Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность газа-носителя

    Селективность Газ-носитель Линейный Чувствитель- [c.75]

    Дополнительное подтверждение рассмотренной выше концепции получено в работе [64]. В опытах по Сз-дегидроциклизации н-гептана, проведенных в проточной системе без газа-носителя и в интенсивном токе водорода (10 л/ч), селективность циклизации по направлениям 1 и 2 заметно различалась. Действительно, отношение диметилциклопентанов к этилциклопентану с указанным изменением условий проведения эксперимента выросло с 0,35—0,5 до 0,6—0,95 в импульсном режиме при той же температуре (300 °С) это отношение составляло 1,25—1,3. Таким образом очевидно, что степень насыщения поверхности платинированного угля водородом в существенной мере влияет на селективность протекания реакцин Сз-дегидроциклизации н-гептана в присутствии этого катализатора. [c.218]


    В импульсном каталитическом микрореакторе (рис. 123) [15] через систему пропускают с постоянной скоростью газ-носитель (инертный газ или один из реагентов). В газ-носитель до реактора вводят реагент. Из реактора газ-носитель поступает в термостатированную колонку газового хроматографа и затем в детектор. Метод позволяет за короткий срок оценить относительную активность и селективность большого числа катализаторов при различных температурах. [c.291]

    Природа газа-носителя может оказать также влияние на селективность адсорбента, если газ-носитель обладает определенным адсорбционным сродством к выбранному адсорбенту. Влияние скорости газа-носителя на эффективность колонки также уже рассмотрено. [c.60]

    В отличие от газовой хроматографии, в которой подвижной фазой служит газ-носитель, выполняющий лишь функцию переносчика вешества и влияющего только на эффективность колонки, в жидкостной хроматографии в функцию подвижной фазы входит еще и влияние на селективность колонки. Это свойство подвижной жидкой фазы имеет первостепенное значение для ЖАХ, так как оно позволяет достигать оптимальных условий разделения не только выбором соответствующего селективно действующего адсорбента, что не всегда просто, но и подбором системы растворителей, действующих селективно. [c.79]

    Следует отметить, что при обычных давлениях влияние природы газа-носителя на коэффициент селективности Кс в газо-жидкостной хроматографии практически отсутствует, так как коэффициент Генри зависит не от природы газа, а только от свойства жидкости. В случае газо-адсорбционной хроматографии природа газа-носителя может оказать влияние на селективность адсорбента, если газ-носитель обладает определенным адсорбционным сродством к выбранному адсорбенту. [c.53]

    Повышение давления до значительных величин порядка сотен атмосфер, а в отдельных случаях даже до нескольких атмосфер вызывает дополнительный эффект, связанный с межмолекулярным взаимодействием анализируемых веществ с газом-носителем. В этом случае газ-носитель перестает играть роль только лишь переносчика вещества и, следовательно, его природа начинает оказывать воздействие на коэффициент Генри и величину удерживаемого объема. Таким образом, повышая давление, можно подобрать такие условия опыта, которые увеличат селективность неподвижной фазы за счет изменения коэффициента Генри. [c.56]


    Итак, выбор газа-носителя должен обеспечивать соответствие его физических свойств получению высокой эффективности колонки, принципу действия и достаточной чувствительности детектора, а при значительных давлениях — и высокой селективности. Оптимальная скорость газа-носителя устанавливается экспериментально. [c.59]

    Основные факторы, определяющие разделительную способность газо-жидкостной колонки а) правильный выбор жидкой фазы, т. е. такой, которая была бы наиболее селективна по отношению к разделяемым компонентам смеси б) правильный выбор режима разделения (размер колонки, ее температура, скорость потока газа-носителя, количество вводимой в колонку анализируемой смеси И Т. д.). [c.105]

    Для получения вакантной хроматограммы можно использовать любой хроматограф с проточными камерами детектора. Вакантная хроматография имеет ряд практических преимуществ перед обыкновенной газовой хроматографией. Так как анализируемая смесь непосредственно пропускается через слой сорбента, а дозировка осуществляется по объему газа-носителя, то резко упрощается и уточняется операция дозировки. Исчезает необходимость в применении специальных материалов для изготовления дозаторов. Устраняется возможность термического разложения анализируемых неустойчивых соединений в дозаторах обычной конструкции. Допускается применение более активных сорбентов, что приводит к большей селективности разделения. [c.20]

    Вторая группа параметров включает в себя кинетические и диффузионные параметры хроматографического опыта, определяющие процесс размывания хроматографической полосы и не связанные с селективностью непосредственно. К этим параметрам относятся размеры колонки (длина слоя сорбента и поперечное сечение колонки) размер и форма частиц сорбента давление, скорость потока природа газа-носителя температура колонки количество вводимой в колонку анализируемой смеси (доза) и способ ее введения содержание неподвижной жидкой фазы в колонке или эффективная толщина пленки неподвижной жидкой фазы, давление. Совокупность параметров хроматографического опыта, входящих во вторую группу, от которых, так же как и от селективности, зависит качество разделения, условно (для отличия от селективности) можно назвать общим термином — эффективность. Эффективность выражается высотой, эквивалентной теоретической тарелке (ВЭТТ), или числом тарелок N. [c.128]

    В лекции 1 был описан непористый неспецифический адсорбент— графитированная термическая сажа, важный для газовой хроматографии веществ, различающихся по геометрии молекул, в частности, структурных изомеров. Однако гранулы из частиц этого адсорбента непрочны, так что проницаемость колонны при большом перепаде давления газа-носителя может изменяться во времени. Кроме того, энергия неспецифического межмолекулярного взаимодействия молекул с ГТС из-за высокой концентрации атомов (углерода в графитовых слоях настолько велика, что для разделения, например, изомерных терфенилов (см. табл. 1.3), надо повышать температуру колонны с ГТС до 350°С и выше. Вместе с тем, будучи хорошим адсорбентом для разделения молекул с различной геометрической структурой, ГТС менее чувствительна к различиям электронной конфигурации молекул, наличию в них электрических и квадрупольных моментов. Гранулы специфических адсорбентов, состоящих из кристаллов солей, обладающих высокой селективностью по отношению к молекулам, различающимся по электронной конфигурации (см. рис. 2.1), также часто механически непрочны. Гранулы же силикагелей, силохромов и пористых стекол достаточно прочны, но это аморфные адсорбенты, и их поверхность в той или иной степени геометрически и химически неоднородна (см. рис. 3.3, 3.7 и 3.12). Кроме того, промышленные образцы этих адсорбентов часто содержат примеси, образующие при дегидратации поверхности сильные электроноакцепторные центры (см. раздел 3.12). [c.75]

    В жидкостной хроматографии имеются большие возможности управления селективностью разделения, чем в газовой хроматографии при применении практически неадсорбирующегося газа-носителя. За счет влияния жидкого элюента удерживание дозируемых веществ и селективность их разделения может определяться значительно большим разнообразием различных видов межмолекулярных взаимодействий. Здесь можно реализовать случаи, когда удерживание определяется преимущественно специфическим взаимодействием дозируемого вещества с адсорбентом при [c.286]

    Газообразные углеводороды разделяются вследствие высокой селективности выбранной жидкой фазы. При пропускании газа-носителя через колонку, содержащую анализируемую смесь, каждый компонент выходит последовательно один за другим. [c.70]


    Кроме высокой селективности и чувствительности к серу-и фосфорсодержащим веществам достоинствами ПФД являются его быстрый выход на режим при изменении температуры колонки и скорости газа-носителя. Высокая селективность детектора позволяет работать с программированием температуры при больших скоростях без существенного смещения нулевой линии. [c.74]

    При работе с детектором следует иметь в виду, что его характеристики реализуются только с чистым бескислородным азотом или аргоном с 5 % метана. Чувствительность ДПР обратно пропорциональна расходу газа-носителя. Селективность к насыщенным галогенсодержащим углеводородам составляет не менее 10 . Рекомендуется поддерживать температуру ВК примерно на 30— 50 С выше, чем температура колонки, чтобы исключить возможность конденсации веществ в детекторе и загрязнения радиоактивного источника N1. Существенное значение для достижения высокой чувствительности и низкого предела детектирования ДПР имеет тщательная тренировка аналитической колонки до получения уровня фонового сигнала не выше (3—5) 10 " А, В оптимальном режиме работы достижим предел детектирования на уровне [c.129]

    Эффективность колонки и селективность неподвижной фазы. Способность колонки к разделению зависит от ее эффективности и селективности НФ. Эффективность колонки определяется расширением хроматографического пика по мере прохождения вещества через колонку. Она зависит от кинетики процессов в колонке и оценивается ВЭТТ, которая в свою очередь зависит от скорости газа-носителя, процессов диффузии и сопротивления массообмену. Расчет ВЭТТ является наиболее предпочтительной мерой эффективности колонки. Селективность НФ связана с взаимодействием растворенного вещества с растворителем и определяет относительное положение пиков анализируемых веществ на хроматограмме. Мерой селективности колонки является расстояние между максимумами двух пиков чем оно больше, тем селективнее колонка. Количественно селективность данной колонки оценивают величиной коэффициента разделения (а) для данных двух компонентов [c.335]

    Согласно требованию (б) в качестве газа-носителя лучше всего применять водород. Большая величина коэффициента диффузии водорода не оказывает отрицательного влияния на эффективность разделения при высоких скоростях газа-носителя. По (в) предпочтение следует отдать наиболее селективной неподвижной фазе. Увеличивать относительное удерживание путем понижения температуры колонки нельзя, потому что это ведет к экспоненциальному увеличению продолжительности анализа. [c.67]

    В табл. 4 приведены сравнительные данные по определению критерия разделения и времени анализа нормальных алканов на капиллярной колонке длиной 143 м с полиэтиленгликолем (Штруппе, 1966) при различных рабочих условиях. Значения критериев разделения 22 и 3 (критерий разделения, отнесенный к времени), соответствующие программированию давления, больше таких же величин, полученных в изотермических условиях при постоянной скорости потока и в условиях программирования температуры. Это доказывает целесообразность применения программирования давления газа-посителя. Правда, программирование газа-носителя ограничено техническими возможностями аппаратуры. Едва ли возможно изменять давление на входе в колонку больше 10 ат. Так как между временем удерживания и обратной величиной средней скорости газа-носителя существует лишь линейная, а не логарифмическая зависимость, программирование газа-носителя меньше влияет на вид хроматограммы. Для получения постоянной разницы в величинах удерживания для членов гомологического ряда необходимо экспоненциальное увеличение давления. Однако, когда задача разделения требует применения полярной и специфически селективной неподвижной фазы, не выдерживающей высокой рабочей температуры, или анализируемая проба термически не стабильна, анализ с программированием газа-носителя более предпочтителен. [c.352]

    Применяемые в качестве неподвижной фазы растворители должны быть нелетучи и обладать возможно низкой вязкостью. Они не должны вступать в химические (необратимые) реакции с разделяемыми веществами и газом-носителем. Выбор подходящего растворителя (с наибольшей селективностью) имеет решающее значение в газо-жидкостной хроматографии. Для правильного выбора растворителя необходимо знать величины объемов удерживания разделяемых компонентов. Величины объемов удерживания являются постоянными величинами для данного растворителя при соблюдении определенных условий измерения. [c.63]

    Когда разрабатывали газовую хромато-масс-спектрометрию, ГХ-разделения проводили на набивных колонках со скоростями потока порядка 60 мл/мин и выше. Такая скорость потока несовместима с высоким вакуумом масс-спектрометрической системы. Решающим моментом коммерческого успеха гибридных ГХ-МС-систем было создание подходящего интерфейса, позволяющего преодолеть зто ограничение. Требования к интерфейсу состоят в следующем возможность снижения объемной скорости потока с ГХ-колонки до такого уровня, чтобы можно было поддерживать высокий вакуум масс-анализатора селективное отделение газа-носителя сохранение ненарушенными результатов хроматографического разделения. [c.600]

    Сущность работы. Вследствие высокой селективности выбранной жвдкой фазы нанесенная на колонку смесь газообразных углеводородов разделяется, причем каждый компонент выходит последовательно один за другим. По выходе из колонки газ-носитель, содержащий анализируемые компоненты, проходит детектор, причем возникающий в нем импульс преобразуется и записывается на ленте самописца в виде хроматографического пика. По высотам или площадям пиков одни(4 из разобранных в гл. IV методов определяют количественное содержание каждого компонента смеси. [c.220]

    Еще большие чувствительность и селективность имеет детектор электронного захвата (ДЭЗ), принадлежащей к тому же классу ионизационных детекторов. Как следует из самого названия этого детектора, он работает по принципу поглощения электронов анализируемым соединением, что выдвигает определенные требования к структуре этих соединений. В ДЭЗ молекулы газа-носителя ионизуются под действием /3-излучения. Ионизация порождает тепловые электроны, которые вызывают стабильный фоновый ток, если к ячейке ДЭЗ приложена разность потенциалов. Если элюируемые из колонки соединения способны захватывать электроны, величина фонового тока понижается и на самописце появляется соответствующий сигнал. ДЭЗ, которые первоначально были использованы для высокочувствительного обнаружения галогенированных углеводородов, прекрасно зарекомендовали себя и при обнаружении производных аминов, амино- и оксикислот и других подобных соединений. Галогенированные ацилирующие агенты, преимущественно перфторированные, служат для введения электронозахватных групп в амино- и оксикислоты путем образования летучих амидов и эфиров. Чувствительность ДЭЗ зависит главным образом от структуры анализируемого соединения. Основное требование — это способность соединения принимать отрицательный заряд вследствие электронного захвата. Соответственно при помощи этого детектора можно обнаруживать галогенированные и нитроароматические соединения, многоядерные ароматические углеводороды и сопряженные карбонильные соединения. [c.55]

    Чаще других селективных детектирующих устройств при изучении ГАС применяются, по-видимому, микрокулонометрические детекторы (1У1КД), основанные на титровании элюируемых веществ или продуктов их деструкции. Так, ]У[КД с прямым титрованием ионами Ag+ использован. при анализе состава меркаптанов, содержащихся в бензине [294]. Распределение индивидуальных меркаптанов, сульфидов, тиофенов в нефтяных дистиллятах исследовалось путем непрерывного сожжения элюата в токе инертного газа-носителя и микрокулонометрического титрования образующейся ЗОа иодом [295, 296]. При изучении состава азотистых компонентов фракции 200—400°С элюа.ты каталитически восстанавливались, и генерирующийся аммиак также определялся с помощью МКД 140]. [c.35]

    На рис. 3 изображена схема, использованная в лаборатории автора. Применение байпасной линии позволяет широко варьировать время пребывания углеводородов на поверхности катализатора. Описанный метод с успехом был применен для получения равновесных смесей стереоизомеров в углеводородах различного строения с т. кип. до 250° С. Для более высококинящих углеводородов лучше использовать жидкофазную изомеризацию в стальных капсулах, позволяющих выдерживать давление водорода 5—Юати. Наиболее эффективным катализатором являются платина и палладий, нанесенные в количестве 2—3% на диатомито-вый кирпич. Использование этого катализатора в интервале 500—600° К (227—327° С) позволило осуществить равновесную конфигурационную изомеризацию весьма селективно, без значительного протекания побочных реакций. При работе с микрореактором необходимым условием является использование в качестве газа-носителя водорода, так как присутствие инертных газов тормозит конфигурационную изомеризацию [20]. [c.11]

    Для быстрого анализа газообразных и жидких продуктов могут быть успешно использованы насадочные хроматографические колонки малого диаметра (1 мм), сочетающие достоинства капиллярных и обычных насадочных колонок [76]. Эти колонки, в отличие от капиллярных, обладают высокой воспроизводимостью. Увеличение сорбционной поверхности, а также уменьшение мертвого объема колонки позволяет повысить коэффициент селективности без снижения ВЭТТ. Преимущества микронабивных колонок по сравнению с обычными насадочными состоят в том, что уменьшение внутреннего диаметра колонки позволяет резко сократить время анализа, уменьшить влияние стеночного эффекта на -размытие пиков, использовать высокие скорости газа-носителя без снижения эффективности. [c.119]

    По аналогичному принципу работает и детектор по плотности. Различие плотностей потоков газа-носителя с анализируемым веществом и чистого газа-носителя вызывает изменение температуры нагретых электрическим током чувствительных элементов и их соиротивлеиия. Сигнал плотномера зависит от молеку-лярион массы, поэтому такие детекторы позволяют определять компоненты неизвестного состава без предварительной калибровки. Детектор сочетает в себе свойства универсальности и селективности и может быт ) также использован для анализа агрессивных и неустойчивых веществ. [c.300]

    Влияние неидеальности газа-носителя при высоких давлениях изучалось Голдапом и др., которые показали, что при давлениях выше 10 атм замена одного газа другим приводит к изменению селективности колонки. Приведенные на рис. 20 хроматограммы смеси углеводородов иллюстрируют этот эффект. Они получены на одной и той же капиллярной колонке (длина 270 м, диаметр 0,15 мм) с различными газами-носителями при давлении на входе свыше [c.57]

    Производительность (Я) препаративной газо-хроматографиче-ской колонки непосредственно связана с ее эффективностью (ВЭТТ), селективностью сорбента, длиной колонки, скоростью потока газа-носителя. Как и ВЭТТ, величина Я — важнейшая характеристика колонки. Производительность можно выражать как допустимым количеством смеси , которое можно разделить в единицу времени с заданными критериями разделения, так и по количеству целевых продуктов, получаемых в единицу времени с заданной степенью чистоты. Тот или иной компонент разделяемой смеси при улавливании его в ловушке, погруженной в хладагент, конденсируется не полностью. Поэтому одна из важных характеристик производительности — выход целевого продукта. Это есть количество целевого продукта в процентах от его абсолютного содержания в пробе разделяемой смеси, вводимой в колонку за один цикл работы  [c.211]

    Особо селективные жидкие фазы по отношению к некоторым соединениям. Растворы нитрата серебра в полиэтиленгликоле, полипропилен-гликоле и бензилцианиде. Бензилцианид не гигроскопичен и не требует применения сухого газа-носителя, В этом его преимущество по сравнению с гликолями. Максимальная рабочая температура колонкн 40° С. Ион серебра в AgNOs способен как акцептор электронов проявлять донорно-акцепторное взаимодействие с олефинами, ароматическими соединениями и селективно удерживать их в колонке, Наблюдается хорошее разделение цис- и транс-олефинов. Парафины не задерживаются этим адсорбентом и быстро проходят через колонку. [c.283]

    Так как доля свободного сечения колонки, приходящаяся на газ-носитель (х), постоянна для выбранной колонки, то при изучении влияния количества жидкой фазы на критерий селективности Р1ужно варьировать только величину у. при постоянных значениях Л г и К. При этих условиях, согласно (VHI.9), с уменьшением содержания жидкой фазы, т. е. Х , критерий Ксш уменьшается. [c.203]

    Производительность (П) препаративной газо-хроматографической колонки непосредственно связана с ее эффективностью (ВЭТТ), селективностью сорбента, длиной колонки, скоростью потока газа-носителя. Как и ВЭТТ, производительность — важная [c.276]

    Рассмотренное влияние на разрешфие хроматографической колонны разных факторов показывает, что газовая хроматография может успешно применяться для определения констант Генри как одного вещества, так и сразу нескольких компонентов смеси, если при достаточно высокой селективности а и емкости к обеспечивается необходимая эффективность колонны (большие М, малые Н). Этому способствует приближение условий работы колонны к равновесным (достаточно высокая температура колонны, однородность адсорбента и его упаковки, не слишком большие энергии адсорбции). Таким образом, для реализации селективности колонны, определяемой природой данного адсорбента, необходимо позаботиться о возможно большей ее эффективности. Определение констант Генри и изотерм адсорбции хроматографическим методом требует обеспечения равенства и постоянства температуры подводимого к колонне газа-носителя и температуры самой колонны, поддержания постоянства и измерения Т, I, w, р и Ро (см. раздел 7.8) с максимальной точностью, а также соблюдение необходимых предосторожностей при вводе малых доз адсорбатов. [c.140]

    Предложены методы определения цинка, таллия, кадмия, свинца, мышьяка, висмута, галлия, германия, нндия, сурьмы, олова, теллура в различных труднолетучих веществах. Метод имеет большие потенциальные возможности при использовании селективной отгонки, если сначала вводится реакционный газ, а затем газ-носитель. [c.199]

    Для селективного детектирования фосфорсодержаш.и> ве1цр. тв с оптимальным соотношением сигнал/шум температура соли должна быть на уровне 490 при расходах водорода 14—20, воздуха 180—220 и газа-носителя 25—30 см- /мин. Для обнаружения азотсодержащих соединений рекомендуются температура 510—520 °С и расходы водорода 10—12, воздуха 150—180, га а-носителя 35—40 см /мин. [c.126]

    Водород, нанример, при применении в качестве газа-носителя восстанавливает при повышенных температурах 2,4,7-тринитрофлуоренон, используемый для разделения производных нафталина нри этом селективность 2,4,7-тринитрофлуоренона резко уменьшается (Норман, 1958). При применении воздуха и других газов-носителей, содержащих кислород, существует опасность окисления чувствительных к кислороду неподвижных фаз, причем последние часто превращаются в менее эффективные для разделения соединения. Таким реакциям способствует распределение неподвижно фазы в виде тонкого слоя на большой поверхности. В этих случаях приходится либо заменять одну неподвижную фазу другой, менее окисляемой, либо применять газ-носитель, не содержащий кислорода. [c.91]

    ПСЕВДООЖИЖЕННОГО СЛОЯ МЕТОД (метод кипя-шего слоя), используют для исследования гетерог. (гл. обр. экзотермических) каталитич. р-ций, определения активности и селективности катализатстов. При этом исходное в-во или смесь в-в пропускают (ооычно вместе с инертным газом-носителем) снизу через термостатируемый реактор с катализатором, к-рый состоит из частиц размером в неск. десятков мкм. При достаточно больших линейных скоростях потока частицы катализатора оказываются во взвеш. состоянии (см. Псевдоожижение). Интенсивное перемешивание катализатора и реагирующей смеси в зоне р ции приводит к практически полному выравниванию конц. в-в, уменьшает градиенты т-ры, улучшает условия массообмена. С помощью П. с. м. обычно определяют зависимость скорости процесса от времени пребывания в-ва в зоне р-ции для анализа смеси в-в, выходящих из реактора, использ. хроматографич., спектральные, электрохим. и др. методы. Затем определяют зависимость скорости процесса от конц. реагентов и продуктов в зоне р-ции и вычисляют константу скорости.  [c.486]

    Одним из решений этой проблемы является так называемая многоступенчатая хроматография, при которой работают с двумя и более колонками, соединенными последовательно [219]. Отдельные колонки могут отличаться друг от друга как по температуре, так и по виду наполнителя. При высокой температуре на первой колонке хорошо делятся наиболее высококипящие компоненты смеси, и результаты разделений регистрируются. Неразделенные или частично разделенные низкокипящие компоненты направляются в следующую колонку, находящуюся при более низкой температуре при наличии еще более летучих неразделенных компонентов они могут быть разделены на еще более холодной третьей колонке и т. д. На этом принципе основан, например, трехступенчатый хроматограф фирмы Перкин — Эльмер . Другая модификация такого прибора выпущена фирмой Консолидейтед (модель 26-202). В ней используется короткая первичная колонка, которая служит для задержания наименее летучих компонентов смеси. Если в задачи исследования не входит анализ нелетучих компонентов, то их можно током газа-носителя через отдельную линию удалить из колонки, после чего прибор готов для дальнейших анализов. Используя последовательно соединенные колонки с различными наполнителями, можно достигнуть комбинированного эффекта разделения. Например, последовательным соединением колонок с полярным и неполярным наполнителями можно добиться разделения как по полярности, так и по температурам кипения. Принципы подбора наиболее выгодных комбинаций и наиболее селективных неподвижных фаз рассмотрены в работах [31, 152, 204, 224]. Другая возможность состоит в употреблении смешанных неподвижных фаз (см., например, [187]). [c.518]

Рис. 14.2-2. Демонстрадия селективности, достигаемой химической ионизацией (отрицательно заряженные ионы) по сравнению с ионизацией электронным ударом (положительно заряженные ионы) для анализа экстракта почвы на бифенилы, а — общий ионный ток (ОИТ) в режиме электронного удара, при котором очевидно серьезное мешающее влияние комплексной матрицы б — ОИТ того же экстракта при детектировании отрицательно заряженных ионов в режиме химической ионизации с метаном. Хроматографические условия температура инжектора 250° С, объем пробы 1 мкл (без деления потока), колонка DB 5ms, 15 мх0,25 ммх 0,25 мкм, газ-носитель — гелий (0,3 бар), температура термостата 60°С (1 мин) —> 20°С/мин —> 280°С (10 мин), температура источника 250°С (электронный удар), 140°С (химическая ионизация) [14.2-2]. Рис. 14.2-2. Демонстрадия селективности, достигаемой <a href="/info/141302">химической ионизацией</a> (отрицательно <a href="/info/1038927">заряженные ионы</a>) по сравнению с <a href="/info/141594">ионизацией электронным ударом</a> (положительно <a href="/info/1038927">заряженные ионы</a>) для <a href="/info/1661090">анализа экстракта</a> почвы на бифенилы, а — <a href="/info/133026">общий ионный</a> ток (ОИТ) в режиме <a href="/info/18290">электронного удара</a>, при котором очевидно серьезное мешающее <a href="/info/1185677">влияние комплексной</a> матрицы б — ОИТ того же экстракта при детектировании отрицательно <a href="/info/1038927">заряженных ионов</a> в режиме <a href="/info/141302">химической ионизации</a> с метаном. <a href="/info/40771">Хроматографические условия</a> <a href="/info/1610206">температура инжектора</a> 250° С, <a href="/info/426654">объем пробы</a> 1 мкл (без <a href="/info/393253">деления потока</a>), колонка DB 5ms, 15 мх0,25 ммх 0,25 мкм, газ-носитель — гелий (0,3 бар), <a href="/info/1020959">температура термостата</a> 60°С (1 мин) —> 20°С/мин —> 280°С (10 мин), <a href="/info/139335">температура источника</a> 250°С (<a href="/info/18290">электронный удар</a>), 140°С (химическая ионизация) [14.2-2].
    Атомно-эмиссионное детектирование основано на том, что хроматографический элюат вводят в плазму, подцерживаемую в инертном газе, где проходит полная атомизация, а атомы и ионы, образующиеся в плазме, возбуждаются и излучают свет. Для варьирования селективности используют различные типы плазмы. Среди них плазма, индуцированная микроволновым полем (МИП), поддерживаемая в гелии или аргоне, прямая проточная аргоновая плазма (ППП), индуктивно-связанная аргоновая плазма (ИСП), емкостно-связанная плазма и емкостно-стабилизированная плазма. Из всех этих вариантов гелиевая плазма, индуцированная микроволновым полем, наиболее предпочтительна по следующим причинам. Эта плазма работает при атмосферном давлении, что сильно упрощает соединение с ГХ-системой. Требуемые скорости потока находятся в диапазоне 30-300 мл/мин, т. е. значительно ниже, чем, например, в случае ИСП. Использование гелия в качестве газа для плазмы также удобно, поскольку он обычно выступает в качестве газа-носителя в ГХ и особенно потому, что он обеспечивает более простой спектральный фон и значительно более высокую энергию возбуждения, чем аргон (энергия ионизации [c.614]

    Верхняя часть этого устройства является классическим устройством ввода с делением/без деления потока в ней имеются вводы для газа-носителя и газа для обдз вки мембраны. Разработаны также безмембранные устройства [62, 63]. Верхняя часть узла ввода независимо от его констрзтсции всегда остается холодной. Проба вводится в стеклянный вкладыш при холодном устройстве ввода пробы. После удаления иглы шприца нагревают трубку испарителя. В результате происходит испарение растворителя и анализируемых веществ. Нагрев трубки ос тцествляется при помощи электричества (рис. 3-42) или предварительно нагретого сжатого воздуха. В зависимости от констрзтсции нагрев узла может быть стремительным [58,59] либо при постепенном линейном подъеме температуры с определенной скоростью (2-12 град/с) [63]. Использование таких устройств позволяет оптимизировать условия анализа термически неустойчивых соединений, работать в режиме отдувки растворителя, что важно при селективном детектировании с помощью ЭЗД или масс-спектрометра, осуществлять концентрирование с использованием многократного ввода. С помощью вентиля делителя потока можно работать как в режиме деления потока, так и без деления. Во время анализа или после него камеру испарителя охлаждают воздухом или диоксидом углерода. Иосле этого можно вводить следующую пробу. Охлаждение камеры испарителя занимает 1-5 мин. Ниже кратко рассмотрены основные режимы — холодный ввод пробы с делением потока, ввод с удалением растворителя и холодный ввод без деления потока. [c.62]


Смотреть страницы где упоминается термин Селективность газа-носителя: [c.26]    [c.129]    [c.119]    [c.302]    [c.626]    [c.909]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.95 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция газа-носителя, влияние на селективность



© 2025 chem21.info Реклама на сайте