Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлористый водород полимеризация

    Этот катализатор дает очень хорошие выходы хлористого этила при реакции этилена с хлористым водородом при температурах ниже —80° [75], процесс, применяемый в промышленности. Метод не может применяться как общий для всех производных этилена, особенно для разветвленных олефинов, из-за быстрой полимеризации, вызываемой этим катализатором. Хлорное олово дает с хлористым водородом и циклогексеном количественный выход циклогексилхлорида при температуре 5—10° [60]. [c.368]


    В противоположность хлористому галлию и бромистому алюминию хлористый алюминий, как было замечено, лишь слегка растворим в хлористом метило и в хлористом этиле данных об образовании комплексов не имеется [61]. Патентная литература содержит многочисленные ссылки на использование растворов хлористого алюмнния в хлористом метиле или хлористом этиле для полимеризации олефинов, нрисоединения хлористого водорода к олефинам и т. д. Видимая растворимость хлористого алюминия в этих случаях зависит либо от наличия примесей, либо является следствием вторичных реакций, включая и частичный распад алкилхлоридов. [c.434]

    Другие промоторы. Сами по себе окислы металлов также являются катализаторами. Окись хрома (одну или в смеси с глиноземом) применяют для дегидрогенизации. Этой же цели могут служить окись хрома с добавкой окиси церия, смесь окиси магния, окиси железа и окиси калия, окись молибдена (последняя является также катализатором гидроформинга). Соли металлов, в частности соли галогеноводородных кислот, были первыми синтетическими катализаторами в переработке нефти под действием хлористого алюминия проводились процессы крекинга галоидные соли алюминия служат катализаторами процессов полимеризации и изомеризации, а хлористый водород является их промотором. [c.23]

    Для улучшения условий полимеризации винилхлорида и получения поливинилхлорида с необходимыми свойствами в полимеризационную среду вводят 0,1—3% акцепторов хлористого водорода (стеараты металлов, эпоксисоединения) и других добавок. [c.27]

    Процесс полимеризации этилена в присутствии хлористого алюминия протекает только при наличии хлористого водорода, введение которого в этилен является первой стадией реакции полимеризации  [c.147]

    Полимерные реагенты получают или химической переработкой (модифицированием) природных высокомолекулярных соединений, или их синтезом из низкомолекулярных веществ. Известны два синтетических метода полимеризация — реакция соединения молекул, протекающая без изменения элементарного состава реагирующих веществ и выделения побочных продуктов поликонденсация — реакция соединения молекул, сопровождающаяся отщеплением простейщих веществ (ноды, спирта, аммиака, хлористого водорода и др.). В отличие от продуктов полимеризации элементарный состав конденсационного полимера не совпадает с элементарным составом исходных веществ. Синтез полимеров из низкомолекулярных веществ возможен в том случае, если их молекулы могут взаимодействовать вследствие активации с двумя другими молекулами, т. е. если исходное вещество по крайней мере бифункционально. Вещества являются функциональными, если в их молекулах есть двойные или тройные связи и содержатся функциональ- [c.32]


    Постоянное присутствие в таких полимерах электронных секстетов ведет к дальнейшей полимеризации и быстрому нарастанию люлекулярного веса молекул. В результате этих превращений олефины совершенно исчезают. Скорость полимеризации стимулируется присутствием хлористого водорода, действующего каталитически  [c.333]

    Полимеризация хлористого винила протекает особенно легко в водной эмульсии под действием персульфатов при этом в качестве концевых групп в цепь входят сульфатные остатки. Атомы хлора в цепи полимера обладают малой реакционной способностью. Тем не менее, при нагревании поливинилхлорида происходит отщепление хлористого водорода. Для того чтобы предотвратить отщепление НС1, прибавляют стабилизаторы. [c.939]

    Реакцию рекомендуется проводить при 100". а-Хлоракриловые эфиры легко полимеризуются в присутствии инициаторов свободно-радикальной полимеризации, образуя прозрачные твердые аморфные полимеры. Скорость полимеризации а-хлоракрилатов значительно больше скорости полимеризации нехлорированных акриловых эфиров. Блочная полимеризация сопровождается интенсивным теплообразованием, что в свою очередь вызывает частичное дегидрохлорирование полимера. Внешне это выражается в пожелтении образующегося стекловидного полимера. Световое воздействие также постепенно вызывает дегидрохлорирование полимера, поэтому желтизна полимера с течением времени увеличивается. Чтобы предотвратить пожелтение полимера, рекомендуется в процессе полимеризации вводить в мономер стабилизаторы—вещества, вступающие в реакцию с выделяющимся хлористым водородом. Стабилизаторами могут служить гликоли, амины. [c.346]

    При газофазной полимеризации формальдегида под действием хлористого водорода первичные активные центры образуются в результате взаимодействия формальдегида и НС1 в соотношении 1 1. Обрыв происходит при взаимодействии активных центров с молекулой мономера. При полимеризации происходит реакция разветвления цепи, основанная на ее расщеплении на две активные цепи за счет взаимодействия с молекулой H I. Выведите кинетические уравнения инициирования, обрыва, разветвления (Лр в) и роста. [c.132]

    В отличие от полимеризации, при ноликонденсации элементный состав полимеров не совпадает с составом мономерных соединений. Различие определяется составом выделяющегося низкомолекулярного продукта (вода, спирт, аммиак, хлористый водород ИТ. д.). [c.30]

    Хлоропрен (2-хлорбутадиен-1,3) СНз=СС1—СН=СН2 является хлорпроизводным бутадиена-1,3 (стр. 82). Представляет собой бесцветную жидкость с эфирным запахом. Темп. кип. 59,4° С =0,953. Техническое получение хлоропрена основано на присоединении хлористого водорода к винилацетилену, образующемуся при полимеризации двух молекул ацетилена (стр. 88, 90) [c.101]

    Роль сокатализатора зависит от характера среды. В полярном растворителе хлористый водород ускоряет процесс полимеризации, так как образующийся комплекс с катализатором диссоциирует с выделением ионов Н+, возбуждающих полимеризацию. В неполярном растворителе, например в четыреххлористом углероде (дипольный момент равен нулю), диссоциация комплекса очень мала и хлористый водород только связывает катализатор, понижая таким образом скорость полимеризации. [c.83]

    Поликонденсация. Для получения полимеров широко применяется также реакция поликонденсации. Она значительно отличается по механизму от реакции полимеризации. При полимеризации превращение мономера в полимер происходит без выделения каких-либо других химических соединений. Реакция поликонденсации состоит во взаимодействии функциональных групп мономеров и сопровождается выделением какого-либо вещества, например воды, аммиака, хлористого водорода. Реакция поликонденсации носит ступенчатый характер рост цепи происходит постепенно. Сначала реагируют друг с другом молекулы исходного вещества, затем образовавшееся соединение взаимодействует с третьей молекулой исходного вещества, с четвертой и т. д. [c.373]

    Один из видов синтетического каучука получают из ацетилена. Выше (см. стр. 93) указывалось, что при полимеризации ацетилена образуется винилацетилен СН=С—СН=СН2. Винилацетилен присоединяет молекулу хлористого водорода при этом получается 2-хлорбутадиен-1,3 (хлоропрен)  [c.103]

    Без добавления хлористого водорода цианэтилирование в ядро в присутствии катализаторов Густавсона-Фриделя-Крафтса идет с большим трудом, т. е. требует длительного времени и активных катализаторов (хлористый алюминий). Это, конечно, сильно осложняет практическое проведение процесса, так как хлористый алюминий способствует полимеризации акрилонитрила. Однако, по патентным данным, если смесь фенола, акрилонитрила и хлористого алюминия (2 1 1) нагревать 100 час. при 100°, то получается -( -оксифенил)-пропионитрил с выходом 70%. Одновременно образуется небольшое количество орто-изомера, который циклизуется с образованием дигидрокумарина 3. [c.68]


    Вещества, известные- в настоящее время как инициаторы катионной полимеризации, одними из первых были использованы для полимеризации углеводородов с несколькими двойными связями. В XIX в. Буршада и Тильден для полимеризации изопрена применяли хлористый водород. Полимеризация изопрена под действием хлористого алюминия была описана Ашаном в 1915 г. Можно найти много других ссылок на полимеризацию изопрена, бутадиена и других мономеров под действием катионных катализаторов [1]. Однако в большинстве случаев ранние работы были лишь качественными и малопригодными для установления механизма реакции. Даже теперь встречается мало исследований, на основании которых можно сделать выводы о природе инициирующих частиц или о механизме соответствующих реакций. Явная невоспроизводимость скоростей реакций, о которой сообщают, обусловлена несомненно наличием примесей в реагентах. Конечно, встречаются трудности при очистке н осушке таких активных мономеров, как бутадиен и изопрен, до требуемой высокой степени чистоты. Тем не менее при наличии современных методов, например препаративной газовой хроматографии, проблема очистки не является непреодолимой. [c.299]

    Обычно полимеризация этиленсульфида ускорялась в полярных растворителях, как можно было ожидать для анионных процессов [32]. В бензоле она была очень медленной, даже в присутствии активных катализаторов вторичных и третичных аминов, а также более слабых типа НС1. В метилале фтористый бор вызывал энергичную реакцию с образованием липкого продукта, имеющего степень полимеризации около 4. В паральдегиде и ацетоне под действием серной кислоты, фтористого бора или хлорного олова (но не хлористого водорода) полимеризация шла с умеренной скоростью с образованием полимеров — тоже главным образом теломеров,— плавящихся при 165—-175°. Под действием кислоты (H2SO4, но не НС1) или основания (NaO Hg, R3N) в метаноле полимеризация проходила с умеренной скоростью. Один из полимеров, полученных таким способом, имел степень полимеризации, равную 16. Подобный полимер был получен в воде под действием плавиковой кислоты (но не соляной). [c.409]

    Большое значение имеет фреон 22 (хлордифторметан), который в условиях пиролиза при 650° дает тетрафторэтилеп и хлористый водород [16]. Хлордифторметан получают действием фтористого водорода на хлороформ в присутствии фтористой сурьмы как катализатора. Тетрафторэтилеп можно также получать действием цинковой пыли на u. iJi-диxлopтeтpaфтopэтaп. Он представляет собой газ, кипящий при —76,3°, затвердевающий при —142,5°. Полимеризацией его получают исключительно стойкое искусственное вещество (тефлон) [17]. [c.118]

    Катализатор. Хлористый алюминий и хлористый водород в чистом виде друг с другом не соединяются, однако совместно с известными углеводородами, из числа присутствующих в бензине, они образуют комплекс. Это активное нестойкое соединение, которое нельзя выделить, не следует смешивать также с жидким комплексом AI I3 — НС1 — углеводород, который получается только в ходе изомеризации вследствие побочных реакций (крекинг, диспропорционирование, перенос водорода, и полимеризация) и вряд ли уже обладает каталитическими свойствами. По своему виду активный комплекс похож на машинное масло, но имеет плотность около 1,5, и, кроме того, совсем не растворим в жидких углеводородах. [c.526]

    При помощи нагрева и давления этилен можно превращать в полимерные жидкости. Под давлением 70—135 атм и при температурах между 325 и 385° С получены жидкие продукты, в которых около 50% кипит ниже 200°С [354, 355]. Конечные продукты содержат заметное количество нафтеновых углеводородов. Термическая полимеризация ускоряется следами кислорода [356 и видоизменяется меркаптанами [357]. При помощи концентрированной серной кислоты этилен не нолимеризуется вместо этого образуются устойчивые сложные эфиры. С 90%-ной фосфорной кислотой сложные эфиры образуются ниже 250° С, но свыше температуры 250—350° С и под давлением 53—70 кГ сл1 образуются полимеры, кипящие в пределах бензин — осветительный керосин. Это полимеры комбинированного типа, содержащие олефины, парафины, нафтены и ароматику с изобутеном в отходящем газе [358, 322]. При помощи чистого хлористого алюминия этилен не иолимеризуется даже под давлением, но если катализатор активирован влагой или хлористым водородом, то в зависимости от времени, количества катализатора и т. д., получаются жидкие продукты, находящиеся в пределах от бензина до масляных фракций [360]. Они онять-таки являются полимерами комбинированного тина. Бензиновая фракция, выкипающая до-200° С, является большей частью предельной и имеет октановое число около 77 это наводит на мысль о присутствии разветвленных структур. Высококипящие порции дистиллята содержат [c.109]

    Хлористый водород может образоваться вследствие гидролиза хлорида алюминия под действием влаги, находящейся в хлористом метиле и поглощенной хлоридом алюминия при контакте с воздухом. При наличии хлористого водорода в растворе катализатора полимеризация при контакте катализатора с шихтой начинается очень энергично с образованием частиц полимера, склонных к агломерации. С повышением содержания хлористого водорода в полимеризационной системе резко снижается молекулярная масса образующегося полимера. На рис. 7 приведена зависимость молекулярной массы бутилкаучука от отношения НС1 А1С1з в растворе катализатора. [c.346]

    В процессе полимеризации ацетилена образуются небольшие количества побочных продуктов. В результате побочных реакций гидрохлорирования и гидратации ацетилена получается 0,5% ви-нилхлорида и 2,5—3% ацетальдегида (от количества образующегося ВА). В условиях длительной работы реакторов образуются смолообразные соединения (- 1%) из-за полимеризации винилацетиленовых соединений. При повышении концентрации хлористого водорода увеличивается выход винилхлорида и ацетальдегида и образуются незначительные количества метилвинилкетона. Наряду с этим под влиянием кислорода воздуха происходит образование СиС1г, взаимодействующей с ацетиленом и в небольшой степени с винилацетиленом с образованием хлорпроизводных и незначительных количеств диацетилена, [c.711]

    Изомеризующую активность окиси алюминия можно значительно повысить добавками фтора [18], хлористого [11], бромистого и фтористого водорода [13] (табл. 43), серной, фосфорной, борной, муравьиной и других кислот [19, 20]. Обработка окиси алюминия фтором (0,36%) ускоряет скелетную изомеризацию [18] содержание изобутена в фракции С4 при 400 °С и объемной скорости подачи сырья 500 ч составляет 23,6%, а степень превращения бутена-1 в побочные продукты не превышает 6,4%. При увеличении содержания фтора в катализаторе до 5% содержание йзо-бутена в фракции С4 повысилось до 36,4%, однако степень превращения бутена-1 в побочные продукты крекинга и полимеризации увеличилась до 89,6%. При обработке окиси алюминия хлористым водородом (см. табл. 42) образуется мало побочных продуктов и заметно увеличивается выход изобутена (при 400 °С от 15,5% на АЬОз до 28,8% на АЬ0з+НС1). [c.147]

    При модифицировании окиси алюминия галогеноводородами (НС1 и HF) выход изомеров увеличивается по сравнению с чистой АЬОз (например, при 400—450 °С выход изобутена достигает 30— 36%). Однако в присутствии таких катализаторов растет также выход продуктов крекинга и полимеризации. Изомеризация гексена-1 в присутствии чистой 01 иси алюминия протекает очень медленно, но при активировании AI2O3 хлористым водородом выход изогексенов при 335 °С и объемной скорости 0,6 ч составляет 65%, а при введении соединений бора он возрастает до 85%. Олефины Сз и выше в присутствии окиси алюминия, модифицированной галогеноводородами (НС1, HF), при 300—375 °С изомеризуются в изоолефины с выходами более 90%. [c.166]

    При производстве низкомолекулярпого полиизобутилена полимеризацию проводят в жидкой фазе при 21—29 °С в присутствии хлористого алюминия (катализатор) и хлористого водорода (активатор). [c.13]

    Олефины в результате переноса водорода, полимеризации и циклизации дают сложные высоконенасыщенные продукты, образующие комплексные соединения с А1С1з — маслообразную фазу катализатора, содержащую 60—80% хлористого алюминия. Образование побочных продуктов сильно увеличивается с температурой реакции в результате увеличения роли раопада карбоний-ионов. Возрастание числа атомов углерода в молекуле н-парафина интенсифицирует распад, так как эндотермичность реакции снижается. Образование продуктов распада при изомеризации н-гептана и выше происходит при разложении карбоний-ионов, образующихся из исходного углеводорода стадия алкилирования не требуется и это сильно интенсифицирует раопад. [c.234]

    Цель настоящей работы — рассмотреть влияние эффективной добавки, ингибирующей полимеризацию и приводящей к образованию этилциклогексана (в качестве основного продукта), а также небольших количеств бутил- и диэтилциклогексана. В качестве такой добавки использовали хлористый водород в виде газа или водного раствора. [c.133]

    Действие хлористого водорода как ингибитора полимеризации и агента, повышающего выход этилциклогексана, было подтверждено опытами с 38%-НОЙ дейтерированной соляной кислотой, растворенной в тяжелой воде (99% ВгО), в ачестве промотора моноэтилирования. Реакцию проводили в стандартных условиях. [c.135]

    Одна из проблем, которые возникают при осуществлении этих про-иессов, заключается в устранении полимеризации этилена и его конденсации с хлористым этилом под действием катализаторов присоединения хлористого водорода. [c.183]

    Алюмосиликатные катализаторы обладают способностью проводить не только процессы крекинга, но и различные конденсации, например реакции Фриделя—Крафтса в паровой фазе, особенно если эти катализаторы предварительно обработаны хлористым водородом. Д. М. Рудковский, Е. К. Серебрякова и А. В. Фрост [10] отметили изомеризующее действие этих катализаторов, а несколько позже А. В. Фрост [11] установил, что действие алюмосиликатов на углеводороды аналогично действию Al lg, так как, кроме расщепления, протекают изомеризация и полимеризация непредельных соединений и перераспределения водорода. [c.311]

    Многочисленные ароматические производные 1,3,5-триазина могут быть иолучены иутем полимеризации ароматических нитрилов. В то время как алифатические нитрилы иногда полимеризуются до пиримидиновых соединеиий (кианметин и др., стр. 1034), три молекулы ароматического нитрила иод влиянием, иапример, концентрированной серной кислоты, хлористого водорода и,ли натрня образуют триазиновое кольцо  [c.1052]

    Ингибиторами ионной полимеризации изобутилена являются сера, сероводород, меркаптаны, фтористый водород, хлористый водород. Присутствие даже ничтожных количеств этих соединений в реакционной среде вызывает резкое снижение выхода полимера. Регуляторами величимы среднего молекулярного веса полимера служат нормальные непредельные углеводороды. Ниже, в качестве примера, приведено изменение среднего молекулярного песа полиизобутилена при введении в реакционную смесь небольших количеств -бутилена (полимеризация проводилась при —95")  [c.203]

    В процессе полимеризации винилхлорида следует избеган новыш-ения температуры реакции более 60 ", иначе увеличивается интенсивность отщепления хлористого водорода от отдел ,ных звеньев образующихся макромолекул. Это спогпбствует возрастанию разветвленности структуры по, имера. [c.264]

    Если же полимеризацию ацетилена вести в присутствии раствора хлористого водорода или солей соляной кислоты, то образуется хлорпрен  [c.314]

    ТИ8НЫХ Промежуточных частиц атомов, свободных радикалов, ионов или реже молекул с повышенным запасом энергии (колебательно- или электронно-возбужденных молекул). К цепным процессам принадлежат гомогенные газовые реакции горения и медленного окисления, многие реакции крекинга, разложения и полимеризации углеводородов, разложения ряда твердых, жидких и газообразных органических соединений, синтеза НС1, НВг, реакции расщепления ядер урана и др. Различают неразветвленные и разветвленные цепные реакции. В неразветвленных цепных реакциях каждая исчезающая активная промежуточная частица вызывает появление одной новой активной частицы. Типичным примером не-разветвленной цепной реакции служит образование хлористого водорода из хлора и водорода под действием светового потока  [c.381]

    В настоящее время в промышленности синтетического каучука полимеризация изопрена и бутадиена в основном осуществляется на комплексных металлорганических катализаторах на основе алкилалюминия и галогенидов титана, характерной особенностью которых является чрезвычайно высокая чувствительность к примесям, имеющимся в мономере. Влияние примесей на протекание процесса полимеризации различно. Например, присутствующий в изопрене циклопентадиен полностью дезактивирует катализатор полимеризации, диметилформамид значительно снижает стереорегулярность полимеров, а влага или образующийся вследствие ее взаимодействия с галогенидом титана хлористый водород способствует сшиванию полимерных цепей, образованию твердых хрящей в каучуке. Ниже для примера приведен состав примесей, обнаруженных во фракции Св дегидрирования изоамиленов на кальций-никельфосфатном катализаторе, % (масс.)  [c.164]

    Свежий (пары) и возвратный (жидкий) винилацетилен поступает в нижнюю часть реактора-гидрохлоринатора У. Хлористый водород подается в трубу газлифта реактора, где поглощается катализатором. Образующиеся в реакторе хлоропрен и дихлорбу-тены вместе с непрореагировавшим винилацетиленом, парами воды и хлористым водородом направляются в колонну первичного разделения 2, где отгоняется основная масса непрореагировавшего винилацетилена. Винилацетилен конденсируется, отделяется от кислых вод и в жидком виде возвращается в реактор. Кубовая жидкость колонны 2 — влажный хлоропрен-сырец — поступает в сепаратор 3, где отделяется от воды, охлаждается в холодильнике 4 и поступает в осушитель 5, заполненный хлоридом кальция. Выделение чистого хлоропрена с концентрацией 99,95 % осуществляется последовательной ректификацией на двух насадочных колоннах 6 я 7, работающих под вакуумом. Для предупреждения полимеризации хлоропрена применяют ингибиторы, в частности окись азота. [c.230]

    Перед впуском сырья в реактор его тщательно сушат (допускается содержание влаги не более 0,015%). Катализатора технического хлористого алюминия берут 1,2—1,5% на сырье. Процесс полимеризации длится 12— 14 час., температуру в реакторе постепепно повышают от 40 до 100°. Полимеризату дают отстояться, отделяют от осадка и в течение 3 час. обрабатывают 1,5% глины, активированной хлористым водородом и окисью цинка, при 180°. Затем продукт охлаждают, фильтруют и при атмосферном давлении от него отгоняют легкие фракции. [c.487]

    Образование сложных эфиров. В зависимости от применяемого катализатора — хлористого алюминия, промотированного хлористым водородом, фтористого водорода или серной кислоты — продукты алкилирования иногда содержат небольшие количества соединений хлора, фтора или серы. Эти соединения обьпшо представляют алкильные сложные эфиры, образовавшиеся в результате присоединения хлористого водорода, фтористого водорода или серной кислоты к олефину. Их образование неизбежно сопутствует второй стадии механизма первичного алкилирования. При условиях, не благоприятствующих дальнейшему взаимодействию этих сложных эфиров с изонарафи-новыми углеводородами (нанример, реакциям стадии 1 или стадии 3), они остаются в алкилате в качестве примесей. Как правило, они образуются при тех же условиях, которые способствуют усилению полимеризации в результате алкилирования. При рационально выбранных условиях образование сложных эфиров крайне незначительно при промышленных процессах алкилат подвергают очистке для удаления образовавшихся сложных эфиров, [c.189]


Смотреть страницы где упоминается термин Хлористый водород полимеризация: [c.226]    [c.49]    [c.339]    [c.80]    [c.418]    [c.132]    [c.606]    [c.330]    [c.619]    [c.109]    [c.103]   
Неорганическая химия Том 1 (1970) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Хлористый водород



© 2024 chem21.info Реклама на сайте