Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платиновые катализаторы синтез HN

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    Этот метод получения применим для синтеза первичных алкильных эфиров молочной кислоты, но он дает неудовлетворительные результаты при синтезе ее р-металлилового эфира, так как сильная минеральная кислота является катализатором перегруппировки металлилового спирта в изомасляный альдегид. Метиловый эфир молочной кислоты можно удобно (с 80—85%-]1ым выходом) синтезировать нагреванием 1 моля полимера, полученного конденсацией молочной кислоты, с 2,5—5 молями метилового спирта и небольшим количеством серной кислоты при 100° в течение 1—4 час. в толстостенной склянке, например, в такой, какие используются для каталитического гидрирования с применением платинового катализатора. [c.17]

    Активность катализатора определяет собой степень ускорения данной реакции по сравнению с протеканием ее без катализатора при тех же условиях. Так, например, скорость окисления сернистого газа на платиновом катализаторе при / = 500—600° С увеличивается в сотни тысяч раз ( 10 раз) по сравнению со с1<оростью этого процесса, протекающего без катализатора, на ванадиевых — несколько меньше, а на железных—еще меньше реа.кция окисления аммиака до окиси азота без катализаторов ничтожно мала, в присутствии же платино-радиевых катализаторов она ускоряется в миллионы раз и заканчивается в десятитысячные доли секунды если реакция синтеза аммиака при 450° С и давлении 300—500 атм достигает равновесного состояния без катализатора через несколько часов, то в присутствии одних катализаторов при тех же условиях равновесие наступает через несколько минут, в присутствии других — через несколько секунд, в присутствии третьих процесс синтеза заканчивается и доли секунды. [c.230]

    Газы, образующиеся в результате наиболее распространенных в настоящее время каталитических риформинг-процессов, мало интересны с точки зрения их пригодности в качестве исходного материала для промышленности органического синтеза, так как они почти не содержат олефинов. В табл. Зв приведены результаты крекинга методом платформинга (при 450° и 50 ат) в присутствии водорода и платинового катализатора. [c.30]

    Изучено влияние различных условий синтеза углеродного материала на его фазовый состав. Синтез углеродного материала проводили из смеси метан-воздух, либо из смеси H2- O-N2 ( та же смесь метан-воздух, пропущенная через платиновый катализатор) или из паров метанола. Кроме состава исходной газовой смеси менялся материал катодов. [c.93]


    Переходные металлы являются активными катализаторами в подавляющем большинстве окислительно-восстановительных реакций. Железо, например, является классическим катализатором синтеза аммиака. Кобальт, никель, медь и металлы платиновой группы проявляют высокую активность в процессах гидрирования и дегидрирования, а также окисления. Серебро является практически единственным катализатором парциального окисления (например, этилена до его окиси). [c.429]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    Побочный водород риформинга. Для использовапия побочного газа с высоким содержанием водорода, образующ егося при риформинге на платиновом катализаторе, в качестве сырья в производстве жидкого аммпака или в некоторых каталитических процессах нефтепереработки требуется эффективная его осушка. На установках синтеза аммиака присутствие воды приводит к вымерзанию или образованию гидратов в низкотемпературных узлах секции очистки, что ухудшает условия теплопередачи и гидравлические характеристики аппаратуры. При каталитических процессах нефте- [c.80]

    Активным катализатором при этом является платина. Реакция не сопровождается образованием побочных продуктов. По литературным данным [81, 82] выход цианистого водорода превышает 80% на введенный аммиак и 91% на метан. Реакция эндотермична. Высокая температура, необходимая для инициирования и дальнейшего протекания реакции, должна поддерживаться при помощи внешнего обогрева. Полузаводская установка с применением обогреваемого газом реактора, содержащего керамические трубы, облицованные платиновым катализатором, эксплуатировалась в ФРГ [6]. Установлено [3, 4], что если наряду с метаном и аммиаком реакционная смесь содержит кислород, то цианистый водород получается с несколько меньшим выходом, но реакция протекает без необходимости дополнительного обогрева вследствие положительного теплового эффекта ее. Эту реакцию синтеза цианистого водорода можно представить уравнением [c.224]

    Подготовленную таким образом окись азота смешивают с водородом и смесь направляют в реактор синтеза 5, заполненный суспензией мелкодисперсного платинового катализатора в серной кислоте Образовавшийся раствор гидроксиламинсульфата отбирают через фильтр 6, катализатор смывают с фильтра раствором серной кислоты, возвращая его в виде суспензии в реактор 5. Газы после реактора 5, содержащие избыточный водород и окислы азота, выводятся на факел [c.143]

    Отравление катализатора в большинстве случаев происходит в результате адсорбции яда на иоверхности. Таким образом, механизм отравления- аадинег, чается в блокировке, активных участков катализатора. Посколь-, ку адсорбция может быть как обратимой, так и необратимой,-различают обратимое и необратимое отравление. Так, платиновый катализатор Отравляется СО и СЗг, однако при внесении его в чистую смесь исходных веществ (газообразных) происходит десорбция яда, и активность восстанавливается. При отравлении же НгЗ и РНз платина полностью дезактивируется. На рис. ХП, 6 показана кинетика обратимого отравления парами воды железного катализатора нри синтезе аммиака. При про-нускагши влажного газа активность катализатора снижается примерно в 6 раз, а нри пропускании сухой смеси азота с водородом активность в течение часа восстанавливается до исходной величииы. [c.300]

    Платиновый катализатор весьма чувствителен к действию различных примесей газообразных и твердых (пыли) веществ. Особенно вредным является углерод, образующийся при разложении нестойких в условиях синтеза углеводородов. Катализатор отравляется необратимо под влиянием этилена, пропилена и высших олефинов и особенно при наличии в газе 0,1% ацетилена. Присутствие в газе до 0,1% сероводорода приводит к обратимому отравлению катализатора. В отсутствие сероводорода в газе катализатор, ранее отравленный сероводородом, быстро восстанавливает свою активность. Содержание окисн углерода до 8—10% не оказывает влияния на действие катализатора, а присутствие водорода в некоторой степени благоприятно сказывается на работе катализатора, предотвращая отложение углерода на его поверхности Резкое снижение активности катализатора происходит при попадании на него л<елеза, меди, свинца, а также при содержании в газе ничтожных количеств (0,00001%) соединений фосфора и мышьяка. Поэтому исходные реагенты — метан, аммиак и воздух — тш.а- [c.482]


    Впервые явление катализа было открыто в 1806 г. Н. Клеманом и Ш. Дезормом в камерном процессе получения серной кислоты. Они установили каталитическое действие оксидов азота на скорость окисления SO . В конце XIX в. промышленным методом получения серной кислоты стал контактный способ, основанный на окислении SOj кислородом в присутствии платинового катализатора. В настоящее время вместо дорогостоящих платиповых катализаторов успешно работают оксидные смеси (например, VjOj с K2SO4). Каталитическим способом проводят промышленный синтез аммиака (N ) + 3 (Н ) —> 2 (NH.,), где в качестве катализатора используют железо, промо-тированное оксидами алюминия и калия. Синтез азотной кислоты осуществляют с помощью каталитического окисления аммиака в присутствии платинового катализатора. [c.179]

    Платина как катализатор. П. является первым известным гетерогенным катализатором, изученным еще в начале 19 в. Г. Дэви и И. До-берейнером (см. Катализ), и одним из наиболее активных из изученных катализаторов при отнесении каталитич. активности к единице уд. поверхности. Особенно широко ее используют в окислительно-восстановительных реакциях. Наиболее крупнотоннажные произ-ва, где применяют платиновые катализаторы синтез серной к-ты окислением сернистого газа и синтез азотной к-ты, протекающий через стадию окисления аммиака. В первом из названных процессов применяют дисперсную П., к-рую наносят на пористые тела — носители асбест, Mg804, силикагель и др. Для окисления 80, П. является наиболее активным [c.38]

    Ф. Эндтер недавно описал промшпленныхт способ синтеза синильной кислоты из метана и аммиака без участия кислорода над платиновым катализатором с 80—90%-ным выходом [57]. [c.148]

    В годы послевоенных пятилеток в переработку нефти были внедрены новые вторичные процессы—каталитический крекинг, каталитический риформинг на платиновом катализаторе, гидро-очистка дистиллятов, — позволивн ие улучшить качество нефтепродуктов, значительно увеличить производство топлив, углеводородного сырья для органического синтеза. Широкое развитие получило промышленное использование нефтяного сырья для производства синтетических жирных кислот, синтетического спирта, полиолефинов, искусственных волокон, синтетического каучука, минеральных удобрений. Применени( нефтяного сырья позволило высвободить значительные количестг а пишевых продуктов (зерна, картофеля, жиров), которые ранге расходовались на технические цели. [c.18]

    Для гидрирования на никелевых и платиновых катализаторах до сих пор применялись лишь высшие сорта бензола — для синтеза I сорт , особо чистый и высокой чистоты (табл. 13) с исключительно низким содержанием серы. В последнее время требования к качеству бензола для этих процессов еще более ужесточились [30, 31]. Недавно введенные стандарты (табл. 14 и 15) предусматривают для бензолов высшей очистки дальнейшее снижение содержания серы и введение ограничений по содержанию некоторых насыщенных углеводородов. [c.120]

    Разрабатываются методы синтеза мезитилена. В частности, одним из видов сырья для синтеза мезитилена может служить псевдокумол, содержащийся в тех же продуктах переработки угля и нефти, что и мезитилен. Псевдокумол легче отделяется от этилтолуолов ректификацией, а его изомеризация в определенных условиях приводит к образованию мезитилена [106]. Псевдокумол предварительно выделяют ректификацией из соответствующего сырья, стараясь полностью отделить его от этилтолуолов, пропил-бензолов и мезитилена. Концентрированный (95%-ный) псевдокумол далее изомеризуется при 510—530 °С и 1,5—2,1 МПа в присутствии водорода над хлорсодержащим платиновым катализатором, нанесенным на оксид алюминия (0,05—1% платины и 0,3— 1% хлора). Из изомеризата ректификацией на трех колонках выделяют 95%-ный мезитилен. Ни по качеству получаемого продукта, ни по простоте технологии этот способ не имеет особых преимуществ перед способами выделения мезитилена ректификацией [c.272]

    М. И. Темкин, изучая синтез аммиака, пришел к выводу, что ускорение этого процесса в присутствии железа определяется активированной адсорбцией азота на поверхности катализатора. Тейлор установил, что не вся поверхность катализатора однородна и что каталитические реакции происходят только на отдельных местах, называемых активными центрами. На этих центрах и происходит активированная адсорбция. Э и центры могут отличаться друг от друга своей активностью. На разных центрах одного и того же катализатора могут катализироваться разные реакции. Например, никель ускоряет реакции Н2 + С02==Н20 + С0 и Ы02 + Н2 = Н0Ч-Н20. Введение метанасильно замедляет первую реакцию, но не замедляет вторую. Это объясняется тем, что молекулы СП/, адсорбируются на активнь1х центрах никеля, которые катализируют первую реакцию. Поэтому адсорбция метана тормозит процесс. Активные центры, на которых катализируется вторая реакция, остаются не отравленными метаном. Давно известно отравление платинового катализатора соединениями мыщьяка при контактном получении серной кислоты и другие случаи действия ядов. [c.64]

    Первые исследования процесса синтеза азотной кислоты из аммиака относятся к началу XIX века. В1800 году А. Фуркруа наблюдал образование оксидов азота при пропускании смеси аммиака с воздухом через раскаленную трубку. В 1839 году Кюльман получил оксиды азота окислением аммиака на платиновом катализаторе, высказав при этом предположение, что могут наступить времена, когда это превращение в экономическом отношении станет возможным . В начале XX века условия окисления аммиака детально изучаются В. Оствальдом и И.И. Андреевым и делаются попытки освоить этот метод в промышленных условиях. В1907 году В. Оствальд создает промышленную опытную установку для получения азотной кислоты каталитическим окислением аммиака. В 1916 году, на основе теоретических исследований И.И. Андреева, создается опытная установка, а в 1917 году был введен в строй первый завод по производству азотной кислоты из аммиака коксового газа мощностью 10 ООО тонн в год в г. Юзовка. [c.211]

    Изучение влиянйя.ядов на каталитическую активность позволило получить важные сведения о природе катализаторов. Было замечено, что встречается как обратимое, так и необратимое отравление катализаторов. Так, железный катализатор, используемый в синтезе аммиака, обратимо отравляется кислородом. Пропускание над ним свежей смеси водорода с азотом снимает отравление и вновь делает катализатор активным. В присутствии серы этот же катализатор отравляется необратимо. В случае многоступенчатой реакции действие яда сначала приводит к устранению некоторых стадий. Например, гидрирование хлористого бензоила в бензольном растворе на платиновом катализаторе [c.271]

    Примеси веществ, которые ослабляют или вообще прекращают действие катализатора, называются каталитическими ядами. Так, например, платиновый катализатор легко отравляется незначительными количествами соединений мышьяка, селена и теллура. Железный катализатор, используемый при синтезе аммиака, отравляется при содержании в газад, поступающих в контактный аппарат, 0,1% серы. [c.131]

    Сладкий вкус этого соекинеиия (в 500—1000 раз интенсивнее-сладкого вкуса сахарозы) был открыт случайно при синтезе лизергиновой кислоты [137]. При этом 3-формилиндол конденсировали с этиловым эфиром 3.4-дегидро-3 гидрокси-1-метилпиперидинкарбоновой кислоты с последующим восстановлением промежуточного про, 1укта (гидрирование на платиновом катализаторе), дегидратацией и гидролизом конечного эфира (схема 3.24), [c.112]

    Одним из наиболее важных факторов при этом является природа и тип катализатора, то есть его селективность по отношению к различного рода связям в молекуле органического соединения. Обнаружение ряда селективно действующих катализаторов принадлежит к числу крупных успехов, достигнутых в области органического катализа за последние годы. В настоящее время наряду с катализаторами группы благородных металлов (Р1, Рс1 и др.), восстановленными никелем и медью широко применяется ряд элементарных и смешанных катализаторов, обладающих достаточной активностью и избирательностью. В отличие от катализаторов платиновой группы, они дешевы и могут использоваться промышленностью. К их числу принадлежат скелетные катализаторы (13, 27, 28), прежде всего никель Ренея, никель Бага, скелетная медь (29) и др., катализаторы на носителях (никель на кизельгуре, на АЬО.., и др.), а также окисные катализаторы, например, медно-хромовый и т. д. Кроме того, различные добавки к катализаторам (промоторы и ингибиторы) позволяют повышать их избирательность и использовать с успехом для специальных целей в тонком синтезе. Так например, прибавление ничтожных количеств 2п н Ре солей к платиновым катализаторам (РЮг, Р1 — чернь) даёт возможность осуществлять такие реакции, которые не были достижимы с чистыми катализаторами этого типа, в частности, избирательно гидриро- [c.90]

    Синтез 2-метил-3-окси-4-метоксиметил-5-оксиметилпиридина (метилового эфира пиридоксина). По методу Гарриса и Фолькерса [9] восстановление группы МОа, СМ и С1 проводили в две стадии вначале в присутствии платинового катализатора восстанавливали нитрогруппу в аминогруппу, [c.165]

    Из аммиака, альдегидов и кетонов. Это видоизменение синтеза нашло применение только для получения триэтил- и трипро-пиламинов. Восстановление проводали над платиновым катализатором выходы НС указаны [20], С этим способом сходен способ получения триметиламина (с 89-а1роцснт1шм иыходом) из хлористого аммония и формальдегида избыток последнего играет роль восстановительного агента [69]. [c.365]

    Однако хорошие азыходы были достигнуты при применении высших алифатических альдегидов в тех случаях, когда вторичный амим содержал только первичные алкильные группы. Большинство синтезов этого типа было проведево С водородом в присуг-ствии платинового катализатора. Известно несколько случаев применения химического восстановлееия и гидрирования в присутствии никелевого катализатора (см. табл. XI). [c.368]

    П. используют для каталитич. синтеза HNO3, H2SO4, каталитич. очистки Hj. Платиновые катализаторы используют в виде сеток, черней и нанесенными на носители. [c.569]

    Осуществлен синтез данного соединения введением гидрок-сиэтильной группы в молекулу глицина при взаимодействии последнего с оксидом этилена (выход 50%) [93] либо с эти-ленхлоргидрином (60%) [94]. Предложено получение кислоты с выходом 70% гидрофазным окислением диэтаноламина на палладиевом или платиновом катализаторе в щелочной среде при 120 °С и давлении 10 Па [95]. [c.56]

    Нагревание 2-(1,1-диметилэтил)-6-(1,1-диметил-2-гидроксиэтил)-1,4-бензохи-нона 58 с эквимолярным количеством 2-аминопиперазина в хлористом метилене при катализе пиридином и четыреххлористым титаном получают соответствующий имии [52]. Гидрированием последнего в присутствии платинового катализатора осуществлен синтез 2-(1,1-диметилэтил)-6-(1,1-диметил-2-гидроксиэтил)- [c.126]

    Проведение каталитических реакций несложно. Поскольку катализ металлами весьма эффективен и сопровождается лишь небольшой деструкцией, этот метод пригоден для синтеза большого числа меченых соединений различных типов, причем часто можно достигнуть больших величин удельных активностей, чем в методе Вильцбаха [84]. Обменной реакцией с окисью трития на платиновом катализаторе были синтезированы меченые стероиды, пурины, пиримидины и нуклеотиды. [c.685]

    Химическая промышленность использует различные химические соединения ванадия. V гО в имеет большое значение как активный катализатор при синтезе органических веществ (ацетальдегида и уксусной кислоты, бензальдегида и бензойной кислоты) и в сернокислотном производстве. Ванадием заменяют платиновый катализатор при контактном способе производства Нг504. [c.17]

    Процессом, родственным аммоксидированию, является реакция АНДРУ-СОВА — промышленный способ синтеза цианистого водорода соокислением метана и аммиака на платиновом катализаторе [2]. [c.41]

    Глубина осушки, достигаемая даже при почти полном отделении взвешенной в нефтепродукте влаги, часто оказывается недостаточной, и требуется удаление значительной части растворенной влаги, что определяется вредным влиянием влаги при последующих технологических переработках нефтепродуктов. Так, при каталитическом риформинге фракции 85-180 °С бензина допустимое для платиновых катализаторов риформинга содержание влаги в бензине составляет не более 1,5-2,0 мг/кг (0,00015%). Жестко ограничивается влажность сжиженных углеводородных газов, подлежащих перекачке и хранению, а также при использовании их для синтеза алкилбензинов, где влага раскисляет катализатор. [c.439]

    При гетерогенном катализе обычно каталитическим действием обладает не вся поверхность катализатора, а лишь ее незначительная часть, так называемые активные центры. В пользу этого говорят следующие факты. Есть вещества, известные под названием каталитически.х ядов, которые, попадая на поверхность катализатора, отравляют его, т. е. выводят из строя. Например, платиновые катализаторы отравляются соеди-непнями мышьяка, селена, те.члура. Соединения серы отравляют катализатор для синтеза аммиака. Отравление катализатора вызывается очень небольшим количеством каталитического ила, достаточным для адсорбции или химического взаимодействия лишь на небольшой части его поверхности. Следовательно, активной в отношении катализа является лишь часть поверхности катализатора. [c.52]

    Ключевой продукт 1 был далее стандартными трансформациями превращен в эфир 20, послуживщий общим исходным соединением для синтеза природных стероидов 2-7. Селективное гидрирование двух сопряженных двойных связей над палладием привело к продукту 21, в котором сохранив-щаяся изолированная двойная связь в цикле В обеспечивала в дальнейшем возможность введения кислородного заместителя в положение 11. Этот путь позволил осуществить успешный синтез кортикостероидов, в том числе кортизона (7). Для получения стероидов 2—6 потребовалось полное гидрирование всех трех двойных связей С=С над платиновым катализатором, приводящее к насыщенному эфиру 22. Кроме удаления лишних функциональных групп, эта реакция приводила к созданию требуемой конфигурации хиральных центров С-10 и С-17. Поскольку превращение эфира 22 в стероиды 2—5 уже было описано ранее, выполненный Вудвордом синтез этого соединения представлял собой одновременно и завершение полного синтеза стероидов 2-5. Наконец, с помощью ряда обьршых методов (присоединение алифатического заместителя в положение 17 и трансформации функциональных групп) из эфира 22 был синтезирован холестерин (6). [c.293]

    Синтезы фталидов. Сам фталид может быть получен прямым восстановлением фталевого ангидрида. Обзор методов восстановления дали Остин, Буске и Лазье [51]. При гидрировании фталевого ангидрида над никелевыми [52 — 55] или платиновыми катализаторами [56, 57] образуется смесь фталида, о-толуиловой кислоты и различных производных циклогексана. Схему реакции можно представить следующим образом [51]  [c.72]

    Селективное восстановление одного ароматического ядра в полиароматической системе щироко используют в синтезе. Высокоактивные катализаторы гидрирования (например, родий на оксиде алюминия или на угле) промотируют исчерпывающее гидрирование более эффективны худщие катализаторы, такие как РЮг в кислоте (при низких давлениях) или палладий на угле. Было исследовано гидрирование ряда полиароматичес-ких соединений в мягких условиях (25 °С, 1,5—2 атм Нг) с применением Pt/ , Pd/ или РЮг [82а] [схема (7.68)]. Восстановление на палладии протекает региоселективно и приводит к внутреннему дигидроарену, в то время как аналогичная реакция на платиновом катализаторе идет по внешнему кольцу с образованием тетрагидро арен а. Эти реакции дополняют вос- [c.280]

    Каталитическое окисление углеводов над платиновыми катализаторами, как правило, высоко селективно [96]. Селективное окисление моно- и олигосахаридов позволяет получать уроновые кислоты, аминоуроновые кислоты, уронозиды, альдоновые кислоты и промежуточные соединения в синтезе аскорбиновой кислоты. Следует отметить, что обычно первичные гидроксигруппы окисляются легче вторичных, что позволяет проводить их селективное окисление. [c.350]


Смотреть страницы где упоминается термин Платиновые катализаторы синтез HN: [c.77]    [c.305]    [c.293]    [c.60]    [c.151]    [c.324]    [c.151]    [c.143]    [c.287]    [c.311]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте