Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крекинг катализаторы, алюминий

    Бензины каталитического крекинга (катализатор хлористый алюминий) характеризуются умеренно высокими октановыми числами, отсутствием олефинов и высокой отзывчивостью на добавку тетраэтилсвинца. У двух газойлей, как показано в табл. П-22, жидкие и газообразные продукты в достаточной степени подобны. Точно так же всегда примерно похожи конечные продукты каталитического крекинга над хлористым алюминием нормальных гептана, нонана и гексадекана [620]. [c.139]


    Трехкомпонентные катализаторы состоят из трех окислов, из которых два являются окислами металлов (магний, алюминий) и один — окислом неметалла (кремний), В процессе каталитического крекинга катализатор подвергается действию сырья и присутствующих в нем ядов, продуктов реакции, водяного пара, воздуха и- [c.91]

    Катализаторы крекинга хлористый алюминий, расплавленные металлы, сплавы и соли активный уголь [c.110]

    В качестве катализатора других процессов разложения — дезалкилирования, крекинга— окись алюминия самостоятельно почти не применяется из-за невысокой активности [768]. Иногда используется в этих процессах АЬОз, промотированная хлором [800, 801], но главным образом применяется окись алюминия в составе сложных катализаторов [770—772, 797, 798, 802]. [c.120]

    Катализатор крекинга Окись алюминия [c.66]

    Кроме термического (под влиянием высокой температуры), часто применяется каталитический крекинг. Катализаторами служат хлористый алюминий (Н. Д. Зелинский) и гидросиликат алюминия. В процессе крекинга образуется много газообразных углеводородов, которые являются в настоящее время важным сырьем для промышленности органического синтеза. Процессы, протекающие при крекинге углеводородов, до сих пор мало еще изучены. Надо полагать, что при высоких температурах идет образование свободных алифатических радикалов, которые соединяются между собой и приводят к образованию новых углеводородов  [c.61]

    Взаимодействие тетрагидрофурилового спирта с аммиаком в присутствии различных катализаторов (алюмосиликатного катализатора очистки, алюмосиликатного катализатора крекинга, окиси алюминия и окиси хрома на окиси алюминия) приводит в зависимости от температурных условий к различным продуктам реакции при температурах, не превышающих 400°, получается смесь пиперидина с пиридином при температурах, превышающих 400°, — пиридин. [c.232]

    Термическое дегидрирование высших парафиновых углеводородов, как пропан или бутаны, с образованием олефипов, имеющих равное с исходным углеводородом число атомов С, или вообще невозможно или протекает с очень малыми выходами, так как сопровождается обычно крекингом. Однако возможно дегидрирование каталитическим путем — пропусканием сырья над смешанным катализатором (окись хрома — окись алюминия) при температуре около 500°. [c.35]


    Кох и Рихтер подробно и тщательно исследовали изомеризацию гексана [13]. Они смогли провести при комнатной температуре соверщенно чистую изомеризацию, протекающую без всякого расщепления в присутствии катализатора — смеси хлористого алюминия и соляной кислоты с повышенным содержанием хлористого водорода (100% и больше от взятого углеводорода). Однако в случае гептана даже при столь мягких условиях изомеризацию уже нельзя было осуществить в сколько-нибудь заметной степени вследствие процессов крекинга [14]. [c.515]

    На рис. 96 показано точнее, чем в табл. 136, влияние добавок бензола на изомеризацию н-пентана с катализатором хлористый алюминий— хлористый водород. Кривые изображают течение изомеризации и степень крекинга, прослеживаемые соответственно по концентрациям изопентана в пентановой фракции и по образованию бутана. Чтобы отчетливее показать закономерности, на оси абсцисс нанесены 1 (у+ 1), где V — содержание бензола в пентане в % объемн. Отсюда видно, что оптимум изомеризации лежит при добавке 0,25—0,5% объемн. бензола (23]. [c.521]

    Еще в 1919 — 20 гг. акад. Зелинским Н.Д. была предложена и eя по осуществлению низкотемпературного каталитического крекинга (я 200 С) нефтяного сырья Нй хлориде алюминия. На основе этих работ была создана и испытана опытная установка по получению бензина. Однако в силу существенных недостатков хлорида алюминия как катализатора (сильная коррозия аппаратуры, большой расход катализатора вследствие образования комплексных соединений с углеводородами, периодичность процесса и др.) эта идея не нашла промышленного внедрения. [c.102]

    Крекинг-процесс предъявляет строгие требования к свойствам катализатора. Катализатор должен обеспечить не только требуемые выходы продуктов, но также и удовлетворительное качество их. Он должен противостоять действию высокой температуры при регенерации, а также обладать достаточной устойчивостью к истиранию как в процессе крекинга, так и при регенерации. Катализатор, кроме того, должен обладать определенным сочетанием химических и физических свойств. Эти требования ограничивают выбор материала, который может быть использован в качестве катализатора крекинга. Из большого числа исследованных катализаторов лишь немногие имеют требуемые свойства и, кроме того, недороги в производстве. С точки зрения сырья, используемого для приготовления катализаторов, последние делятся на два класса естественные и синтетические. В качестве естественных катализаторов могут быть использованы природные бентонитовые глины [11, 12] типа монтмориллонита и другие природные алюмосиликаты, такие как каолин и галлуазит. Синтетические катализаторы могут быть приготовлены из окиси кремния в комбинации с окисями алюминия, циркония или магния. Химия производства катализаторов обоих типов очень сложна и здесь обсуждаться не будет. Большинство катализаторов каталитического крекинга различаются по их активности и стабильности и при сравнимой активности обеспечивают лишь незначительные различия в распределении и качестве продуктов крекинга. В табл. И приводится сравнение действия катализаторов синтетического алюмосиликатного шарикового, двух типов природных глинистых и синтетического катализатора из окисей магния и кремния. [c.154]

    Серная кислота тем отличается от галоидных солей алюминия, что она не требует внесения извне инициатора цепи для проведения изомеризации. Инициирующий ион образуется при окислении части углеводорода самой кислотой. Она является более слабым катализатором в том отношении, что не способна вызывать изомеризацию углеводородов, не содержащих третичного атома водорода. Кроме того, она вызывает главным образом изомеризацию, связанную с миграцией метильных групп, не изменяя степени разветвленности углеродного скелета. С этим, несомненно, связано то явление, что, в противоположность галоидным солям алюминия как катализаторам серная кислота вызывает изомеризацию менее разветвленных высших парафинов вполне избирательно, поэтому нет необходимости добавки веществ, подавляющих реакцию крекинга. [c.39]

    Ожиженная бутан-бутеновая фракция, содержавшая 19,3 % изобутилена и 28,6% м-бутилена, полимеризовалась при 165° и давлении 45 кг/см в присутствии катализаторов крекинга на силикатной основе [67] при объемной часовой скорости жидкости от 7 до 8 с образованием от 36 до 52 % вес. полимера в расчете на взятый бутилен. Эти синтетические катализаторы имели состав окись кремния — окись алюминия, окись кремния — окись циркония, окись кремния — окись алюминия— окись циркония и окись кремния — окись алюминия — окись тория, в которых 100 молей окиси кремния были смешаны соответственно с И молями окиси алюминия, 50 окиси циркония, 2 окиси алюминия и 12 окиси циркония, 5 окиси алюминия и 0,5 окиси тория. [c.204]


    Положительные данные по активации отработанных катализаторов крекинга солями алюминия были распространены на природные алюмосиликаты Казахстана. Монтмориллонитовая глина месторождения Ащи-басты-тау (КазСССР, Талды-Курганская обл.) подвергалась активации сернокислым алюминием (20 и 40%-ным растворами) в течение 6 часов при нагревании. После-активации глина отмывалась от SO , формовалась, сушилась и прокаливалась при 500° С. [c.318]

    В различные периоды катализаторы приготовляли на самых разнообразных носителях. В патентной и журнальной литературе указывалось применение пористых носителей с мало удельной поверхностью, как пемзы, шамотньш щебень, диатомовая земля, или пористых носителей с большой удельной поверхностью, как. окись алюминия, окись магпия, двуокись кремния, активный уголь, активированные глины, алюмогель, стабилизированный кремнеземом, и синтетические крекинг-катализаторы. [c.390]

    Бромид алюминия является активным катализатором не только изомеризации, но и крекинга, причем чем выше молекулярная масса углеводорода, тем большая его доля подвергается крекингу. Бромид алюминия значительно лучше растворяется в углеводородах, чем хлсрид алюминия, и каталитические системы на основе А1Вгз являются гомогенными. Тем не менее катализаторы изомеризации чаще готовят на основе хлорида алюминия. Это объясняется его большей доступностью по сравнению с А1Вгз и тем, что катализаторы на основе А1С1з более селективны в отношении изомеризации. Что касается их активности, то, как показано ниже, ее можно существенно повысить при использовании промоторов. [c.79]

    Кислотпость катализаторов крекинга или веществ, обладающих значительной активностью в крекинге углеводородов (различных адсорбентов, получаемых из алюмосиликатных или из магниевосиликатных глин, из силикагеля, пропитанного окисью алюминия и пр.), может быть определена, по крайней мере качественно, при помощи индикаторов. Последними исследованиями [35, 37, 38] окончательно установлено, что поверхность синтетических алюмосиликатных крекинг-катализаторов и активированных глин обладает центрами высокой кислотности. Существенно, что упомянутые авторы проводили измерение кислотности в безводной среде, благодаря чему отпало всякое сомнение в правильности интерпретации кислотности как свойства, присущего поверхности твердого тела. Милликен, Миллс и Облед [39] подвергли критике утверждение о том, что кислотность можно измерить при помощи титрования растворами оснований [18, 40]. Их возражение состоит в том, что свойство, измеряемое при титровании, является не кислотностью, а способностью реагировать с основанием в условиях опыта. Подобным образом из.меренная кислотность мало или совсем не имеет отношения к количеству кислоты, действующей в каталитических реакциях. Подобную критику надо считать обоснованной только в тех случаях, когда при.мененный растворитель, налример вода, может содействовать образованию кислоты путем сольволиза ангидрида или вещества с другой структурой, способного превращаться в кислоту при взаимодействии с растворителем. Безусловно, работа Уоллинга, применявшего полностью неполярный растворитель (изооктан), с этой точки зрения не может быть подвергнута критике. Нет также оснований предполагать, что применение растворителя, подобного бензолу (Темеле, Вейль-Малерб), приведет к тому, что вещество окажется способным реагировать с основанием. Даже если бы слегка основные свойства бензола могли бы уменьшить способность твердого тела реагировать с другим основанием, то это не будет и.меть значения при таких сильных основаниях, как н-бутил-амин. [c.20]

    В дополнение к сказанному Милликен, Миле и Облед предложили новую, однако чисто гипотетическую, концепцию природы и происхождения кислотных центров крекинг-катализаторов. Они высказали предположение, что при температуре крекинга фактически вся окись алюминия катализатора имеет структуру с координационным числом 6, иначе говоря, что структура кислоты Льюиса имеется лишь в потенциальном виде. Ионы алюминия, наиболее близкие к тетраэдрическому иону кремния, находятся в напряженном состоянии и испытывают индуцированное координационное смещение , т. е. вынуждены приобрести тетраэдрическую структуру (координационное число 4) при приближении молекулы даже со слабыми основными свойствами, например молекулы парафинового углеводорода. Другими словами, кислотные центры катализатора в действительности создаются только в момент приближения основания. Доля поверхности катализатора, ставшей кислотной, зависит от количества ионов кислорода на поверхности, соединенных одновременно с кремнием и с алюминием, то есть от степени дисперсности окиси алюминия в окиси кремния, от содержания гидроксила в окиси алюминия и от поляризующей способности основания, приближающегося к потенциальному кислотному центру. Слабо основные молекулы (слабые основания по Льюису — например парафины), хотя и обладают лишь слабой спосо бностью поляризовать другие молекулы, однако, по мнению Милликеиа и др., способны изменить координационное число ионов алюминия, наиболее близко расположенных к тетраэдрическим ионам кремния. Более сильные основания, например хинолин, могут индуцировать координационное смещение ионов алюминия, более удаленных от окиси кремния. Таким образом, кислотность катализатора становится функцией основности вещества, применяемого для измерения этой кислотности. [c.22]

    Хотя структуру карбониевых ионов часто изображают в виде свободных ионов, подобных приведенным выше, однако следует помнить также о присутствии катализатора (аниона). Изображенная выше структура представляет собой всего лишь сильно поляризованную часть каталитического комплекса. Если анионная часть комплекса имеет достаточный отрицательный заряд, можно считать, что в катионной части недостает двух электронов. Однако подобно тому, как для анионов катализатора существуют различные степени электроотрицательности, так и для катионов имеются соответственно разные степени электронной недостаточности иначе говоря, чем больше отрицательный заряд аниона, тем более свойства катиона будут сходны со свойствами свободного карбониевого иона. Так как крекинг-катализаторы являются очень сильными кислотами, то следует предположить, что в углеводородной части каталитического комплекса недостает именно пар электронов, но не электронов вообще, как это бывает в комплексах с хлористым алюминием или с фтористым бором. [c.27]

    В каталитическом крекинге применяются природные или синтетические катализаторы. В качестве природных катализаторов используется отбеливающая земля типа монтмориллонита, активированная соляной кислотой. Синтетический катализатор состоит примерно из 10% окиси алюминия и 90% кремневой кислоты. Каталитический крекинг имеет еще и другие-преимущества перед термическим. Процесс может идти или с неподвижным (процесс Гудри) [7] или с подвижным катализатором. В последнем способе-может применяться гранулированный или пылевидный катализатор [8]. Важнейшим способом каталитического крекинга является каталитический [c.40]

    Реакции, протекающие с участием комплексных соединений упомянутого выше характера, были несколько лет назад предметом подробных исследований Коха и Гильферта [26]. Последние нашли, что катализатор изомеризации (хлористый алюминий — хлористый водород) способен присоединять к ненасыщенным продуктам крекинга молекулярный водород, насыщая их таким образом. Это весьма благоприятно сказывается на стойкости самого катализатора, который в присутствии больших количеств олефинов становится неактивным. Комплекс хлористого алюминия и хлористого водорода может служить переносчиком водорода от молекулы парафина к олефину. При этом сам парафиновый углеводород становится все более ненасыщенным и, наконец, так крепко связывает хлористый алюминий, что последний становится неактивным. В присутствии водорода под давлением эта реакция тормозится или вовсе подавляется [27.  [c.522]

    В процессе Шелл для подавления крекинга работают под давлением водорода 4,5—5 ат, тогда как по второму методу к пентану добавляют для этой цели 0,5% объемн. бензола. Катализатор для изомеризации пентана состоит из 2%-ного раствора хлористого алюминия в трех-хлорнстой сурьме. [c.525]

    Катализатор. Хлористый алюминий и хлористый водород в чистом виде друг с другом не соединяются, однако совместно с известными углеводородами, из числа присутствующих в бензине, они образуют комплекс. Это активное нестойкое соединение, которое нельзя выделить, не следует смешивать также с жидким комплексом AI I3 — НС1 — углеводород, который получается только в ходе изомеризации вследствие побочных реакций (крекинг, диспропорционирование, перенос водорода, и полимеризация) и вряд ли уже обладает каталитическими свойствами. По своему виду активный комплекс похож на машинное масло, но имеет плотность около 1,5, и, кроме того, совсем не растворим в жидких углеводородах. [c.526]

    Аморфные алюмосиликаты являлись основными промыш — ле1[ными катализаторами крекинга до разработки цеолитсодержа— щих катализаторов. Синтезируются они при взаимодействии растворов, содержащих оксиды алюминия и кремния, например, жидкого стекла Ыа О 3 510 и сернокислого алюминия А12(50 ) . Химический состав аморфного алюмосиликата может быть выражен формулой Ыа 0(А1202 х 510 ), где х — число молей 510 на 1 моль АЬ О . Обычно в промышленных аморфных алюмосиликатах содер — жание оксида алюминия находится в пределах 6 — 30 % масс. [c.109]

    В качестве кислотного компонента, выполняющего крекирующую и изомеризующую функции, используют твердые кислоты, вхо, ящие в состав катализаторов крекинга цеолиты, алюмосиликаты и оксид алюминия. Для усиления кислотности в катализатор иногда вводят галоген. [c.227]

    Алюмосиликатные катализаторы крекинга представляют собой высокопористые тела с сильно развитой внутренней поверхностью (70—600 м 1г). Основными компонентами их являются окись алюминия AI2O3 (10—24%) и окись кремния SiOj (75—90%). Суммарное содержание этих компонентов составляет в естественных катализаторах 87—93%, а в синтетических 97,5—99,5%. К примесям относятся F gOg, aO, MgO и др. Общее содержание примесей в естественных катализаторах значительно больше, чем в синтетических. В табл. 7 приведены анализы ряда образцов катализаторов. [c.36]

    Эффективность работы регенератора оценивается рядом показателей. К ним относятся степень снижения содержания кокса на катализаторе, удельный расход воздуха, абсолютное количество сжигаемого в единицу времени кокса, процентное содержание гаслорода в продуктах сгорания. Кроме того, нередко подсчитывают скорость выжига кокса — число килограммов сожженного кокса в час на один килограмм находящегося в регенераторе катализатора. Так, например, если количество сожженного кокса составляет 4000 кг/час и в регенераторе находится 40 т катализатора, то скорость выжига кокса равна 4000 40000 = = 0,10 кг чае Численные значения этого показателя весьма различны, что объясняется многообразием условий эксплуатации регенераторов и использованием катализаторов разной регенери-руемости и активности. При проектировании регенератора одной из крекинг-установок флюид (построена до 1945 г.) скорость выжига была принята равной 0,03 кг час кг. В результате обследования работы двух Других промышленных установок было найдено, что этот показатель изменялся для одного регенератора от 0,11 до 0,14, а для другого от 0,14 до 0,18 [186, 187]. Эти обследования были предприняты в связи с переводом крекинг-установок на работу с катализаторами, содержащими повышенное количество алюминия. [c.161]

    Все промышленные катализаторы крекинга содерн< ат окиси кремния и алюминия. Были приготовлены гакже активные катализаторы, состоящие из окисей циркония и кремния и из окисей магния и кремния, но по различным причинам они не полумили промьпнлениого применения. Первоначально катализаторы приготовлялись исключительно из глин. Позднее стали применяться синтетические катализаторы, которые составляют сейчас основную массу используемых катализаторов (70%). Еще на первой стадии развития крекинг-процессов было найдено, что эффективность различных катализаторов может меняться в широких пределах. Были разработаны стандартные методы для эмпирического определения активности катализаторов. Такие методы не только дали вoзмoнiнo ть контролировать производство катализаторов, но также помогли разработке новых более совершенных катализаторов. Эти методы [1, 7, 15] основаны на определении активности катализатора в стандартных условиях, приближающихся к условиям работы промышленных установок. [c.152]

    Выходы толуола при дегидроциклизации -гептана достигают 60% за проход при следуюш,их условиях процесса давление атмосферное, температура 550° С, объемная скорость продукта (объем объом/час) от 0,03 до 0,5 с катализатором окись хрома на окиси алюминия (6 атомных % Сг). В результате конверсии при 500° С, атмосферном давлении и объемной скорости 3,6, были получены следуюш,ие продукты (в вес. %) 12,1% толуола, 11,5% гептенов, 74,0% непрореагировавшего и-гептана, 0,17% углерода и 1,7% сухого газа (97,1% водорода).Выход низкокипяш,их фракций, образовавшихся в результате крекинга, составил только 0,5 от сырья. [c.168]

    Фрей и Гуппке показали в своей работе, что в соответствующих уело-ВИЯХ возможно избирательное дегидрирование, причем чрезмерное увеличение температуры и времени контакта способствует реакциям крекинга. Как правило, в результате "таких реакций образуется больше водорода, чем олефинов, хотя для изобутана наблюдается образование значительного количества метана, в связи с чем выход водорода снижается. Катализаторы из геля окиси хрома, примененные в ранних работах Фрея и Гуппке, оказались недолговечными. Этими те авторами [17] был запатентован более стойкий хромовый катализатор с добавкой в качестве стабилизатора окиси алюминия. После этого в литературе появились сообщения о многочисленных модификациях алюмохромовых катализаторов окиси хрома и алюминия до настоящего времени продолжают входить в состав лучших катализаторов, применяющихся для дегидрирования бутана в бутены и бутадиен. [c.195]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    Изомеризация без подавления крекинга. При первом систематическом исследовании изомеризации н-пен-тана было найдено, что свежесубли-мированный хлористый алюминий не катализирует изомеризацию н-пентана даже при нагревании в колбе с обратным холодильником в течение нескольких дней [24]. Однако после добавления к реакционной смеси небольшого количества воды, галоидалкила или гидратированного хлористого алюминия н-пентан начинал реагировать. почти немедленно удалось идентифицировать бутаны и изопентан, причем последний являлся главным продуктом реакции. Образовались также вещества, кипящие выше и-пёнтана, но из-за малых количеств их они не могли быть охарактеризованы. По мере течения реакции катализатор покрывался слоем коричневой смолы, при гидролизе которой получается смесь сильно пепредельных галоидсодержащих продуктов. [c.22]

    Для изомеризации бутанов, алкилциклопентанов и алкилциклогекса-нов в присутствии галоидных солей алюминия как катализаторов необходимо применять инициаторы реакции. Изомеризация пентанов и более высокомолекулярных парафинов сопровождается реакцией диспропорционирования, которая может быть ингибитирована в присутствии водорода, бензола или других органических веществ, подавляющих реакцию крекинга. [c.52]

    В другом исследовании по изомеризации пентена-1 результаты значительно изменялись при различных способах приготовления окиси алюминия [541. Равновесная смесь при условиях, не вызывающих изменения структуры, и температуре 260° состояла из 14,8% пентена-1 и 85,2% пентена-2. Другая окись алюминия при этой же температуре и низкой объемной скорости жидкости дала смесь пентенов, содержащую 30,4% пентенов с разветвленной цепью. Применение в качестве катализаторов окиси алюминия, обработанной кислотой, при 360° дало 30% продуктов крекинга, отмечено образование до 28% полимеров. При обсуждении результатов авторы пишут Авторы считают, что механизм изомеризации и-олефинов при контакте с катализаторами аналогичен таковому алкили-ровапия, изомеризации и подобных им реакций — и что необходимые для этого ионы карбония легко образуются при условиях, существующих на поверхности различных образцов применявшейся окиси алюминия.. . В условиях, преобладавших на поверхности нейтральной или обработанной кислотой окиси алюминия, ионы карбония образуются путем присоединения протона по двойной связи олефина (см. гл. XXXI). [c.105]

    Каталитическая изомеризация олефинов в бензине, полученном из синтез-газа на основном железном катализаторе, увеличивает октановое число моторных топлив, определяемое по методу ASTM, приблизительно с 62 до 75,9 единиц [13, 4]. Октановое же число типичных бензинов, полученных термическим крекингом, улучшается только на 3—4 единицы в оптимальной температурной области от 375 до 425° и применении в качестве катализатора окиси алюминия, активированной обработкой хлористоводородной кислотой. Исключительно сильное улучшение октанового числа было отмечено для октена-1, который имеет октановое число 36,8 но сравнению с октановым числом 80 у смеси изомерных октенов [7]. [c.107]

    Каталитическое алкилирование изопентана о.пефиновыми углеводородами. Алкилирование изопентана изучено значительно менее, чем алкилирование изобутана, главным образом потому, что сам изопентан можно использовать р качестве компонента бензина. Эта реакция в присутствии такого катализатора, как хлористый алюминий, усложняется интенсивно идущим крекингом, что делает затруднительным получение первичных продуктов. [c.329]

    Тот факт, что меркаптаны легко реагируют с олефинами, иногда нри комнатной температуре, в растворе ледяной уксусной кислоты в присутствии следов серной кислоты, или при нагревании до 100—200°, был отмечен впервые еще в 1905 г. [32]. Реакция сероводорода с олефинами в присутствии фуллеровой земли в качестве катализатора впервые была показана в 1930 г. [30] на примере олефинов из крекинг-бензина. С тех нор появилось большое число патентов, описывающих образование меркаптанов в результате присоединения сероводорода к олефинам при особых условиях. Пропилен дает хорошие выходы пропилмеркантарха нри 200° в присутствии НИКОЛЯ на кизельгуре или активированного угля, пропитанного фосфорной кислотой аналогичным образом этилен дает хорошие выходы этилмеркаптана при 250° [12]. При значительно более высоких температурах (650—725°) получившиеся сначала меркаптаны разлагаются с образованием тиофена и других продуктов [25]. Бутадиен и сероводород иад окисью алюминия при 600° дают от 56 до 63% тиофена [17]. [c.344]


Смотреть страницы где упоминается термин Крекинг катализаторы, алюминий: [c.57]    [c.396]    [c.369]    [c.102]    [c.231]    [c.514]    [c.254]    [c.104]    [c.108]    [c.381]    [c.511]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.129 , c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы крекинга



© 2025 chem21.info Реклама на сайте