Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смеси, анализ разделение

    Уилер [42] разработал рациональный анализ разделения каменных углей на битумы и гуминовые вещества, особенно широко использующийся в Англии и США. Для этой цели угли обрабатывают в течение 200 ч кипящим пиридином при 115°С. Растворимая в пиридине часть, по мнению Уилера, представляет смесь Р- и у-фракций битумов. При последовательном действии селективных растворителей, таких, как хлороформ, петролейный эфир, этиловый спирт и ацетон, можно получить отдельно р-фракцию и У1"> 72-. Уз- и у4-фракции. Нерастворимые в пиридине вещества, на- [c.158]


    Из двух основных вариантов метода, элюентного (анализа вымыванием) и вытеснительного, следует отдать предпочтение последнему [4]. Неоспоримым преимуществом вытеснительного анализа является то, что по этому методу можно получить чистые разделенные компоненты, тогда как при элюентном методе анализа разделенные компоненты находятся в растворе проявителя. Основным недостатком вытеснительного адсорбционного метода является обязательное наличие, часто довольно большой, промежуточной фракции. Разделение является как бы неполным, так как часть компонентов выходит в виде промежуточной фракции, представляющей их смесь. Такое явление наблюдается и в том случае, когда для анализа берется достаточное или даже избыточное количество силикагеля. Возможности применения в целях повышения четкости разделения тонкодисперсного адсорбента и хроматографических колонок малого диаметра ограничены, так как при этом резко возрастает продолжительность анализа. Необходимо найти нути для максимального уменьшения величины промежуточной фракции и повышения эффективности вытеснительного адсорбционного метода, не связанные с увеличением его продолжительности. [c.347]

    Пигментная система фотосинтезирующих растений — сложная смесь, анализ которой представляет немало трудностей. Экстрагирование разрушает химические единицы, содержащие пигменты пластид в естественном состоянии, разбавляет их пигментами вакуолей и клеточных стенок, не имеющими отношения к фотосинтезу, и приводит их в соприкосновение с клеточными компонентами последние могут оказывать химическое действие на пигменты (например кислоты и энзимы). Разделение экстрагированной смеси на ее компоненты легко может повести к дальнейшей деструкции при соприкосновении с воздухом, растворителем или адсорбентом. Полное разделение затрудняется еще и тем, что смесь пигментов содержит изомеры или другие компоненты, мало отличающиеся друг от друга по растворимости и химическим свойствам. [c.401]

    Ход анализа. 5 г гомогената исследуемой ткани экстрагируют 150 мл гексана. Центрифугируют смесь до разделения фаз рас- [c.206]

    На рис. 97 представлена блок-схема всего прибора, использованного Филлипсом [8, г] для вытеснительного анализа при помощи газо-адсорбционной хроматографии или для газо-жидкостной хроматографии. Смесь, подлежащую разделению, вводят через трубки 1 или 2, предназначенные для забора пробы в адсорбционную колонку 3 (или в распределительную колонку 4 для газо-жидкостной хроматографии), используя для этого поток азота из баллона. При вытеснительном анализе (с применением адсорбционной колонки) поток азота [c.295]


    В проявительном анализе для промывания колонки после введения пробы применяется газ-носитель, который практически совсем не адсорбируется или обычно адсорбируется слабее компонентов введенной пробы. Можно, наоборот, для промывания колонки после введения пробы применить поток вещества, которое адсорбируется сильнее всех компонентов пробы. Это вещество, очевидно, будет вытеснять из колонки компоненты введенной пробы. У выхода из колонки появится сначала наименее адсорбируемый компонент, затем его смесь со следующим по адсорбируемости компонентом, затем этот следующий компонент и т. п. вплоть до появления чистого вытеснителя. Этот третий метод разделения называется вытеснительным анализом. Он уступает проявитель-ному методу в том отношении, что при проявительном анализе выходящие из колонки компоненты пробы, как правило, разделены зонами чистого газа-носителя. [c.545]

    Изотопное разбавление применяют в тех случаях, когда трудно вьще-лить все анализируемое вещество из сложной смеси. В этом методе небольшое количество компонента, на который проводится анализ, добавляют к анализируемой смеси. Причем добавляемое соединение содержит 100% (или по крайней мере известный процент) радиоактивного изотопа какого-либо элемента. Чтобы охарактеризовать радиоактивность образца, используется понятие удельной активности, которая измеряется числом радиоактивных распадов в единицу времени на грамм вещества. Добавляемое вещество тщательно перемешивают с анализируемой смесью. Затем из нее изолируют компонент, на который производится анализ, для чего используют какой-нибудь метод, дающий не количественное разделение, а хотя бы небольшое количество чрезвычайно чистого соединения. Уменьшение удельной активности добавленного соединения в результате разбавления нерадиоактивным исходным образцом того же соединения в смеси указывает на содержание последнего в исходной смеси. Например, если удельная активность вьщеленного образца совпадает с удельной активностью добавляемого соединения, то это означает, что данное соединение отсутствует в исходной смеси и регистрируется лишь то, что было введено в смесь. Если удельная активность выделенного образца равна половине удельной активности добавленного соединения, такое соединение присутст- [c.428]

    При анализе газоразделительных установок в качестве внешней среды можно условно принять исходную газовую смесь с параметрами То, Ро и составом ,о. В этом случае константа отсчета и эксергия исходной смеси принимается равной нулю, а эксергии продуктов разделения определяются как сумма эксергии энтальпии и эксергии экстракции продуктов разделения, отсчитанные от параметров, равновесных исходной газовой смеси. [c.238]

    Предварительный анализ свойств компонентов и смеси уже позволяет выделить группы альтернативных способов получения чистых компонентов, однако в большей степени полезен при выполнении анализа фазового и химического равновесия, так как сужает область экспериментальных и расчетных исследований. Например, если смесь относится к гомогенным без азеотропов с большой разностью температур кипения, но содержит компонент (или компоненты) с повышенной коррозионной способностью, то ее разделение может быть обеспечено обычной ректификацией (возможно, с применением аппаратов однократного испарения). Расчет этих процессов не представляет труда, однако, очевидно, особое внимание должно быть уделено подбору материала оборудования. С другой стороны, при наличии азеотропов число возможных способов разделения возрастает (азеотропно-экстрактивная ректификация, вакуумная ректификация или под давлением, мембраны, кристаллизация и т. д.). Ясно, что выбор оптимального способа разделения должен производиться на основе более полного расчетного и, возможно, экспериментального исследования. [c.97]

    Генерация схем производится с учетом выявленных ранее ограничений и оценок. Этапы, предшествующие непосредственно синтезу оптимальной схемы, позволяют сформировать список компонентов с учетом образования азеотропных смесей в процессе деления, добавления разделяющих агентов или избытка отдельных компонентов для обеспечения или исключения азеотропных условий, т. е. формализовать в некоторой степени этап синтеза, основанный на опыте и интуиции проектировщика. Список формируется также с учетом оригинальных разработок для разделения отдельных компонентов смеси и их физико-химических свойств. В результате этого выявляется стратегия целенаправленного поиска оптимальной схемы. Заметим, что список компонентов может отличаться от исходного питания по количеству, составу, числу компонентов. Непосредственно генерация вариантов схем заключается в анализе списка компонентов, выборе сечений и оценке получаемых схем, в том числе с учетом рекуперации тепла. Поскольку список компонентов формируется исходя из реальных условий протекания процесса (например, фазовое равновесие), математические модели должны воспроизводить эти условия. Однако если разделяемая смесь не содержит сильно неидеальные системы, то расчет можно проводить и по упрощенным методикам, поскольку такие системы чаще всего многовариантные. На рис. 2.10 схематически приведена взаимосвязь этапов синтеза. [c.142]


    На рис. 193 показаны результаты анализа дистиллята и кубовой жидкости, полученные при пробной перегонке. Граница разделения соответствует компоненту Сщ- Предварительное фракционирование дистиллята фенольного масла также осуществляли путем расширительной перегонки. При атмосферном давлении смесь разделяется в интервале температур 210—230 °С. Полученные результаты представлены на рис. 194. Кривые, соответствующие трем пробным перегонкам дистиллята и кубовой жидкости при атмосферном давлении, накладываются друг на друга (точность около 15 °С). Особенно высокой производительности до 3 л/ч можно достигнуть при большой разности температур кипения компонентов смеси, например при перегонке смеси глицерина с растворителем, кипящим при 150 °С [130]. [c.271]

    Полный анализ циклических углеводородов нефтяного нро-исхождения с т. кип. выше 150° С, без предварительного упрощения состава смеси при помощи термодиффузии [17] или других соответствующих методов, становится уже затруднительным. Типичный вид хроматограммы смеси таких нафтенов приведен на рис. 91, а (см. стр. 324). Как видно из рисунка, анализируемая смесь представлена слишком большим числом индивидуальных углеводородов, делающих разделение их практически невозможным. В то же время анализ даже более высококинящих нефтяных фракций, представленных меньшим числом соединений (например, анализ углеводородов алифатического ряда), с технической стороны затруднений не вызывает [49]. [c.338]

    Разделение органической массы углей, которая представляет собой сложную смесь самых различных соединений, на отдельные группы веществ, каждая из которых обладает общими свойствами в отношении действия органических растворителей, щелочей, минеральных кислот и других химических реактивов, называется групповым анализом. Предложено много методов группового анализа различных видов твердого топлива. Наиболее целесообразными для группового анализа торфа являются следующие обработки а) последовательное экстрагирование битумов в аппарате Сокслета эфиром и бензолом б) обработка водой при 60 °С с целью выделения простых сахаров в) обработка кипящей водой с целью гидролиза пектиновых веществ г) обработка на водяной бане 2%-ной соляной кислотой с целью гидролиза гемицеллюлозы д) обработка 2%-ным едким натром на водяной бане для экстракции гуминовых кислот е) обработка 80%-ной серной кислотой с целью гидролиза целлюлозы и ее определение по количеству образовавшейся глюкозы, причем остаток принимается за лигнин. [c.161]

    Неоднократно делались попытки связать состав газов и их возраст какими-либо закономерностями. Самая идея подобного взаимоотношения правильна, потому чтд деградация молекул продолжается в течение всей геохимической истории нефти, хотя и замедляется в конце процесса. Теоретически можно ожидать, что древние газы должны содержать больше ближайших гомологов метана, чем газы начальных этапов превращения. Можно также ожидать, что переход азотистых соединений в азот должен относительно увеличить концентрацию азота в древних газах. Возможно, что подобное положение вещей и удалось бы показать анализами газа, однако на пути решения подобной задачи появляется множество затруднений во-первых, газ представляет собой подвижную систему углеводородов, смесь которых неизбежно должна менять свой состав в зависимости от давления и температуры, особенно при наличии такого растворителя, как нефть во-вторых, миграция газа связана с своеобразным хроматографическим разделением компонентов вследствие различий в молекулярном весе и вязкости компонентов в-третьих, в каждом месторождении можно предполагать частичное удаление наиболее легких компонентов (метана) в силу диффузии и подобных явлений, наконец, нельзя не считаться с тем, что нет практической возможности принимать известным количественное соотношение между газообразными и жидкими углеводородами нефти. Все это приводит к тому, что всякая проба газа, отобранная для исследования, будет случайной, т. е. обособленной от той среды, из которой она взята. Тем не менее изучение состава природных газов иногда позволяет наметить кое-какие закономерности, отражающие действительное положение дела. [c.77]

    Для анализа газов нефтепереработки, представляющих собой сложную смесь углеводородов 02-0 и некоторых неуглеводородных компонентов, применяется [2] метод газовой хроматограф в газожидкостном варианте с использованием полярных и неполярных жидких фаз и в адсорбционном варианте с применением природных синтетических и модифицированных адсорбентов [З]. Для исследования пента-амиленовой фракции бензина каталитического крекинга, а также жирного газа этого же бензина термокаталитического разложения в качестве наполнителя колонки применяли фракцию волокнистого углерода, полученного по методике [4] зернением 0,25-0,5 ш, обработанную хинолином в различных процентных соотношениях. Лучшее разделение было получено при загрузке колонки адсорбентом, содержащим 15-20 хинолина. [c.158]

    При анализе смеси парафиновых и олефиновых углеводородов можно смесь разделить на хроматографической колонке и получить хроматограмму. Для облегчения идентификации соединений целесообразно удалить олефиновые углеводороды. Поэтому продукты хроматографического разделения по выходе из детектора направляют в реактор с углем, пропитанным бромом. В реакторе олефи-ны бромируются и сорбируются углем, а парафины проходят реактор без изменения. Если на выходе из реактора установить второй детектор, то на второй хроматограмме будут выписаны лишь пики парафинов. [c.199]

    Предложенный Жуховицким и Туркельтаубом [50] теплодинамический метод хроматермографии в сочетании с фронтальным методом позволяет приблизиться к непрерывности. В теплодинамическом методе, подобно фронтальному, анализируемая смесь подается в колонку непрерывно. Однако в отличие от него, благодаря воздействию движущегося температурного поля, имеющего градиент температуры, происходят периодическое разделение смеси на отдельные компоненты и подготовка сорбента к приему следующих порций анализируемого газа. Направление градиента температурного поля в теплодинамическом методе противоположно направлению потока разделяемой смеси. Таким образом, подача газа в этом методе происходит непрерывно, а результаты анализа выдаются периодически — один раз за цикл. [c.93]

    Метод Цвета осуществил заветную мечту химика — разделить до анализа смесь на ее компоненты , — писали Цехмейстер и Чолноки. Развитие Цветом методики хроматографического анализа в классическом труде Хромофилы в растительном и животном мире , вышедшем в 1910 г., дало в руки химикам ключ к разрешению основных задач анализа разделение смеси на компоненты, определение степени однородности химических соединений, выделение веществ из разбавленных растворов, очистка от примесей, количественное определение одного или нескольких компонентов и др. [c.16]

    Ароматические углеводороды представляют собой смесь углеводородов, разделение которых является сложной аналитической задачей. Поэтому одной из задач при их изучении является полнота и четкость их выделения из нефти. В основу выделения ароматических углеводородов из нефти положен хорошо известный метод элюептной адсорбционной хроматографии на силикагеле [3—5]. Изменение условий проведения анализа позволяет добиться высокой эффективности извлечения моноциклических ароматических углеводородов. [c.33]

    С) были проанализированы на английском хроматографе фирмы Ру , предназначенном для анализа жидких органических веществ с температурой кипения до 250°, а при очень малых пробах — до 550°С. В хроматографе применяется ионизационный высокочувствительный детектор. Газ носитель—аргон. Температура колонки —200°, стационарная твердая фаза — апьезон Ь, длина стеклянной колонки—1,2 м. Первоначально снятая хроматограмма (рис. 21) показала наличие 15 компонентов, которые не удалось иден тифицировать из-за отсутствия соответствующих эталонных веществ. Для подтверждения индивидуальности пиков смесь подвергали разделению препаративной хроматографией в тонком слое, на незакрепленной на стеклянной пластинке окиси алюминия. Исследуемую пробу в растворе петролейного эфира наносили микрошприцем на линию старта и элюировали петролейным эфиром, затем сушили на воздухе и просвечивали УФ-све-том для определения местонахождения [c.61]

    Для органической химии возможность осуществления препаративного газохроматографического разделения имеет, пожалуй, большее значение, чем для всех остальных областей химии. В лаборатории автора в препаративных целях проводится почти половина всех газохроматографических разделений. Проводимое разделение можно характеризовать тем количеством данного вещества, которое требуется получить. Наиболее распространено разделение относительно простых смесей, в которых требуемые количества разделенных компонентов измеряются миллиграммами и которое осуществляют с целью дальнейшего анализа разделенных веществ при помощи спектроскопии в ультрафиолетовой, видимой или инфракрасной областях спектра, масс-спектроскопии или спектроскопии ЯМР. Многие проблемы препаративной хроматографии смесей органических веществ связаны с другой задачей, когда требуется получить несколько большие количества этих веществ ( 50 мг) или когда разделяемая смесь состоит из большого числа компонентов. Наконец, иногда возникает необходимость получения еще больших количеств разделенных веществ в чистом виде (миллилитр), и это также требует применения специальных методов. [c.219]

    Таким образом, обрабатывая раствор, содержащий смесь обычных катионов, последовательно четырьмя вышеуказанными групповыми реактивами и отделяя путем фильтрования или центрифугирования образующийся всякий раз осадок, получают четыре групповых осадка и один раствор. В результате первоначальная сложная смесь оказывается разделенной на пять более простых смесей, в каждой из которых будут находиться строго определенные ионы. Благодаря этому дальнейший анализ ка ждой изолированной группы значительно упрощается, так как устраняются помехи со стороны катионов остальных групп. [c.51]

    Майр и соавторы [33] разработали метод анализа экспериментальных данных для равновесного процесса, при котором бинарная смесь пропускается через длинную колонну, заполненную неподвижным и первоначально сухим силикагелем. Вслед за этой смесью вводится жидкость, полностью вытесняющая оба компонента из адсорбента. По аналогии с перегонкой при полном орошении эти авторы рассчитали коэффициент разделения Л для различных систем. Они также расширили аналогию, вычислив высоты, эквивалентные одной теоретической тарелке. Такие высоты нельзя применять, если лимитирующил фактором процесса является скорость переноса. [c.156]

    Битум, являясь тя>Келой частью нефти, представляет собой чрезвычайно сложную смесь углеводородов и гетероорганичес-ких соединений самого разнообразного строения. Поэтому проблема идентификации всех составляющих битум соединений практически не разрешена. В то же время для решения многих задач оказывается достаточным определить содержание отдельных классов или групп веществ. Издавна общепринятым методом определения соединений различных классов и групп является разделение веществ по их избирательному отношению к растворителям и адсорбентам. Для разделения битумов известно большое число вариантов анализа, но в основе этих методов лежит выделение нерастворимой в н-алканах части и разделение растворимой части на силикагеле. По этому широко распространенному методу можно принять, что битум состоит из ас-фальтенов — соединений, нерастворимых в алканах С5—С7, смол — соединений, растворимых в алканах и десорбируемых с поверхности силикагеля бензолом или его смесью со спиртом, но не десорбируемых алканами, и масел — соединений, растворимых в алканах и десорбируемых указанными элюентами. [c.8]

    Разделение на активированном угле использовано при исследовании химического состава твердых углеводородов как дистиллятного, так и остаточного нефтяного сырья [8, 9]. Применив адсорбцию на активированном угле, авторы этих работ отделили парафины нормального строения от нафтенов с прямыми боковыми цепями и разделили смесь изопа рафиновых и нафтеновых углеводородов с разветвленными боковыми цепями. Достаточная четкость разделения групп углеводородов установлена по результатам элементного и спектрального анализов полученных фракций. Активированный уголь марки БАУ исследован также как адсорбент для разделения ароматических углеводородов [10]. Разделению подвертали смесь индивидуальных ароматических углеводородов, состоящую из изопропилбензола (60%) и а-метилнафталина (40%) при соотношении углеводородов и адсорбента 1 2. Результаты разделения приведены ниже  [c.264]

    Более полная информация о способах реализации процесса может, быть получена при анализе свойств смеси и отдельных составляющих ее смесей меньшей размерности. Рассмотрим качественно это применительно к стадии выделения целевых продуктов. Обычно смесь, поступающая на разделение, является продуктом химического превращения (это особенно характерно для химических производств) и наряду с целевыми компонентами может содержать исходные реагенты и побочные продукты. При невысокой степени превращения исходные реагенты желательно выделить и возвратить на стадию превращения. Они, таким образом, становятся также целевыми продуктами стадии выделения. Что касается побочных продуктов реакций, то последние, особенно при больших мощностях производства, также могут представлять товарную ценность. Даже не будучи таковыми, они часто должны подвергаться последующей обработке исходя из требований охраны окружающей среды. Следовательно, смесь, поступающая на разделение, может содержать различные по агрегатному состоянию (газообразные или жидкие), по важности (целевые или побочные) и по требованиям на качество продукты. Однако все они составляют единую смесь, свойства которой определяются как свойствами отдельных компонентов, так и степенью их взаимодей-отвия. При наличии неконденсирующихся компонентов (критическая температура которых ниже температуры смеси) возникает вопрос о целесообразности изменения условий или выделения газовой и жидкой фаз на первом этапе разделения. [c.96]

    Хальденвангер [194] наиболее полно сформулировал требования, предъявляемые к эталонным смесям 1) по свойствам эталонная смесь должна приближаться к идеальному раствору, т. е. практически без отклонений подчиняться закону Рауля и иметь относительную летучесть компонентов, постоянную для всех концентраций 2) данные по равновесию пар— жидкость должны быть известны или их можно легко рассчитать 3) смесь должна состоять только из двух компонентов во избежание трудностей при измерениях и расчетах 4) относительная летучесть компонентов должна иметь такое значение, чтобы в испытуемой колонне достигалось достаточное, но не слишком большое разделение 5) температуры кипения смеси должны лежать в интервале, для которого нетрудно подобрать надежную тепловую изоляцию колонны 6) компоненты смеси должны быть термически стойкими в условиях ректификации 7) вещества и их смеси не должны вызывать коррозии конструкционных материалов, использованных в аппаратуре 8) исходные вещества должны быть легко доступными 9) вещества не должны содержать примесей их чистота должна поддаваться проверке доступными методами 10) смеси с любой концентрацией компонентов должны легко поддаваться анализу. [c.140]

    При фронтальном анализе смесь компонентов А + Б непрерывно пропускают через хроматографическую колонку с сорбентом до тех пор, пока не выйдет слабо сорбирующийся компонент Б, затем из колонки начинает выходить смесь компонентов. Метод не нашел широкого применения, так как он ие дает полного разделения в чистом виде выделяется только на[1более слабо адсорбирующийся компонент. [c.83]

    При вытеснительном анализе в колонку вводят смесь А + Б, а затем вытеснитель Д, сорбируюшийся сильнее всех компонентов. При этом методе можно получпть некоторое количество чистых комнонентов Л и Б, но полное их разделение не достигается из-за взаимной диффузии иа границе зон. [c.83]

    Разогретое до температуры 60—80° сырье заливалось в сырьевой бачок, имеющий паровой подогреватель и поплавковый указатель уровня, откуда плунжерным насосом марки НПН-2 подавалось в смеситель, в который по другой линии из пароперегревателя поступал водяной пар. Количество воды, подаваемой в парообразователь, регулировалось дозировочным насосом. Смесь сырья и водяного пара поступала в подогреватель, где нагревалась до температуры крекинга и затем поступала в верхнюю часть реактора (на колпачок). Реактор работал без уровня, что исключало возможность быстрого закоксовывания его. Продукты крекинга через редукционный вентиль направлялись в испаритель, где происходило разделение паровой и жидкой фаз. Жидкие продукты крекинга через хо лодильник поступали в приемник, герметически соединенный с общей газовой системой до счетчика. Приемник взвещивался до и после опыта. Газ с верха испарителя, а также из приемника через холодильник, газосепаратор и газовые часы выводился в газометры для анализа, а избыток — в атмосферу. С низа газосепаратора отбирались сконденсированные бензиновые фракции и добавлялись к жидким продуктам. [c.95]

    I 1). Все углеводородные фракции (парафипо-пафтеновые, моно-, бп- и полициклические ароматические) смешивают. Полученная смесь представляет собой содержащееся в битуме масло без смо-листо-асфальтеновых веществ. Точность метода при разделении навески 5 г битума составляет 2% за счет погрешностей при взвешивании большого количества колб (30 колб для одного анализа). [c.281]

    Для исследований выбрана смесь нефтей Западной Сибири. Давление в системе принято равным 0,2 МПа, общее число совмещенных ступеней в горизонтальном аппарате - 30, число теоретических тарелок в ректификационной колонне - 15. Анализ работы установки проводился при нагреве нефти до 300 °С. Качества продуктов разделения при фракционировании нефти в горизонтальном аппарате приведены в табл. 4.1. Основные режимные параметры работы установки и качеаво продуктов разделения приведены в табл. 4.2. [c.59]

    Данные, полученные на заводе и в Уфимском нефтяном университете, показали, что при термохимической обработке содержание воды в эмульсии уменьшается на 70-755 . Значительно обезвоженная эмульсия подвергается дальнейшей обработке, обеспечивающей разделение ее на составляшще компоненты воду, нефтепродукты и взвешенные вещества. На этой стадии обработки эмульсия смешивается с остатком ловушечной нефти в соотношении 10-20 на 80-90 соответственно. Полученная смесь поступает в товарный резервуар. После двухсуточного отстоя вода дренируется, продукт анализируется по ос-Н0В1ШМ показателям котельного или судового топлива. По результатам анализа принимается решение по Дальнейшему его использованию. Таким образом действующая на предприятии технология является безотходной. [c.167]


Смотреть страницы где упоминается термин Смеси, анализ разделение: [c.422]    [c.426]    [c.98]    [c.98]    [c.545]    [c.52]    [c.160]    [c.136]    [c.83]    [c.106]    [c.206]    [c.447]    [c.95]    [c.305]    [c.137]    [c.50]   
Химический анализ (1979) -- [ c.522 , c.526 , c.531 ]




ПОИСК





Смотрите так же термины и статьи:

Смеси разделение



© 2025 chem21.info Реклама на сайте