так, например, железо отделяют от ванадия, молибдена, алюминия и т. п. элементов, обрабатывая раствор избытком ш,елочи. В других случаях разделение элементов основано на различной растворимости гидроокисей. Так, при анализе многих руд, металлов, шлаков, известняков и т. п. материалов, для отделения алюминия и железа от марганца, магния, кальция и других элементов используют то обстоятельство, что гидроокиси большинства трехвалентных металлов значительно менее растворимы, чем гидроокиси многих двухвалентных металлов. Слабые основания, как, например, гидроокись аммония, пиридин (С Н Н) и др., количественно осаждают гидроокиси алюминия и железа, тогда как ионы кальция, магния и многих Других двухвалентных элементов остаются в растворе. [c.94]

    Воспроизводимость разделения в ионной аналитике при применении буферных систем очень хорошая. ОСО времен миграции лежат ниже 0.5%, воспроизводимость площади пика - важнейшая величина для количественных анализов - лучше 2.3%. Наряду с точностью для количественных расчетов важной величиной является их достоверность, которая подтверждается данными других методов. В качестве альтернативных методов измерения выступают атомно-абсорбционный анализ, ИОХ, а также ионный анализ с ионно-селективными электродами. Как показывают некоторые примеры, результаты, полученные различными методами анализа, в пределах известных допустимых отклонений совпадают. Определение щелочных и щелочноземельных катионов в байкальской воде показано на рис. 52. [c.61]

    Обычная чувствительность микрохимических реакций очень велика, порядка 0,001 мг и меньше казалось бы, можно обойтись очень небольшим количеством образца для получения четких реакций на каждый из присутствующих ионов. Но поскольку до настоящего времени известно мало специфических реакций, предварительное разделение катионов и выделение отдельных ионов неизбежны. Эти процессы всегда связаны с некоторыми потерями, что следует учитывать при определении необходимого для анализа количества вещества. [c.61]

    Цеолиты могут выполнять роль ионных сит, если диаметры их каналов слишком малы, чтобы катионы могли пройти через них, или если катионы достаточно велики, чтобы некоторое количество их, соответствующее числу обменных мест, могло удержаться во внутренних полостях цеолитов. В других случаях цеолит проявляет свойства полупроницаемой мембраны и для определенных пар ионов может быть достигнуто очень хорошее разделение. [c.68]

    Другие реагенты. В этом кратком обзоре мы совершенно не затронули работы по новым органическим реагентам, применяемым, например, в качестве осадителей для экстракционного разделения и определения элементов, в качестве экстрагентов или тяжелых органических катионов, ионитов и т. д. Все эти вопросы требуют особого рассмотрения. Успехи последних лет по синтезу и аналитическому применению органических реагентов для указанных целей несомненны. Особенно много уделяется внимания изучению реагентов для экстракции [52]. В ряде случаев реактив выполняет смешанные функции, являясь одновременно экстрагентом, реактивом для собственно определения и т. д. Например, можно отметить такие перспективные реагенты, как бензоилфенилгидроксиламин [112—118], антипирин и его аналоги [119], продукты конденсации антипирина с некоторыми альдегидами, например диантипирилметан [119—125], дифенилкарбазид [126—128] и др. [c.131]


    Адсорбционную хроматографию применяют в количественном анализе для отделения катионов, мешающих определению и особенно—для разделения органических веществ. В табл. 43 приведены растворители и адсорбенты для некоторых классов органических соединений. Пользуясь данными такой таблицы, можно выделить из анализируемого вещества нужные вещества. В некоторых случаях применяют колонки, состоящие из различных адсорбентов. [c.535]

    В настоящее время существует четыре больших класса ионоселективных индикаторных электродов стеклянные мембранные электроды для определения катионов многих элементов, жидкие ионообменные, твердые и гетерогенные мембранные электроды. Все эти электроды реагируют, как и стеклянный электрод для определения pH, на изменение активности частиц, имеющих одну и ту же степень окисления, но находящихся в двух различных фазах, разделенных мембраной (физическая форма мембран может быть различной). В отличие от этого платиновый индикаторный электрод реагирует на изменение соотношения активностей в одной фазе некоторых элементов, находящихся в двух различных степенях окисления (например, раствор, содержащий Ре2+ и Ре +), а серебряный индикаторный электрод отвечает на изменение активности иона серебра в растворе эти системы связаны с переносом электрона между элементами в двух различных степенях окисления. [c.379]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]

    Некоторые исследователи [47,48] независимо друг от друга пришли к выводу, что перегруппировка вызывается главным образом 1,3-перемещением. Этот вывод [47] был сделан на основании опытов по диазотированию с целью получения многократно меченного катиона (УИ) с последующим разделением спиртов нормального строения и определением их структур методом ЯМ1 -спектроскопии  [c.238]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    Предло>1л ены методы разделения катионов в тонком слое сорбента, пропитаниом осадителями, окислителями и восстановителями [38—401. электрохроматографическое разделение неорганических ионов в тоиколг слое сорбента [41], хроматографическое разделение и дробное определение некоторых редких элементов [42 . [c.130]

    При выборе соответствующей формы комплексных соединений с помощью ионообменников возможно провести также групповое отделение нескольких элементов. Кроме уже упомянутых хлорид-ных комплексов, устойчивость которых хорошо коррелирует с концентрацией хлористоводородной кислоты и которые подходят для селективного разделения, процессы ионного обмена могут контролироваться с помощью различных органических комплексообразующих реагентов (лимонная и винная кислоты, ЭДТА и т. д.). Сильноосновные анионообменные колонки, насыщенные комплексными анионами этого типа, пригодны для одновременного выделения различных групп катионов. Колонки с анионами, образующими осадок (хлориды, сульфиды, карбонаты и т. д.), также использовались для разделения некоторых групп катионов. Как следует из приведенных примеров, селективное элюирование пригодно для разделения отдельных ионов. В общем случае на определение примесей спектральными методами не оказывает влияние неполнота отделения мешающего элемента, которая возможна из-за недостаточно благоприятных условий взаимодействия раствора со смолой. Для большинства спектральных методик нет необходимости использовать ионный обмен для полного отделения ионов одного типа, т. е. селективную хроматографию при ионном обмене. Вполне достаточно воспроизводимо концентрировать определенную группу следов примесей или удалять основную часть мешающего элемента. [c.70]

    Таним же способом, т. е. без введения посторонних реагентов, были проанализированы некоторые кислоты и щелочи, применяемые в полупроводниковой технике [92]. Для анализа были использованы относительно концентрированные растворы, полученные разбавлением или растворением образцов в воде непосредственно в полярографической ячейке. Значения и пределы обнаружения (в пересчете на концентрацию в анализируемом препарате) приведены в табл. 6.5 и 6.6. Уксусная и фосфорная кислоты были разбавлены водой в соотношении 1 1 до концентраций 8,75 и 7,3 моль-Л , 32% хлороводородную кислоту разбавляли до концентрации 6 М, 65% азотную кислоту — даже до концентрации 1,5 Л1. В этом случае достигнутые нижние пределы определения слишком высоки. Гидроксид аммония можно анализировать без разбавления, гидроксид калия нужно было перевести в раствор с концентрацией 5 М. Из табл. 6.5 и 6.6 видно, что некоторые катионы при анализе нельзя различить, так как они восстанавливаются при слишком близких потенциалах. Для разделения взаимно мешающих элементов можно использовать экстракцию или маскирование. При анализе осо- [c.192]

    Известно, что многие аниониты сорбируют из нейтральных и слабокислых растворов некоторые катионы переходных металлов [Ч. В ряде промышленных систем в виде отходов производства образуются аминные комплексы переходных металлов, и сорбция последних в этом случае для целей концентрирования и разделения представляет серьезную проблему, имеющую пароднохозяйствеиное значение. Предварительные исследования показали, что аниониты на основе полиэтиленполиаминов при определенных условиях обладают сравнительно высокой емкостью по отпоше- [c.251]

    Способность некоторых ионитов сорбировать лишь ионы малых размеров использована для разделения ионов, несущих один и тот же заряд, по их размерам на основе метода молекулярных или ионитовых сит. Для фракционирования электролитов, в которых необходимо разделить по размерам катионы, используют сульфо-катиониты в водородной форме, содержащие определенное количество сшивающих групп. При прохождении раствора через колонку с таким катионитом происходит сорбция катионов малых размеров и вытеснение в раствор ионов водорода. Выбор катионита соответствующей пористости позволяет почти полностью исключить поглощение больших ионов. Нейтрализация раствора после колонки осуществляется па анионите. Аналогичным образом могут быть разделены по размерам и анионы. Полная деминерализация стрептомицина протекает по описанной схеме при ничтожных потерях антибиотика. Аналогичные методы позволяют разделить и демхшерализовать многие другие органические электролиты в том числе и белки [ ]. Метод ионитовых сит применим и для разделения некоторых минеральных ионов [c.161]

    Таким образом, у данного типа ионообменников наблюдается переход от анионного обмена в кислом растворе к катионному обмену в щелочном растворе. Подобного перехода не наблюдается, если М — элемент с низкой основностью, например кремний. Переход от одного типа обмена к другому происходит в определенном интервале значений pH, зависящем от основности иона металла. Отсутствие резкого перехода, отвечающего этому изменению (здесь уместно сравнение с изоэлектриче-ской точкой амфотерных ионов), и возможность в некоторых случаях одновременно и катионного и анионного обмена при определенном значении pH дают основание предполагать, что ионообменные группы неравноценны. Силикагель обладает только катионообменными свойствами [20] высокое электронное сродство у четырехвалентного иона кре.мния проявляется в форме очень слабой основности гидроксильных групп. Атомы водорода последних легко заменяются катионами даже в кислых растворах, особенно теми, которые легко координируются с кисло- родом. На рис. 24 представлено влияние pH раствора на величины коэффициентов распределения различных ионов при сорбции нх на силикагеле. Из этих данных следует, что указанные ионы можно разделить при определенных значениях pH раствора. Этот метод был использован [21] для разделения урана, плутония и трехвалентных металлов (продукты деления) из растворов, полученных при растворений облученрого урана кислоте. Значения коэффи- [c.119]

    Важное значение имеют методы, основанные на использовании серусодержащих органических реагентов. К их числу принадлежат рубеановодородная кислота и ее производные, ксантогенаты, диэтилдитиокарбаминаты и некоторые другие. Достоинство рубеановодородной кислоты состоит в высокой чувствительности реакции на кобальт — определение удается при содержании порядка сотых долей гамма-кобальта в 1 мл. С рубеановодородной кислотой малорастворимое соединение кобальта может быть удержано в растворе введением защитных коллоидов. Окращенные соединения образуют также катионы меди и никеля, тем не менее определение кобальта в присутствии этих катионов возможно, так как они поглощают свет в различных участках спектра. Аналогично можно определить кобальт в присутствии никеля и меди, действуя раствором диэтилдитиокарбамината натрия и экстрагируя образовавшиеся комплексы хлороформом оптическую плотность экстракта измеряют при различных длинах волн, что позволяет определить все три катиона без разделения. [c.134]

    Многие полимеры, способные давать клешневидные, соединения, содержат такие же группы, как и соответствующие им низкомолекулярные вещества (полимерные аналоги диметилглиоксима, трилонов, 8-оксихинолина, гексанитродифенила и т. д.). Некоторые из них могут быть использованы в ионообменных колонках (с. 582) как селективные иониты для концентрирования и разделения металлов [97, 98]. Для этого полимер должен содержать такие хелатофоры, которые избирательно связывают определенные катионы и потом отщепляют их в относительно мягких условиях, например при действии разбавленных кислот. Селективные иониты таят в себе неограниченные возможности для извлечения даже незначительных примесей металлов из сложныл смесей и растворов. В частности, применение подобных ионитов позволило разработать экономически выгодный метод извлечения урана из руд, содержащих всего 0,5% урана. [c.327]

    Поскольку мы делали все время довольно грубые до-пушения, следует считать, что совпадение в определении числа молей гидратной воды у иона водорода, полученное в трех различных методах (сорбция неэлектролитов, кинетика ионного обмена и набухание), вполне допустимое. Идея о разделении внутренней воды на свободную и гидратационную, вероятно, разумна, однако допущение постоянства количества молекул воды, входящей в гидратную оболочку фиксированных ионов и противоионов смолы, независимо от степени сшивки смолы, является почти наверняка грубым упрощением. Чем больше степень сшивки смолы и, следовательно, чем меньше набухший объем, тем меньше расстояние между подвижными и фиксированными ионами и тем сильнее взаимодействие между ними. Это взаимодействие стремится вытеснить молекулы воды из гидратной оболочки катиона и уменьшить степень его гидратации. Таким образом, в случае иона, находящегося в смоле с высокой степенью сшивки, определение количества молей воды, входящих в его гидратную оболочку, будет приводить -к более низким результатам, чем в случае того же иона, находящегося в смоле с малой степенью сшивки. В некотором отношении это подтверждается приведенными выше цифрами. Количества молей воды, входящих в гидратную оболочку иона водорода, найденные с помощью определения сорбции неэлектролитов или подсчитанные из скоростей ионного обмена, получены в обоих случаях в результате экстраполяции к бесконечно большой степени сшивки они поэтому представляют собой верхние пределы этой величины, равные 4 г-моль/г-ион и соответственно 5 г-моль1г-ион. Значения, полученные из определений набухшего объема, являются результатом [c.26]

    Опыт анализа большого числа образцов различных пластичных смазок на мыльных загустителях вышеизложенным методом позволяет заключить, что воспроизводимость параллельных разделений по выходам углеводородной и жирнокислотной части достаточно хорошая. Однако извлечение катионов (Ы, На, Са, Ва, К, А1) в виде хлоридов происходит не всегда полностью, в результате чего воспроизводимость этих определений неудовлетзорительна. С другой стороны, на некоторых партиях ионообменников получают завышение общего баланса разделения (избыток до 6% на исходный образец), что свидетельствует о вымывании в процессе разделения части, ионообменной смолы. [c.337]

    Отличительной чертой хроматографических методов является возможность их широкого применения. Хроматография может быть использована ДЛЯ разделения как больших, так и малых количеств элементов. Она может быть с одинаковым успехом применена к органическим и неорганическим веществам, для больших и малых молекул, для анионов и катионов. Кроме того, имеется возможность применять разнообразшле растворители и элюенты. В области-аналитической химии хроматография открывает большие возможности для разделения редкоземельных металлов, для отделения ниобия от тантала, гафния от циркония и т. д. Она может приобрести также большое значение для упрощения некоторых продолжительных методов анализа. Так, например, при определении пятиокиси фосфора в апатите сначала из раствора - Саз(Р04)а извлекают хроматографически ионы Са +, а затем титруют освобожденную фосфорную кислоту. Техника хроматографии разнообразна, но для аналитических [c.183]

    НОЛЯХ сжигают до окиси металла. Фактор пересчета оксихинолятов на металл очень мал, что повышает их значение для весовых определений. Оксин не является селективным реактивом, им можно определить в общем 31 элемент. Однако соответствующим выбором условий кислотности и, если было необходимо, прибавлением комплексообразующих веществ с течением времени было разработако большое число методов определения различных катионов при их совместном присутствии. Селективность оксина значительно повышается при добавлении этилендиаминтетрауксусной кислоты. Применение кдмплексона для маскирования различных катионов значительно расширило возможности применения оксина для определения и разделения разных металлов. В слабокислой среде из комплексонатов большинства катионов соответствующие элементы оксином не осаждаются. Исключение составляют только некоторые элементы побочных групп периодической системы, например шестивалентные молибден и вольфрам и пятивалентный ванадий, не образующие прочных комплексов. В табл. 16 приведены катионы, осаждаемые 8-оксихинолином. [c.110]

    В современном химическом анализе значительное место занимают методы, которые часто очень простым способом решают проблему разделения и определения компонентов в сложных смесях. Из этих методов наибольшее распространение имеют все виды хроматографических методов адсорбционная, распределительная, ионообменная хроматография, хроматография на бумаге и электрофорез на бумаге. Природа сил, которые действуют в отдельных хроматографических разделениях, различна, но общим для них является миграция анализируемых веществ в систему двух и более фаз. При определении некоторых веществ, близких по химическим свойствам, например ряда неорганических катионов, количественное разделение которых одной лишь хроматографической техникой часто затруднительно, выгодно объединить два хроматографических способа или использовать в хроматографии еще некоторые характерные свойства отделяемых веществ. При определении катионов, нанример, выгодно сначала получить их комплексные соединения с различными комплексообразующими реагентами, а эти комплексы потом уже можно хроматографически разделить. [c.245]


Смотреть страницы где упоминается термин Разделение некоторых катионов и определение: [c.181]    [c.531]    [c.531]    [c.312]    [c.133]    [c.551]   
Смотреть главы в:

Хроматография неорганических веществ -> Разделение некоторых катионов и определение




ПОИСК





Смотрите так же термины и статьи:

Катион, определение

Разделение некоторых катионов на бумаге и определение величины

Разделение определение



© 2025 chem21.info Реклама на сайте