Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки химические и физические изменения

    При нагревании белков до 100°С или при воздействии на них других веществ (кислот, щелочей, мочевины, солей тяжелых металлов и т. д.) белковые растворы свертываются— коагулируют—и образуются осадки, больше не способные к обратному растворению. При этом в белке происходят внутримолекулярные изменения, ведущие к изменению его физических, химических и биологических свойств. Белок, потерявший свои первоначальные свойства, называется денатурированным белком, а изменение свойств белка под влиянием различных внешних воздействий называется денатурацией. Обычно денатурация — необратимый процесс. [c.210]


    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]

    При быстром развитии технологии варки-экструзии белков пока имеется мало основополагающей информации о химических и физических изменениях, ответственных за формирование текстуры продуктов. Однако признается, что под влиянием температуры и давления происходит денатурация белков четвертичные, третичные и, вероятно, вторичные структуры разрущаются. Интенсивные сдвиги и сжатия в процессе перемещения материала в кожухе экструдера или через фильеру вызывают ориентирование молекул в поле ограничивающих сил. В это время происходит перераспределение связей, обусловливающих структуру белков  [c.553]

    Первым по значимости методом определения структуры белков в нативном кристаллическом состоянии, несомненно, является рентгеноструктурный анализ. Действительно, сейчас даже трудно себе представить какой-либо другой метод, с помощью которого было бы можно определять тысячи параметров, необходимых для решения этой труднейшей, но интереснейшей задачи. Для изучения белков в растворах необходимы, однако, другие методы. В прошлом для определения конформаций белков и конформационных изменений, мест связывания субстрата с кофактором, изучения ферментативной специфичности и решения многих других вопросов, касающихся структуры и функции белков, применялись самые разнообразные химические и физические способы. С их помощью получен большой объем сведений. [c.347]

    Комплекс наук, связанный с познанием существа жизненных процессов, занимает в современном естествознании особое место. Развитию этого направления отдали свой талант и свой труд многие крупнейшие ученые нашего времени уровень знаний здесь растет с необычайной стремительностью. Желание понять самую суть дела, наиболее интимные стороны процесса жизнедеятельности привели исследователей к необходимости проникнуть в самые глубины биологического процесса, доводя понимание его до молекулярного уровня, когда внешние физиологические проявления могут быть объяснены в конечном счете химическим превращением или физическим изменением отдельной молекулы. Становление этой генеральной концепции молекулярной биологии в огромной степени стимулировало интерес к изучению химических веществ, превращения и изменения которых и лежат в основе процесса жизнедеятельности. К ним относятся прежде всего природные высокомолекулярные соединения — белки, нуклеиновые кислоты, полисахариды, а также смешанные биополимеры. [c.13]


    Можно сравнительно просто определить, какую природу — химическую (т. е. обусловленную пигментом) или физическую (обусловленную структурой) — имеет данный цветовой эффект. Идентификация и характеристика пигмента обычно является стандартной задачей в органической химии. В последующих главах первой части этой книги приведены основные химические свойства наиболее крупных групп природных пигментов. Гораздо более сложной является проблема взаимодействия молекул пигмента с их ближайшим микроокружением, напри-ме с белками в мембранах. Применение сложных современных физико-химических методов, таких, как резонансная рамановская спектроскопия, линейный и круговой дихроизм и ядерный магнитный резонанс, позволяет решить эту проблему, а также получить информацию о молекулярных изменениях, которые претерпевают некоторые пигменты при их функционировании. Вторая часть этой книги представляет собой обзор функций природных пигментов как в роли окрашивающих агентов, так и в роли участников гораздо более сложных процессов, таких, как фотосинтез, зрение и другие фотореакции, которые могут протекать за время порядка пикосекунд. [c.30]

    Таким образом, различия в константах равновесия между двумя белками могут быть обусловлены различиями между энергиями конформационного перехода и сольватации двух участвующих в равновесии комплексов (например, Ре и Ре Юг) в каждом из этих белков. Одинаковые константы равновесия могут быть, например, у белка, в котором два компонента равновесия имеют сильно искаженную структуру, и у белка, где такое искажение структуры не имеет места. Все это крайне затрудняет любую попытку поиска корреляций физических и химических свойств. Еще два фактора ограничивают возможность выделения в чистом виде эффектов различной природы. Во-первых, пока не удалось получить и исследовать ни одного небелкового и ненапряженного железопорфирина, который содержал бы только один связанный имидазол (или гистидин), чтобы его можно было использовать как основу при сравнении свойств. Мы можем поэтому сопоставлять только физические и химические свойства одного белка с физическими и химическими свойствами другого. Во-вторых, рентгеноструктурный анализ таких больших молекул позволяет обнаружить только сравнительно большие изменения структуры у металла и его лигандов. Спектроскопические методы позволяют зафиксировать менее значительные, но все еще функционально важные изменения структуры, одна- [c.171]

    Под влиянием повышенной температуры (для чистых белков начиная с 50—80°) происходит глубокое изменение структуры белка, коллоидный раствор разрушается, белок превращается в сгусток (свертывается) или в осадок и теряет способность снова переходить в раствор. Такой необратимый процесс резкого изменения свойств белка, связанный с изменением не только его физического состояния, но и химического строения, носит название денатурации и происходит не только при нагревании, но и при действии многих химических реагентов. Это свойство используется на практике, например, при выделении белков из растительного сырья нагреванием в кислой среде. [c.227]

    Настоящее, третье издание книги отражает тот рост знаний в области органической химии, который продолжался с неослабевающей скоростью со времени опубликования второго издания. Все разделы дополнены появившимися в последнее время сведениями, практически на каждую страницу внесены те или иные изменения, от незначительных до существенных добавлено более 5000 новых ссылок. В отличие от предыдущих изданий в третьем издании для описания химических превращений используются номенклатуры ИЮПАК (см. т. 2, ч. 2). Однако в целом структура книги не претерпела изменений, и третье издание построено по существу так же, как и второе. Подобно первым двум изданиям, настоящая книга является учебным пособием для углубленного изучения органической химии и может быть рекомендована студентам, уже получившим необходимую подготовку по органической и физической химии. В книге предпринята попытка равномерно осветить три основных аспекта в изучении органической химии реакции, механизмы и строение. Студент, овладевший материалом, изложенным в данной книге, должен приобрести прочные знания современных основ органической химии и умение работать с оригинальной литературой. В книге не рассматриваются или лишь затрагиваются главные специальные разделы органической химии терпены, стероиды, углеводы, белки, полимеризация, электрохимические реакции и т. п. По моему убеждению, к этим темам лучше обращаться либо сразу после первого года обучения, когда заложены необходимые основы, либо в ходе углубленного курса, но с помощью многих известных книг и обзоров, прекрасно написанных по каждому из упомянутых разделов. [c.10]

    Хорошо известно, что облучение ультрафиолетовым светом вызывает разнообразные химические и физические изменения белков. Так, например, в результате облучения изменяется вязкость растворов белков и их оптическое вращение, спектр поглощения белков в УФ-области, pH растворов и их поверхностное натяжение, электропроводность и молекулярный вес белков. К числу некоторых химических изменений, которые можно непосредственно наблюдать, относятся окисление и восстановление, образование аммиака, уменьшение количества сульфгидрильных групп, расщепление дисульфидных связей и разрыв водородных связей [253]. Особый интерес вызывает влияние ультрафиолетового облучения на вязкость растворов белков, па сшивание их и на образование потенциальных реакционноспособных центров, на которых может инициироваться привитая сополимеризация. [c.437]


    В общем случае механизм функционирования нервной системы можно представить следующим образом. Поток афферентных импульсов поступает в мозг от органов чувств, а также от мышц, сухожилий, сердца, кровеносных сосудов, желез, где имеются нервные окончания, реагирующие на изменения конформации белков вследствие физических воздействий, химического состава среды, давления, температуры. В результате в мозге формируется поток ответных афферентных импульсов, в конечном счете регулирующих функции отдельных органов и поведение организма в целом. [c.458]

    Ключевым фактором успешного развития СВО-приборов для иммуноанализа является иммобилизация одного из компонентов иммунохимической пары на поверхности ЭВО. Методика иммобилизации должна не только удовлетворять таким требованиям, как воспроизводимость, захват большого количества белка, сохранение иммунохимической активности и устойчивости, но и не вызывать химических или физических изменений на поверхности, которые могли бы приводить к нежелательным оптическим эффектам (например, рассеянию света). Поскольку в большинстве работ по данному вопросу использовали кварц или стекло, мы ограничимся обсуждением только этих материалов. Кроме того, в дальнейшем мы будем рассматривать только иммобилизацию белков. На поверхностях ЭВО можно иммобилизовать и многие антигены небелковой природы. Для этого используют химические реакции, пригодные лишь для определенных соединений, поэтому здесь мы их также не будем обсуждать. Отметим, однако, один из подходов к решению данной проблемы, состоящей в том, что на ЭВО наносят белок (например, бычий сывороточный альбумин), с которым затем связывают его небелковый антиген [24]. [c.528]

    ЭТОМ образуются специфич. пары комплементарных оснований, имеющие почти одинаковые размеры. Поэтому двойная спираль имеет очень однородную регулярную структуру, мало зависящую от конкретной последовательности оснований-св-во очень важное для обеспечения универсальности механизмов репликации (самовоспроизведение ДНК или РНК), транскрипции (синтез РНК на ДНК-матрице) и трансляции (синтез белков на РНК-матрице). В каждом из этих т. н. матричных процессов К. играет определяющую роль. Напр., при трансляции важное значение имеет К. между тройкой оснований матричной РНК (т. и. кодоном, см. Генетический код] и тройкой оснований транспортной РНК (поставляют во время трансляции аминокислоты). К. определяет также вторичную структуру нуклеиновых к-т. Одноцепочечные РНК благодаря К. оснований, навиваясь Сами на себя, образуют относительно короткие двухспиральные области ( шпильки и петли ), соединенные одноцепочечными участками, К. в отдельных парах оснований ДНК может нарушаться из-за появления отклонений в их строении, к-рые могут возникать спонтанно или в результате действия разл. факторов (химических и физических). Следствием этих изменений м. б. мутации. [c.443]

    В твердофазном иммунном анализе твердая фаза играет роль несущей подложки . Ее, однако, нельзя рассматривать как пассивный компонент. Можно использовать и химическую, и физическую адсорбцию антитела или антигена, хотя большинство иммунных определений основано на физической, нековалентной адсорбции. Как обсуждалось в разд. 7.8, даже физическая адсорбция представляет собой недостаточно изученный процесс. Связывание белков, по-видимому, имеет гидрофобную природу, и все же в естественной конфигурации белков в водном растворе гидрофильные группы стремятся расположиться на поверхности, а гидрофобные группы — внутри полимера. Следовательно, связывание с гидрофобными поверхностями неизбежно вызывает изменение кон- [c.574]

    Денатурация белка в классическом смысле определялась как любая непротеолитическая модификация уникальной структуры нативного белка, приводящая к определенным изменениям химических, физических и биологических свойств [388]. Из этого определения исключаются изменения состояния ионизации, если только они не сопровождаются конформационными переходами. Денатурация может происходить в результате нагревания, изменения pH и добавления неполярных растворителей или некоторых специфических денатурирующих реагентов, например мочевины или солей гуанидина. Она также может быть вызвана восстановительным или окислительным разрывом дисульфидных связей, которые стабилизуют нативные конформации некоторых белков. Денатурация, как правило, сопровождается уменьшением растворимости белка. Это можно легко понять, так как гидрофобное взаимодействие, стабилизующее нативную конформацию, приводит к межмолекулярной агрегации, если полипептидные цепи принимают вытянутые конформации. Другим характерным последствием денатурации является раскрытие реакционноспособных групп, которые расположены внутри третичной структуры и становятся доступны воздействию реагентов при разрушении этой структуры. К числу наиболее пригодных методов наблюдения за процессами денатурации принадлежат спектроскопические измерения, измерения оптической активности и определение каталитической активности ферментов или биологической активности гормонов. Конформационные переходы при денатурации включают ряд процессов, которые в различной степени могут сказываться на каждом из наблюдаемых изменений, и поэтому понятие степени денатурации бессмысленно, если не будет установлен критерий, с помощью которого денатурация измеряется. Эта точка зрения иллюстрируется рис. 44, на котором изображено изменение оптической активности, поглощения света и ферментативной активности рибонуклеазы [389]. [c.136]

    При облучении разведенных водных растворов белков наблюдаемые изменения обычно связаны с радикалами, образующимися из воды. Рассмотренное действие а-частиц на гемоцианин является исключением. Такие изменения могут быть разделены на 1) обнаруживаемые химическими методами и 2) обнаруживаемые главным образом по изменениям физических свойств. Очевидно, эта классификация является условной, так [c.224]

    Лишь очень немного определенных изменений химических свойств наблюдалось как результат облучения. Значительные изменения физических свойств могут быть вызваны незначительными химическими изменениями, которые слишком малы для их обнаружения. Таким образом, о радиационной химии белков известно очень мало. Нельзя сказать, что в этом вопросе у нас меньше знаний, чем в области синтетических полимеров, которые мы рассматривали в предыдущих главах. Но исследователи, работающие с биологическими полимерами, находятся в невыгодном положении из-за незнания точной структуры вещества, т. е. последовательности расположения аминокислот в молекуле белков, за исключением инсулина [59]. По этой причине точные сведения в этой области накапливаются сравнительно медленно. Представляется, что детальное исследование результатов облучения инсулина было бы особенно перспективным. Начало в этом направлении уже положено. Подробнее на этом мы остановимся ниже. [c.225]

    В настоящей книге в основном рассматривается взаимодействие ионов металлов с простыми лигандами. Однако все большее значение придается исследованию взаимодействия ионов металлов с полимерными лигандами, синтетическими и натуральными, например белками. В общем случае можно говорить о двух механизмах взаимодействия противоионов с полимерными ионами [17, 18] а) физическое взаимодействие, которое имеет в основном электростатическую природу и соответствует образованию ионных пар в мономерных системах б) химическое взаимодействие, которое включает образование ковалентных связей, подобно образованию комплексов металл — лиганд в моноядерных системах. Неизбежно существование области перекрывания физического и химического типов взаимодействия, так называемой серой области. Она определяется природой как растворителя, так и любого из вводимых в систему ионов, поскольку структура полимера часто зависит не только от растворителя, но и от природы и количества всех ионов, присутствующих в растворе. В свою очередь конформационные изменения влияют на энергию и физического, и химического взаимодействия. [c.114]

    Работы Тенфорда и его школы [2, 20] специально посвящены исследованию денатурации белков различными физическими методами. Денатурированный белок приобретает конформацию статистического клубка в таком растворителе, взаимодействие которого со звеньями полимерной цепи сильнее, чем внутримолекулярные взаимодействия. Найти такой растворитель непросто, так как одна и та же молекула белка содержит и гидрофильные, и гидрофобные группы. Тенфорд с сотрудниками показал, что среди различных денатурирующих растворителей концентрированные водные растворы гуанидин-хлорида обычно приводят к максимальным изменениям физических и химических свойств белка для некоторых белков в той же степени эффективна также мочевина. Для. разрушения дисульфндных связей и предотвращения их образования использовали умеренные концен-  [c.144]

    В наше время часто ту или иную новую науку — кибернетику, ядерную физику или молекулярную биологию — называют наукой века . К таким наукам относится и старейшая наука химия, изучающая превращения вещества, результатом развития которой явилось создание новых соединений, открывших дорогу технической революции, таких как неизвестные ранее, но крайне нужные в наше время вещества — красители, антибиотики, каучуки, пластмассы, синтетические волокна, высококалорийное топливо и т. п. Уже давно используются такие природные высокомолекулярные соединения, как целлюлоза, крахмал, белки, кожа, шерсть, шелк, мех, каучук, обладающие многими ценными свойствами. Постепенно ученые научились придавать полимерам нужные механические и физические свойства. Изучив химическую природу полимеров и возможности ее направленного изменения, стали получать новые ценные материалы (например, вискозу) путем модификации природных полимеров. Более того, сложнейшие по структуре природные полимеры, а также и совершенно новые, которые природа не синтезирует (полиэтилен, полипропилен, полистирол, поливинилхлорид, фенолформальдегидные смолы, полисилоксаны и др.), созда- [c.4]

    Белки под влиянием нагревания или воздействия органических растворителей, концентрированных кислот или щелочей претерпевают глубокие изменения, называемые денатурацией. При денатурации существенно изменяется третичная структура молекулы белка за счет перегруппировки некоторых внутримолекулярных связей (водородных, дисульфид-ных и др.). В результате нарушаются некоторые физические, химические и биологические свойства белковых молекул. Теряется способность белка растворяться в обычных для него растворителях (вода, солевые растворы и др.). Иначе говоря, белки при денатурации теряют свои гидрофильные свойства и приобретают гидрофобные. Такой вид денатурации называется необратимой денатурацией в отличие от обратимой, при которой изменения в молекуле белка бывают неглубокими и белок при определенных условиях может вновь приобретать свой нативные (т. е. натуральные) свойства. [c.26]

    Периодическое изменение физического состояния мышечных белков, обусловливающее возможность попеременного сокращения и расслабления мышц и выполнения механической работы, очевидно, каким-то образом связано с важнейшими, дающими энергию химическими процессами. [c.448]

    В рассмотренных датчиках антигены образуют комплексы с антителами, иммобилизованными на электроде. Ключевым фактором при этом является иммобилизация одного из компонентов в полимерную пленку, гель или на поверхности электрода. Методика иммобилизации должна обеспечивать не только сохранение имму-нохимической активности белка, но и не вызывать химических или физических изменений поверхности электрода, которые могут привести к нежелательным эффектам. В этом плане большую привлекательность имеет ковалентная пришивка молекул белка с помощью сшивающих реагентов. Для получения устойчивого слоя антител необходимо, чтобы их число было минимальным, иначе может произойти связывание антител между собой. [c.507]

    Денатурация — любые вызванные физическими и химическими воздействиями изменения, которые при сохранении первичной структуры белка сопровождаются большей или меньшей потерей его биологической активности и других индивидуальных свойств белка. При денатурации ослабляются гидрофобные взаимодействия, разрываются водородные связи, а в присутствии восстановителей и дисульфидные связи. Денатурация с разрывом невалентных связей обычно обратима. Путем образования новых невалентных связей, а также благодаря взаимодействию с денатурирующим веществом новая конформация стабилизируется. Возникающее метастабильное состояние при восстановлении физиологических условий может вернуться к нативной конформации ренатурация). Принципиально возможна ренатура-ция и при восстановительном расщеплении дисульфидных связей (рис. 3-8). [c.358]

    Физические изменения пиш,и заключаются в ее размельчени перемешивании, образовании суспензий и эмульсий и частичж растворении. Химические изменения связаны с рядом последов тельных стадий расщепления белков, жиров и углеводов на в более мелкие соединения. Это происходит в результате действ пищеварительных гидролитических ферментов. [c.188]

    Во многих случаях под влиянием различных физических и химических агентов происходит свертывание белковых растворов с образованием осадков, неспособных более к обратному растворению. Такой белок называется денатурированным белком. Денатурация яв [яется характерным свойством белков. Имеюгдиеся экспериментальные данные указывают на то, что в основе денатурации лежат физические или физико-химические внутримолекулярные изменения нативного белка, ведущие к потере специфической конфигурации белковой молекулы. Можно считать, что денатурация представляет собой любое негидролитическое нарушение уникальной структуры нативного белка, которое приводит к изменению [c.17]

    Некоторые физические изменения в белках непосредственно, соответствуют химическим изменениям. Так, потеря аммиака и других соединений основного характера наряду с появлением концевых групп карбонильных кислот приводит к восстановле-. нию лизозима в изоэлектрическои точке [С8, D68]. Действие на пептидную связь уменьшает молекулярный вес белков, как это. показано ультрацентрифугированием [А18] и изменением растворимости М52]. Деструкция может быть причиной возрастания набухаемости или растворимости коллагена [L55, Р19], а также [c.251]

    Основой жизнедеятельности клетки является новообразование ферментативных белков путем обмена веществ с внешней средой. При этом молекулы органических и минеральных веществ из среды, окружающей клетку, поступают внутрь протоплазменной оболочки и вступают здесь в систему реакций с различными ферментами. Продукты реакции диффундируют далее, проникают в ядро клетки и вступают здесь в систему химических реакций с нуклеопротеидами. Таким образом, по направлению к центральным частям клетки в результате диффузии и частично конвекции движется поток различных молекул 5,-, которые в ходе этого процесса претерпевают химические и физические изменения. Часть молекул 5,- идет при этом на новообразование молекуй белка, а также других химических соединений, входящих в состав клетки. Часть продуктов переработки 5,- диффундирует в обратном направлении от центральной части к периферии и выходит в окружающую среду. [c.314]

    При образовании ФСК малая молекула субстрата стехиомет-рически связывается с большой молекулой фермента. Очевидно, субстрат непосредственно взаимодействует с определенным малым участком молекулы фермента — с ее активным центром. Природа активного центра, т. е. совокупность и расположение аминокислотных остатков, а также кофакторов (см. стр. 94), входящих в его состав, устанавливается посредством химических и физических исследований. Изменения активности, возникающие в результате химической модификации белка, позволяют выявить функциональные группы активного центра. Сведения [c.374]

    Гликопротеин из эпителиальной слизи шейки матки коровы в период стельности и охоты был выделен Гиббонсом [4]. Аналогичный препарат был выделен из слизи шейки матки женщины ([5], табл. 1). В 1 дккопротеине содержался как глюкозамин, так и галактозамин и единственный нейтральный сахар — галактоза. Гликопротеины шейки матки стельной коровы и коровы в период охоты при осаждении в ультрацентрифуге давали одну границу ( го.и) равно 25 и 20 8 соответственно). Хотя в слизи шейки матки в течение цикла половой охоты и беременности происходят заметные физические изменения, гликопротеины, выделенные из слизи, взятой в эти периоды, имели сходный химический состав как по углеводам (табл. 1), так и по белкам (табл. 3). Молекулярный вес обоих препаратов был около 4-10 характеристическая вязкость мукоида периода охоты (7,4 дл г) была более, чем вдвое выше вязкости мукоида периода беременности (3,2 дл г), что указывает на больший объем молекулы первого мукоида [22]. [c.261]

    ДНК в клетке обычно находится в комплексе с белками (см. разд. 1.1.ж). Связанный белок слегка раскручивает спираль ДНК, соответственно и число витков спирали на единицу длины становится меньше, чем у свободной В-ДНК. При удалении белка восстанавливается обычное число правозакрученных (положительных) витков спирали. В линейной молекуле ДНК это происходит достаточно легко, поскольку обе цепи свободно вращаются одна вокруг Другой. В замкнутой же кольцевой молекуле общее число витков спирали топологически фиксировано, и число оборотов одной цепи вокруг Другой не может быть изменено без компенсаторного образования витков противоположного знака где-нибудь в другом месте молекулы. Итак, когда естественные кольцевые дуплексы освобождаются от белков, с которыми они часто бывают связаны in vivo, происходит следующее 1) число правозакрученных (положительных) витков снрали возрастает до величины, характерной ДЛЯ В-ДНК 2) в самом дуплексе образуется столько же витков противоположного знака, чтобы компенсировать увеличение скрученности спирали. О таких молекулах говорят, что они обладают отрицательной сверхспиральностью (рис. 1.10). При внесении одного разрыва в сверхспиральную кольцевую ДНК сверхспиральность снимается и кольцевая структура переходит в релаксированное состояние, при котором топологические ограничения отсутствуют. Любые химические или физические изменения, приводящие к уменьшению числа витков спирали на молекулу, уменьшают или вообще снимают отрицательную сверхспиральность в замкнутой кольцевой ДНК. [c.45]

    Денатурация белка, как правило, может возникать под влиянием многих и весьма разнообразных физических и химических факторов, которые производят менее глубокие нарушения первоначальной (нативной) структуры белка и касаются, главным образом, изменений его вторичной и третичной структуры, происходящих при разрыве рыхлых связей в молекуле, иапример, водородных, ионных, сульфпгидрильиых, а также ири переходе некоторых скрытых функциональных групп (5Н, ОН, имидазольиых и др.) в открытые, обнаруживаемые. [c.208]

    Положение о том, что понимание химических и физических свойств белков требует знания пространственного строения молекул, впервые, по-видимому, было высказано К. Мейером и Г. Марком в 1930 г. Более того, они предприняли попытку установить прямую связь между некоторыми физическими свойствами белков и пространственной структурой, подобно тому, как это уже делалось в химии при определении зависимости между химическими свойствами и строением молекул. В частности, они предположили наличие непосредственной связи механического состояния специально приготовленных белковых препаратов при растяжении и сжатии с изменением молекулярной формы полипептидных цепей. Первыми объектами исследования пространственного строения с помощью рентгеноструктурного анализа стали фибриллярные белки, содержащие наряду с аморфной также упорядоченную часть, представляющую собой нечто вроде одномерного линейного кристалла Г. Герцог и У. Янеке, а позднее Р. Брилл получили в самом начале 1920-х годов рентгенограммы фиброина Шелка. Их интерпретация основывалась на предположении дикетопи-перазинового строения белка, что многими химиками было воспринято как [c.67]

    Столь большое число веществ, рекомендованных в качестве пластикаторов, объясняется легкой изменяемостью белковых веществ от воздействия как перечисленных, так и многих других веществ. Изменяемость касается или химического состава или физического состояния. Вещества с активными группами легко вступают в химические реакции с казеином. Так например, наличие нитрогруппы обусловливает появление яркожелтой окраски в казеине, напоминающей окраску белков при ксантопротеиновой реакции. Основания реагируют с карбоксильными, а кислоты с аминогруппами казеина. Жидкости, не растворяющиеся в воде и не имеющие активных групп, способных реагировать с казеином, производят на него дегидратирующее действие. Например, пластинка спрессованного, набухшего в воде казеина, погруженная в керосин, теряет воду и последняя выделяется в керосиновую ванну и скопляется в нижнем слое сосуда. Керосин поглощается казеиновой пластинкой и последняя в сыром виде приобретает вид и прочность дубленого в альдегиде казеина, однако после высыхания не становится галалитом такая обработанная керосином пластинка продолжает сохранять присущую казеину хрупкость и легко набухает в воде. Альдегиды легко реагируют с аминогруппами казеина и продуктов его распада, они резко изменяют вязкость казеинового геля, одновременно производя глубокие химические изменения в казеиновой молекуле, сказывающиеся на изменении окраски его, доходящей до коричневого оттенка. [c.140]

    Никакой, даже самый примитивный, из известных в настоящее время живых организмов в сколь угодно стабильных внешних условиях не мог бы функционировать, если бы в нем одновременно и несбалансированно протекали. все запрограммированные биохимические процессы - транскрибировались все гены, транслировались все образовавшиеся информационные РНК, шли с нерегулируемой скоростью все присущие этому организму процессы синтеза и деградации низкомолекулярных соединений и биополимеров. Ясно, например, что интенсивность биосинтеза нуклеотидов и незаменимых аминокислот должна быть скоординирована с интенсивностью биосинтеза нуклеиновых кислот и белков, поскольку в противном случае бесполезно растрачивались бы необходимые для производства этих мономеров сырьевые и энергетические ресурсы клеток. На самом деле живые организмы живут в непрерывно меняющихся внешних условиях и должны, кроме того, реагировать на изменения, происходящие в окружающей их среде. Так, появление в среде, на которой выращиваются бактерии, какой-либо дефицитной аминокислоты должно сопровождаться снижением уровня ее биосинтеза клетками. Появление в среде нетипичного источника углерода и энергии должно стимулировать процессы, связанные с доставкой такого вещества в клетки и его усвоением. Даже цростейшие одноклеточные организмы должны располагать регуляторными механизмами, позволяющими в определенном диапазоне нивелировать действие возникающих в окружающей среде неблагоприятных внешних химических и физических факторов, таких, как появление агрессивных химических веществ, повышение температуры, интенсивное УФ-излучение. [c.419]

    Шкуры, особенно млекопитающих, представляют собой естественное сырье, обладающее замечательными физическими свойствами, которое становится еще более ценным после соответствующего изменения структуры. Как было уже указано, шкура животных представляет собой природную ткань из переплетающихся-между собо11 волокон, называемую сыромятной кожей. Хотя она и прочна, по имеет два чрезвычайно серьезных недостатка. Во-первых, будучи нерастворимой вследствие наличия белковых молекул, она все же чрезвычайно чувствительна к воде, набухая в тягучую массу и становясь несколько пластицированной. После-испарения воды пластицированные волокна оказываются сцементированными с образованием твердого рогоподобного вещества. Во-вторых, мокрая ко ка необычайно легко загнивает. Таким образом, кожу необходимо обработать, для того чтобы уменьшить ее чувствительность к воде и предохранить от гниения. Получаемый продукт носит название просто ко ки, а соответствующий процесс ее обработки называется дублением. Последний заключается в присоединении к белку дермы путем химической реакции или физической адсорбции некоторых веществ, сильно уменьшающих гидрофильный характер белка и предохраняющих его от гниения, при минимальном изменении как в физических свойствах, так и во взаимоотношениях отдельных волокон кожи.. Такое превращение может быть осуществлено действием различных веществ, как, например, таннинов, основных солей различных трехвалентных металлов, формальдегида и подобных ему веществ, вольфрамовой кислоты и т. д. Из них наиболее важными являются растительные дубители и соли хромовой кислоты. Их применение [c.383]

    Изменение пространственной структуры белка без разрушения пептидных связей под действием различных физических факторов (нагревание, действие ультразвука, ультрафиолетовое й радиоактивное излучение и т. д.) и химических вевдеств (крепкие кислоты, щелочи, соли тяжелых металлов, органические растворители) называется денатурацией. [c.37]

    Поскольку в образовании вторичной и третичной структуры частично участвуют относительно слабые связи, физическое состояние белка, а следовательно, и активность фермента, гормона и антибиотика в значительной степени зависят от температуры, pH, присутствия солей и т. д. Нагревание вызывает распрямление белковой молекулы, которое вследствие большой положительной энтропии проявляется тем больше, чем выше температура [106]. Некоторые химические реагенты, такие, как мочевина и гуанидин, вызывают изменения в физическом состоянии и реакционной способности многих белков, разрывая главным образом стабилизующие структур г водородные связи, в то время как под действием органических растворителей пройсходит разрыв гидрофобных связей. Изменение pH обусловливает разрыв водородных связей в результате удаления протона и вызывает электростатическую неустойчивость. Эти изменения часто происходят очень резко и напоминают переходы первого порядка. [c.385]

    Генетики оказались перед выбором — либо не поверить данным Эвери, либо признать, что веществом наследственности оказался не белок, как принято было считать, а ДНК. Опровергнуть Эвери было трудно — в его работе просто-напросто не к чему было придраться. Но и от устоявшихся представлений о белковой природе гена отказаться ни за что не хотели. Опытам Эвери было дано следующее объяснение ДНК, конечно, никаких генов не содержит и содержать не может. Но она может вызывать мутации, т. е. изменять гены, которые, как им и положено, состоят из белка. Правда, ДНК оказалась весьма необычным мутагеном, вызывающим от опыта к опыту одни и те же мутации, в отличие от обычных мутагенов, которые вызывают мутации случайным образом, ненаправленно. Это не могло не заинтересовать генетиков, уже давно искавших способы направленного изменения наследственности. Так удалось спасти, казалось бы, уже испускавшую дух белковую теорию гена, но при этом генетики и все те, кто занимался проблемой химической (или физической) природы наследственности, вынуждены были, наконец, признать, что на ДНК следует обратить серьезное внимание. [c.18]

    Первый химический синтез гена, осзтцествленный примерно 20 лет назад, потребовал многих человеко-лет работы. С той поры в этой области достигнуты замечательные успехи, и сейчас синтез гена того же размера один исследователь может выполнить всего за две недели. В промышленных лабораториях осушествлено несколько синтезов генов инсулина, а в Англии был проведен замечательный синтез гена интерферона. Оба этих белка перспективны при использовании в медидине. Их выгодно производить и с коммерческой точки зрения. Недавно выполнен синтез гена для фермента рибонуклеазы, позволяющий проводить в дальнейшем изменения в гене и тем самым открывающий возможность изменять физические и химические свойства белка желаемым образом. [c.172]

    Прекрасной иллюстрацией значения белков является раскрытие механизма мышечного сокращения. Установлено, что в основе мышечного сокращения лежит изменение физического состояния особого сократительного белка мышц — актомиозина в результате взаимодействия его с аденозинтрифосфорной кислотой (стр. 448). Это взаимодействие мышечного белка с аденозинтрифосфатом, сопровождающееся сокращением миофибрилл, можно наблюдать in vitro, т. е. вне орга-иизма. Если, например, на мацерированные (вымоченные в воде) мышечные волй кна, лишенные возбудимости, подействовать раствором аденозинтри-( юсфата (при определенных концентрациях солей), то можно наблюдать резкое сокращение этих волокон, во многих отношениях подобное сокращению живой мышцы. Здесь имеется совершенно несомненное доказательство того, что для сокращения мышцы необходимо химическое взаимодействие мышечных белков с богатым энергией химическим веществом. [c.8]


Смотреть страницы где упоминается термин Белки химические и физические изменения: [c.348]    [c.272]    [c.136]    [c.7]    [c.159]    [c.18]   
Радиационная химия органических соединений (1963) -- [ c.251 , c.252 ]




ПОИСК







© 2025 chem21.info Реклама на сайте