Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ алкилирования

    Подробно рассматриваются такие вопросы, как химический состав нефтей и нефтяных фракций очистка нефтяных фракций физическими и химическими методами теория термо-ката-литических процессов нефтепереработки (крекинг, пиролиз, риформинг, гидрирование, алкилирование) теоретические аспекты применения и эксплуатационных свойств нефтепродуктов. При этом большое внимание уделяется термодинамическим и кинетическим закономерностям, механизма реакций, теории катализа, теории сорбционных процессов и процессов экстракции, явлениям детонации, стабильности нефтепродуктов. [c.4]


    Известные в настоящее время методики межфазного катализа появились в работах Макоши и сотр. [5] в 1965 г. Эти авторы начали систематическое исследование алкилирования и других реакций в двухфазных системах, главным образом в таких, которые содержали концентрированные водные растворы гидроксидов щелочных металлов. В описании они использо- [c.13]

    Реакции этого типа в условиях межфазного катализа провести намного труднее, чем реакции, рассмотренные до сих пор во-первых, в этих соединениях СН-связи существенно менее активны, вследствие чего необходимо проводить процесс при более высоких температурах или увеличивать время реакции во-вторых, конкурирующая реакция альдольного типа может стать основной. Поэтому алкилирование простых алифатических альдегидов и кетонов не используется для синтеза, хотя некоторые примеры этих реакций известны [334]. В патентной литературе описано алкилирование ацетона в присутствии гидроксида натрия и фосфониевых и аммониевых солей в качестве катализаторов очень реакционноспособными замещенными аллилхлоридами с хорошими выходами [345—348, 1081]  [c.192]

    Изомеризации олефинов посвящено огромное число работ, вероятно, большее, чем какой-либо другой реакции. Это объясняется тем, что изомеризация является эффективной модельной реакцией для изучения механизма теплового, фото- и радиационнохимического воздействия на вещество. Она активируется огромным числом гомогенных и гетерогенных катализаторов, поэтому на ее примере удобно изучать механизм катализа и кинетические закономерности химических процессов. Наконец, эта реакция оказывается целевой или сопутствующей во многих технических процессах изомеризации олефинов и парафинов, окислении олефинов, их полимеризации и др. В таких процессах, как сорбционное выделение олефинов, каталитический крекинг, гидроформилирование, алкилирование, сульфирование и др., она существенно влияет на выход и свойства продуктов, и возникает необходимость как ее подавления, так и активирования. [c.5]

    Таким образом, при катализе протонными кислотами, а в более мягких условиях — с другими катализаторами состав продуктов алкилирования определяется кинетическими факторами, а с хлористым алюминием и в более жестких условиях катализа алюмосиликатами и цеолитами в пределе может установиться равновесный состав изомеров и продуктов последовательного алки-лирования. Это имеет большое значение при выборе оптимального мольного соотношения реагентов при алкилировании, опре- [c.246]


    Старейший метод алкилирования этиленом заключается в проведении реакции в жидкой фазе с безводным хлористым алюминием в качестве катализатора. Эта реакция является частным случаем классической реакции Фриделя — Крафтса, она была открыта в 1879 г. Большинство из известных льюисовских и бренстедовских кислот активны в алкилировании олефинами. Однако для катализа жидкофазного алкилирования бензола э иленом хлористый алюминий оказывается предпочтительнее других кислот, хотя для повышения его эффективности обычно требуется применять сока-тализаторы или промоторы. При растворении хлористого алюминия в бензоле туда добавляют соляную кислоту , образующую [c.268]

    Использование цеолитов при алкилировании ароматических углеводородов олефинами рассмотрено в книге Химия цеолитов и катализ на цеолита.х . Под ред. Дж. Рабо, Пер. с англ. М., Мир. Т. 2, с. 388—400. Прим. ред. [c.287]

    При гетеролитическом катализе промежуточное взаимодействие реагирующих веществ с катализатором протекает по гетеролитиче-скому механизму при этом образование и разрыв двухэлектронных связей протекает без разрушения и образования электронных пар. Гетеролитический механизм осуществляется при каталитических реакциях дегидратации спиртов, гидратации олефинов, крекинга, изомеризации, алкилирования углеводородов, гидролиза и многих других. Катализаторы для этой группы реакций должны обладать способностью к образованию координационной связи путем отдачи или присоединения электронной пары. В частности, они могут представлять собой протонные или апротонные кислоты и основания. [c.406]

    ОСНОВНОГО катализа алкилирования кольца не происходит, пока имеются бензильные водороды. Это справедливо даже для таких ароматических соединений, как кумол, у которого бензильные водороды дезактивированы и потому кольцо легко металлируется. По-вндимому, фенильные карбанионы не способны легко присоединяться к олефинам. Согласно Пайнсу и Марку [20], в присутствии натрия и промоторов при 300° образование алкилата происходит лишь в малой степени в результате взаимодействия бензола с этиленом и изобутиленом, а также трет-бутилбензола с этиленом. При применении калия при 190° выход продукта повышается [24]. [c.369]

    Автор описал в других сообщениях примеры использования фтористого водорода для катализа алкилирования бензола различными алкилирующими средствами [22—24]. Представление об области и широте каталитической способности фтористого водорода можно лучше всего получить путем бол1ее полного рассмотрения работ, опубликованных к настоящему времени по каталитическому алкил ированию с помощью этого катализатора. В целях упорядочения материал разделен на реакции ароматических и алифатических соединений. [c.255]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    Гетеролитическнй, или так называемый ионный катализ, имеет место в каталитических реакциях крекинга, изомеризации, циклизации, алкилирования, деалкилирования, полимеризации углево — доро/,,ов, дегидратации спиртов, гидратации олефинов, гидролиза и мног IX других химических и нефтехимических процессах. [c.81]

    В качестве наиболее типичного примера реакций, протекающих по механизму общего кислотного катализа, являютс5с каталитические превращения углеводородов нефти, имеющие место в таких важных в нефтепереработке процессах, как катал1стический крекинг, изомеризация и алкилирование. [c.91]

    Реакции синтеза высокомолекулярных углеводородов С — ал— килированием являются обратными по отношению к крекингу алканов и потому имеют сходные механизмы реагирования и относятся к одному классу катализа — кислотному. Реакции С — алкилирования протекают с выделением 85 — 90 кДж/моль (20 — 22 ккалУмоль) тепла в зависимости от вида олефина и образующегося изопарафина, поэтому термодинамически предпочтительны низкие темшфатуры, причем уже при 100 °С и ниже ее можно считать практически необратимой. Именно в таких условиях осуществляют промышленные процессы каталитического алкилирования. Из парафинов к каталитическому алкилированию способны только изо — [c.137]


    Наиболее важными для жидкофазного катализа показателями кислот являются растворимости в них изобутана и олефинов. Рс створимость изобутана в Н ЗО невелика и приблизительно в 30 рс 3 ниже, чем в НР. Олефины в этих кислотах расворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) Нс1 много меньше концентрации олефинов, что обусловливает боль — ш/ю вероятность протекания реакций полимеризации олефинов. Э о обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно Н ЗО , обусловливает протекание реакций С —алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к повер — хиости раздела фаз. Для ускорения химических реакций С —алки — ЛР- рования в среде Н 50 и НР необходимо интенсифицировать п юцессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз. [c.140]

    Давление. При сернокислотном жидкофазном С - алкилиро— вании изменение давления не оказывает существенного влияния на п юцесс. Давление должно ненамного превышать упругость паров углеводородов сырья при температуре катализа. Обычно в реакто — рс х с внутренней системой охлаждения при С — алкилировании и обутана бутиленами давление поддерживают 0,35 — 0,42 МПа. Если сырье содержит пропан —пропиленовую фракцию, то давление в реакторе несколько повышают. [c.142]

    Часто сообщалось, что катализ хлористым алюминием низкотемпературного алкилирования ароматических углеводородов обычно сопровождается индукционным периодом [33, 209]. Однако после образования небольшого количества алкилата получается жидкий комплекс ( красное масло ) — прекрасный растворитель для хлористого алюминия. После появления такой комплексной жидкой фазы реакция протекает быстро. В заводской практике обычно готовят этот жидкий комплекс заранее и для каталитических реакций применяют хлористый алюминий, растворенный в этом комплексе (см. гл LVII). [c.432]

    Однако, несмотря на указанные достоинства, иониты в основном используются в лабораторных условиях > (реакции этерификации, гидролиза, гидратации, дегидратации, алкилирования, полимеризации, конденсации и др.). В промышленности же широкие возможности методов ионообменного катализа не нашли пока достаточного применения. Из промышленных процессов с ионитами, осуществленных или внедряемых в СССР, отметим алкилирование фе-нoлoв " , гидратацию изобутилена и дегидратацию триметилкарби-нола П -1 , синтез дифенилолпропана очистку фенолов . [c.146]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Межфазным катализом (МФК) называют ускорение реакций между химическими соединениями, находящимися в различных фазах. Как правило, это реакции между солями, растворенными в воде или присутствующими в твердом состоянии, с одной стороны, и веществами, растворенными в органической фазе, — с другой. В отсутствие катализатора такие реакции обычно протекают медленно и неэффективны или не происходят вообще. Традиционная методика проведения реакций включает растворение реагентов в гомогенной среде. Если используется гидроксилсодержащий растворитель, реакция может замедляться из-за сильной сольватации аниона. Побочные реакции с растворителем иногда снижают скорость еще больше. Часто превосходные результаты дает применение полярных апротон-ных растворителей. Но они обычно дороги, трудно отделяются после реакции и могут вести к возникновению экологических проблем при широкомасштабном использовании. Кроме того, в некоторых случаях, например при О- или С-алкилировании амбидентных анионов, полярные апротонные растворители могут в результате преобладающего образования нежелательных продуктов в заметной степени подавлять, а не промотировать реакцию. [c.12]

    Флуорен алкилируется несколько труднее, поскольку он является гораздо более слабой кислотой. Как и в случае других слабых кислот, для получения хороших результатов необходимо добавлять к реакционной смеси, включающей насыщенный алкилбромид, небольшое количество ДМСО. В этих условиях при 80—100°С образуется смесь моно- и диалкилированных продуктов [357]. Алкилирование самого циклопентадиена должно проходить легко, и оно описано в литературе, но без экспериментальных подробностей [214, 360]. Однако можно предположить, что при этом образуются сложные смеси. Катализ краун-эфирами также был использован при алкилировании индена [45]. Следует подчеркнуть, что комплексующие агенты можно использовать с большим эффектом, чем ониевые соли, в очень основных средах в отсутствие воды, поскольку ониевые соли в этих условиях распадаются слишком быстро. Дитрих и Леен [359], используя азамакробициклический полиэфир крип-тофикс[2.2.2] (5) и твердый гидроксид калия/ТГФ или амид натрия/крнптофикс[2.2.2]/ТГФ, провели депротонирование соединений, имеющих очень высокие рКа [359. В последней системе были генерированы окрашенные анионы трифенилметана и дифенилметана и получены продукты их бензилирования [c.195]

    Специально проведенными экспериментами по алкилированию при большом избытке изобутана (соотношение изобутан олефин равно 15 1) Гофман и Шрахейм [24] показали, что в процессе катализа серной кислотой имеется индукционный период , когда свежая кислота как бы разрабатывается , активность ее по общему выходу алкилата возрастает, и состав продуктов алки-лирования непрерывно изменяется. В частности, изменяется соотношение триметилпентаны диметилгексаны в алкилате. Высокое вначале, оно затем понижается и, пройдя через минимум, вновь повышается до прежней величины (к моменту полной разработки катализатора), как это видно из данных, приведенных на рис. 2. Указанные изменения состава и выхода продуктов реакции трудно объяснить, исходя только из механизма, предложенного Шмерлингом. [c.27]

    В эмульсионном катализе контакт реагирующих веществ с катализатором часто не ограничивается только зоной реактора, а продолжается и в отстойной аппаратуре с понижающейся интенсивностью в течение всего времени разложения эмульсии. При этом в связи с непрерывным изменением условий контакта возможно и изменение направления или усиление отдельных реакций. Применительно к эмульсионному процессу сернокислотного алкилирования был изучен характер разложения эмульсии во времени. Как правило, выделение углеводородной фазы из эмульсии серная кислота — углеводороды происходит во времени неразномерно. О/бычно наблюдается три характерных этапа началь- [c.83]

    Катализ в нефтехимической и нефтеперерабатывающей промышленности (пер. с англ. избранных глав тт. 4—5 и всего т. 6. фундаментальной монографии Emmet Р. Н. atalysis ). Книга 1. Органический синтез на основе нефтяного и газового сырья. Книга 2. Алкилирование, полимеризация, крекинг и гидрорефор-минг. 1961. [c.764]

    Во избежание медленного катализа твердым хлористым алю-миние этот активный каталитический ком1Плеке целесообразно готовить предварительно и потом подавать на реакцию. Кроме НС1 его образованию способствуют иебольшне добавки воды или соответствующего хлорироизводного, роль которых состоит в генерации НС1. Более приемлемо использовать НС1 или R 1, так как вода дезактивирует часть катализатора, разлагая его. По этой же причине необходимо хорошо осушать реагенты и следить, чтобы в реакционную смесь пе попадала вода, способная вызвать бурное разложение комплекса. Другими катализаторными ядами являются многие сернистые соединения и аммиак, в меньшей степени — диены и ацетилен. Следовательно, жидкая реакционная масса при алкилировании с хлористым алюминием состоит из двух фаз каталитического комплекса и углеводородного слоя. [c.243]

    Влияние строения ароматического соединения при реакциях алкилирования в общем такое же, как при других про сссах электрофильного замещения в ароматическое ядро, но имеет свои особенности. Реакция алкилирования отличается сравнительно малой чувствительностью к электронодонорным заместителям в ядре. Так, активирующее влияние алкильных групп и конденсированных ядер при катализе реакции хлористым алюминием изменяется следующим образом (для бензола величина принята за 1)  [c.244]

    Каждая из реакций при умеренной температуре является прак-тичесчи необратимой. Так, константы равновесия при синтезе этилбензола из этилена и бензола при О, 200 и 500 °С равны со-ответ твенно 6-10 , 2,2-10 и 1,9. Однако при катализе хлористым алюминием и достаточно жестких условиях катализа алюмосиликатами и цеолитами происходит обратимая реакция п е р е-алкилирования (диспропорционирование) с межмолекулярной миграцией алкильных групп  [c.245]

    Температуру алкилирования выбирают так, чтобы максимально подавлялись побочные реакции деструкции и полимеризации, но сохранялась достаточно высокая скорость процесса. При катализе сериой кислотой проводят реакцию при О—10 °С, а с безводным фтористым водородом — при 20—30°С под некоторым давлением. Алкилирование изобутана этиленом в присутствии А1С1з проводят под давлением при 50—60 °С. [c.264]

    О-Алкилирование олефинами приобрело в последнее время важнэе значение для синтеза трет-бутилметилового эфира — высокое ктанового компонента моторных топлив. Его получают из метанола и изобутилена при кислотном катализе реакции  [c.269]

    Образовавшийся ароматический спирт в условиях кислотного катализа реагирует дальше по типу процессов алкилировании спиртами и дает диарилалкан  [c.549]

    Алкилирование бензола пропиленом на твердых каталйза торах. Известны такие твердые катализаторы алкилировавйй бензола пропиленом, как фосфорнокислотный, катализаторы на основе оксидов и солей металлов, оксиды, модифицированные ВРз, аморфные алюмосиликаты, цеолиты и катиониты. Применение твердых катализаторов намного упрощает технологическую схему, позволяет автоматизировать процесс, исключает проблему коррозии аппаратуры, облегчает отделение Продуктов реакции, не требующих дополнительной очистки, Приводящей в гомогенном катализе к образованию стойких эмуль-сий и больших объемов сточных вод. Эти катализаторы мо р0 регенерировать и использовать многократно. [c.249]

    Каталитические реакции, осуществляемые в нефтеперерабатывающей промышленности, относятся как к окислительно-воостано-вительным (гидрогенизация и дегидрогенизация), так и к кислотным (каталитический крекинг, алкилирование изобутана бутенами, полимеризация олефинов). Широко применяется бифункциональный катализ (изомеризация парафиновых углеводородов, рифор-минг, гидрокрекинг). Катализ основаниями в нефтеперерабатывающей промышленности не применяется. [c.135]

    В результате больших скорости растворенйя и растворимости изобутана во фтористоводородной кислоте соотношение изобутан олефины в реакционной зоне (в пленке кислоты, в которой идет реакция) значительно выше, чем в случае серной кислоты. Поэтому роль побочных реакций при применении в качестве катализатора фтористоводородной кислоты меньше, чем при катализе серной кислотой. В результате выход основных продуктов реакции при фтористоводородном алкилировании значительно выше, чем при сернокислотном (табл. 5.1). [c.180]

    Рассматриваемые катализаторы представляют собой смешанные окислы алюминия и кремния, содержащие в качестве активатора небольшие количества воды [46]. Они получили разнообразное применение в промышленности в процессах крекинга, алкилирования, полимеризации, изомеризации и т. д. Это типичные представители кислотно-основного катализа. В процессе приготовления происходит поликонденсация гелей AI2O3 и Si02 с образованием связей —Si—О—А1—. Это не исключает наличия в алюмосиликатах и связей типа —Si—О—Si— или —А1—О—А1—. [c.106]

    Однако пока что во всем мире наиболее широко в качестве катализаторов применяют комплексные соединения хлорида алюминия с ароматическими углеводородами, несмотря на такие их существенные недостатки, как необходимость осушки сырья, образование хлористого водорода и хлорида натрия при промывке и нейтрализации алкилатов, коррозия аппаратуры и необходимость очистки сточных вод. Использование в большей мере хлорида алюминия вызвано и тем, что он является катализатором не только алкилирования, но и диспропорционирования, что снижает выход неизбежно образующихся лри алкилировании ди- и по-лиалкилнроизводных. На практике используют жидкий катализа-торный комплекс — хлорид алюминия в диэтилбензоле или в по-лиалкилбензольных фракциях, получаемых при алкилировании. Действие хлорида алюминия усиливается сокатализаторами, в качестве которых обычно используют хлористый водород или небольшие количества воды. Однако,. чтобы избежать разложения катализатора, бензол тщательно сушат перед лодачей на, алки- [c.53]

    В этой главе мы рассмотрим процессы присоединения олефиновых углеводородов к молекулам других углеводородов, в результате которых происходит внедрение алкильных групп в молекулу. Алкилирование иэобутана бутиленами, катализируемое концентрированной серной кислотой, а также безводным фтористым водородом, широко используется в промышленности для получения сильно разветвленных парафиновых углеводородов, которые представляют собой высокооктановые компоненты моторных топлив. Поскольку методы, разработанные для регулирования процесса алкилирования, позволяют познакомиться с цельол рядом обших закономерностей катализа, мы остановимся на них несколько более подробно. [c.138]

    Большинство химических превращений углеводородов нефти, имеющих практическое значение, осуществляется в присутствии катализаторов. Катализаторы позволяют снижать энергию активации химических реакций и тем самым значительно повышать их скорость. В самом общем виде в этом и заключается сущность н значение катализа. Проведение реакции в присутствии катализаторов позволяет также резко снижать температуру процесса. Для реакций, ха рактеризующихся положительным тепловым эффектом (полимеризация, гидрирование, алкилирование и др.), это имеет особо важное значение, так как высокие температуры с термодинамической точки зрения для них неблагоприятны. Следовательно, катализаторы в данном случае и ускоряют процесс, и способствуют достижению наиболее высоких равновесных концентраций. Следует, однако, не забывать, что сдвигать положение равновесия катализаторы не могут, они в равной степени ускоряют как прямые, так и обратные реакции. [c.214]


Смотреть страницы где упоминается термин Катализ алкилирования: [c.106]    [c.436]    [c.238]    [c.88]    [c.430]    [c.215]    [c.14]    [c.180]    [c.626]    [c.245]    [c.259]    [c.370]   
Общая химическая технология Том 1 (1953) -- [ c.74 , c.223 , c.224 , c.493 ]




ПОИСК







© 2024 chem21.info Реклама на сайте