Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структур зависимость от термодинамических факторов

    Структура и молекулярные взаимодействия в растворах полимеров определяются не только концентрацией и молекулярной массой макромолекул, но и термодинамическими факторами. На рис. 3 представлены зависимости времен релаксации дипольной поляризации растворов ПММА в изопропилбензоле. При понижении температуры ухудшение качества растворителя приводит к расслаиванию раствора, он становится гетерогенным, двухфазным. В зависимости времен релаксации от обратной температуры это фиксируется как излом [12, 13]. [c.160]


    Линейные гибкие макромолекулы. Способность молекулярных цепей изменять свою конфигурацию в зависимости от внешних условий, т. е. гибкость или жесткость этих цепей, является кардинальной характеристикой макромолекул, определяющей свойства полимерных систем. Различие в поведении гибких и жестких частиц проявляется, как указывалось, в электрохимических свойствах (глава пятая), в термодинамических свойствах растворов полимеров (глава восьмая), в молекулярно-кинетических свойствах коллоидных систем (главы вторая и восьмая), в свойствах гелей (глава девятая) и др. Это различие связано и с основными характеристиками структуры и физикомеханическими свойствами полимерных материалов. Как уже указывалось, гибкость и жесткость макромолекул являются относительными характеристиками, зависящими от ряда внешних условий, прежде всего, от температуры однако, применительно к обычному интервалу средних температур, полимеры с гибкими и жесткими макромолекулами достаточно отчетливо различаются между собой влияние других факторов (пластификации, скорости деформации) описано ниже (стр. 242—251). [c.227]

    Результаты работ ряда авторов, которые упоминались ранее, и отмеченные особенности концентрационной и температурной, зависимости интегральных свойств и парциальных величин в областях малых концентраций спирта приводят к определенному выводу о том, что при растворении в воде небольших количеств спирта структура воды сохраняется. В процессе растворения молекулы спирта заполняют полости в структуре воды, вызывая лишь незначительную ее деформацию, образуются новые водородные связи между молекулами спирта и воды. Очевидно, что емкость структуры воды относительно размещения в ней молекул спирта должна зависеть как от размеров и формы спиртовых молекул, так и от температуры, чему легко найти подтверждение на приведенных выше диаграммах. Можно полагать, что область составов растворов, в которой в основном сохраняется структура чистой воды, для растворов различных спиртов и при различной температуре определяется положением минимума на кривых парциальных объемов спирта и положением максимумов (или резким изменением вида зависимости) на кривых парциальных энтальпий и энтропий спиртов. Эта область сокращается как при увеличении молекулярного веса (и, следовательно, размеров молекул) в ряду спиртов, так и при повышении температуры. Именно тем обстоятельством, что увеличение разницы в размерах молекул воды и спиртов и повышение температуры являются факторами, приводящими к нарушению структур чистых компонентов, и объясняется отмечавшаяся выше аналогия во влиянии на термодинамические свойства изучаемых растворов повышения температуры и увеличения молекулярного веса спирта. [c.162]


    В дополнение к сведениям, полученным при изучении факторов гидрогенизации самих углей, остается сделать еще многое для изучения механизма их гидрогенизации, исходя из изучения деструктивной гидрогенизации известных соединений. Поскольку вопрос идет о термодинамическом рассмотрении, все углеводороды, за исключением трех низших парафинов, нестабильны при температурах выше 100°, и продолжительностью своего существования выше этой температуры они обязаны недостаточной реакционной способности. Что касается относительной стабильности различных углеводородов, то она с температурой изменяется, поскольку кривая зависимости их свободной энергии от температуры имеет различный наклон. Вообще парафины и полиме-тилены (нафтены) являются наиболее стабильными ниже 225°, тогда как ароматические углеводороды и олефины более стабильны при более высоких температурах. Ароматические углеводороды с парафиновой боковой цепью, хотя при низких температурах более устойчивы, чем бензол, становятся менее стабильными выше 450°. Выше этой темнературы нафталин показывает возрастающую большую устойчивость по сравнению с бензолом. Вполне вероятно, что более конденсированные кольчатые структуры покажут такое же поведение. Вопрос о действительных условиях разложения, то есть об условиях, при которых реакционная способность позволяет приблизиться к термодинамическому равновесию, остается пока открытым. Углеводороды с конденсированными ядрами—нафталин, антрацен и их производные и аналогичные соединения—составляют значительную часть продуктов гидрогенизации угля и таким образом представляют интерес с точки зрения изучения реакций деструктивной гидрогенизации. [c.314]

    Ориентация и структура граней кристалла исследуются уже довольно давно. Термодинамическое рассмотрение величины свободной поверхностной энергии в зависимости от ориентации позволяет получить удовлетворительную картину равновесной структуры. Однако надо иметь в виду, что фактическое соотношение граней может отличаться от равновесного вследствие влияния кинетических факторов на рост той или иной грани. Быстро растущие грани легко исчезают при росте кристалла. Грани с плотной упаковкой, как правило, растут наиболее медленно. [c.201]

    Это уравнение можно вывести из термодинамических соотношений, оценивая величину работы, затрачиваемую на сжатие. Здесь а — межионное расстояние в несжатом кристалле, число Маделунга (см. 5.2.1) (геометрический фактор, который рассматривается при обсуждении энергии решетки и для определенного типа структур представляет постоянную величину), г—валентность, е — заряд электрона, п — показатель, характеризующий степенную зависимость сил отталкивания от расстояния (величина п для щелочных металлов равна примерно 9), N— число Лошмидта. [c.41]

    С термодинамической точки зрения можно было бы ожидать, что кристаллиты полисахаридов будут образовывать гидраты с дискретными соотношениями воды и полисахарида, а не с непрерывным изменением содержания воды как функции относительной влажности. Тем не менее пока является правилом именно непрерывное изменение параметров элементарной ячейки в зависимости от относительной влажности. Эти изменения находятся в соответствии с формой адсорбционной кривой [18]. В любом случае фактор тонкой структуры должен влиять на локальные напряжения, которые препятствуют обнаружении) отдельных гидратов определенного состава при данной относительной влажности. [c.272]

    В работе [139, с. 122] для выращивания монокристаллов сульфида кадмия контролируемого состава из паровой фазы предложена специальная конструкция эвакуированной кварцевой ампулы, заполненной аргоном. Крупные монокристаллы dS получены методами сублимации в разных условиях в вакууме при температуре 1200° С и температурном перепаде АТ = 100°, среде аргона при температурах 1150—1775° С [162, с. 20, с. 1357 164]. В работах Б. М. Булаха изучены условия роста монокристаллов dS из паровой фазы при участии газа-транспортера. Выяснено, что главные факторы, определяющие возникновение различных форм роста кристаллов, — это соотношение исходных компонентов и температура в зоне роста предложена модель, объясняющая происхождение этих форм. На основании того, что рост происходит в условиях, когда имеется нестехиометрическое соотношение исходных компонентов, предполагается образование в паровой фазе различных по структуре комплексов атомов d и S в разных соотношениях, например ( d—S) , ( da—S) или ( dj—S) . Различная ориентация этих комплексов определяет те или иные формы роста, которые наблюдаются на практике (призмы, пирамиды, углы, пластинки, усы). Описан термодинамический метод определения условий синтеза монокристаллов dS из газовой фазы, получены зависимости температур испарения исходных элементов от температуры кристаллизации [162, с. 20]. [c.53]


    Выше были последовательно обсуждены различные термодинамические функции неэлектролитов в бесконечно разбавленных водных растворах. Было продемонстрировано, что в целом свойства этих растворов определяются взаимодополняющим влиянием двух факторов специфическими взаимодействиями между водой и полярными функциональными группами молекул неэлектролитов и взаимодействием воды с неполярными группами, в которых важная роль принадлежит структуре воды. Вместе с тем, как мы видели, не все наблюдаемые зависимости удается объяснить на основании столь общей характеристики. Отсутствие данных о потенциалах взаимодействия воды с конкретными молекулами неэлектролитов не позволяет пока детализировать рассмотрение. 92 [c.92]

    Растворение линейных аморфных полимеров в отличие от низкомолекулярных веществ начинается с набухания [76]. Молекулы растворителя проникают в полимерную структуру посредством диффузии и образуют набухший поверхностный слой между растворителем и исходным полимером. В случае позитивных резистов достигается минимальная деформация рельефа из-за слабого набухания области, соседней с экспонированной, которая удаляется растворителем. В случае негативных резистов желательно минимальное набухание облученных областей при экстракции растворимой фракции (золя) полимера из структурированной нерастворимой фракции (геля). В результате набухания и увеличения объема полимера происходит распрямление макромолекул и диффузия сольватированных полимерных клубков в растворитель. Скорость набухания и растворения уменьшается с ростом ММ полимера. Коэффициент диффузии оказывает влияние на кинетику растворения, а термодинамический параметр растворимости — на толщину набухшего слоя [77]. Скорость растворения и степень набухания определяются концентрационной зависимостью коэффициента диффузии растворителя в полимер [78]. Факторы, определяющие подвижность растворителя в полимерной матрице (тактичность, и характер термообработки полимера, размер молекул растворителя), влияют на растворимость полимера нередко больше, чем его ММ [79]. [c.50]

    Следовательно, при растяжениях ниже 300%, т. е. в наиболее широко применяемой области напряжений, основное значение имеет энтропийный член. Уменьшение энтропии каучука при растяжении может рассматриваться как следствие ориентации макромолекул. Поскольку энтропия является мерой вероятности осуществления состояния, то, очевидно, менее вероятное ориентированное состояние обладает меньшей энтропией, чем неориентированное, как только внешние факторы, обусловливающие деформацию, перестают действовать. В результате теплового движения вытянутые молекулы вновь переходят в неориентированное состояние, имеющее большую термодинамическую вероятность или большую энтропию. Аналогичным образом можно объяснить эластичность мускулов. При больших деформациях уравнение (ИЗ) уже непригодно изменение внутренней энергии при больших удлинениях обусловлено местными изменениями структуры или начинающейся кристаллизацией. Поэтому на кривых зависимости напряжения от температуры наблюдается точка перегиба при температурах ниже —60° это вызвано стеклованием каучука. В то время как у каучуков эластичность в основном определяется энтропией, для стали эластические изменения практически происходят за счет изменения внутренней энергии. [c.241]

    Установление равновесия в адсорбционном слое протекает медленнее оно может длиться часы или даже сутки. Это время в большей мере зависит от химической природы адсорбента и адсорбата, термодинамического качества растворителя, молекулярно-массового распределения полимера и др. Влияние последнего фактора обусловлено возможностью перераспределения адсорбированных макромолекул во времени — вытеснением менее крупных молекул более крупными. Экспериментально указанные два процесса трудно различимы, так как измеряемые на опыте зависимости величин адсорбции и толщин адсорбционных слоев в суммарном виде отражают кинетические зависимости как диффузии макромолекул к поверхности, так и установления равновесной структуры адсорбционного слоя. [c.40]

    Одной из центральных научных проблем кристаллохимии, кристаллофизики, кристаллографии вообще является проблема химической связи в кристаллах и влияния характера и энергии межатомного взаимодействия на их структуру и физические свойства. Многие физические свойства кристаллов описываются соответствующими производными их термодинамических характеристик. Особый интерес поэтому приобретает изучение факторов, определяющих термодинамические свойства кристаллов и их зависимости от обобщенных сил и координат. В первую очередь должны быть названы такие термодинамические свойства, как энергия атомизации, внутренняя энергия, свободная энергия Гельмгольца, Гиббса, теплоемкость и др. [c.183]

    Рассматривается влияние характера и энергии межатомного взаимодействия на структуру и физические свойства кристаллов. Изучаются факторы, определяющие термодинамические свойства и их температурные зависимости. Разбирается влияние некоторых параметров на форму частотного спектра на примере кристаллов со структурой алмаза. Рассматривается вопрос об определении упругих констант как производных энергии кристалла через функции распределения электронной плотности, представ-тенные различными аппроксимациями. [c.358]

    Совместимость и М прежде всего зависит от характера физико-химического взаимодействия их металлических основ, определяемого диаграммой состояния. Хотя диаграмма состояния характеризует зависимость структуры сплавов от их химического состава и температуры лишь в равновесных условиях, термодинамически неравновесная система паяемый металл — припой в условиях пайки стремится к стабильному или метастабильному равновесию, и поэтому диаграмма состояния с учетом кинетического фактора позволяет прогнозировать направление развития физикохимических процессов на их границе и в шве как при пайке, так и при эксплуатации паяных соединений. [c.257]

    Когда речь идет о высокотемпературных превращениях, наблюдающихся для ряда тугоплавких окислов С А-, С -> В-переходы редкоземельных окислов, превращения в системе кремнезехма, двуокиси титана и др.), такие факторы, как дефекты структуры, примеси, т. е. незначительные нарушения химического состава, могут играть существенную роль в соотношении устойчивости рассматриваемых фаз. Оценка роли этих факторов осложнена не только трудностями теоретического порядка, но и необходимостью экспериментального получения данных об их влиянии на процесс превращения. Поэтому большой интерес представ.тяет собой попытка качественного рассмотрения зависимости термодинамической устойчивости конкурирующих фаз от малых нарушений их состава [1], а также работа по термодинамической оценке влияния концентрации дефектов на смещение температуры фазового равновесия [21, включая и случай их малой концентрации. [c.54]

    Несмотря на то, что особенностью смазок является их высокоструктурированное состояние, любая мыльная смазка в процессе изготовления проходит через все стадии структурообразования, а именно формирование мицелл, надмицеллярных структур и образование структурного каркаса (структуры смазки) в целом. Конечная структура и эксплуатационные свойства смазок определяются такими коллоидно-химическими характеристиками, -как критическая концентрация ассоциации (ККА) и мицеллообразования (ККМ), размеры и форма волокон. Форма мицелл в зависимости от концентрации мыла может меняться от сферической к вытянутой эллипсоидной в виде волокон, что определяется термодинамическими факторами [7]. Высокая энергия связи молекул в мицелле обусловлена ионными взаимодействиями, возможностью образования координационных или водородных связей при участии молекул других полярных веществ. Формирование в малополярной среде мицелл или иных видов ассоциатов приводит к образованию новых более слабых энергетических связей, обусловленных появлением фазовых поверхностей — оболочек мицелл (структурно-механические силы, энергия двойного электрического слоя, поверхностное натяжение, расклинивающее давление Дерягина). Размеры и форма первичных мицелл должны влиять на характер последующего их агрегирования и структурообразования. [c.11]

    Однако известно, что размеры переходных слоев не согласуются с размерами сегментов, а временн4я зависимость прочности адгезионных соединений полимеров-с малой продолжительностью сегментальной растворимости. Это дает основание предположить, что сегменты являются не единственными элементами структуры переходных слоев. По-видимому, термодинамические факторы определяют совместимость лишь на начальных стадиях процесса, приводя к толщине переходного слоя, не превышающей размера сегмента. В дальнейшем из-за возникших напряжений и общей неравновесности системы в процесс массопереноса могут вовлекаться макромолекулы и их агрегаты. [c.112]

    Термодинамическое исследование системы с поверхностями раздела фаз встречает свои трудности. Эти трудности связаны с неопределенностью толщины адсорбционного слоя, т. е. примыкающей к поверхности неоднородной части объемной фазы. Даже в случае инертного адсорбента это относится к примыкающей к его поверхности неоднородной части флюида —газа или жидкости. Действительно, такая важная характеристика этого слоя, как его толщина, остается неопределенной она может зависеть от степени заполнения поверхности раздела молекулами адсорбата, ориентации этих молекул и ее зависимости от заполнения, перехода от MOHO- к полимолекулярному слою, других факторов, связанных со структурой адсорбента и молекул адсорбата (или молекул смеси адсорбатов), и от температуры. Это затруднение требует построения молекулярной модели адсорбционного слоя, например модели мономолекулярного слоя постоянной толщины, т. е., по существу, выхода за рамки классической термодинамики с потерей ее главного преимущества — общности выводов для макроскопических систем. [c.129]

    При проектировании технологических систем разделения жидких многокомпонентных азеотропньк смесей еще до расчетов технологических параметров следует определить термодинамические ограничения на получение продуктов ректификации требуемого состава, которые определ оотся топологической и геометрической структурой дистилляционной диаграммы Своевременное обнаружение этих ограничений, анализ их зависимости от внешних факторов, являющиеся предметом термодинамико-топологического и термодинамико-геометрического анализа, сокращает время предпроектной разрабо-гки и повышает качество принимаемых решений. [c.62]

    К числу вопросов, решение которых необходимо для успешного развития исследований в этом направлении, следует, по-видимому, отнести количественную оценку состояния таутомерного и конформационного равновесия моносахаридов и их производных в зависимости от внешних факторов (растворители, температура, pH и т. п.) количественное или полу-количественьое измерение реакционной способности гидроксильных групп в зависимости от положения в углеродной цепи моносахарида и конформационной характеристики более подробный конформационный анализ ациклических форм моносахаридов измерение термодинамических параметров важнейших типов производных моносахаридов, позволяющее предсказывать состояние равновесия в обратимых реакциях, и т. п. Обобщение всех этих результатов с использованием современных электронных представлений и конформационного анализа позволило бы создать ряд полуколпчественных концепций о связи структуры и реакционной способности моносахарида в различных экспериментальных условиях, что дало бы возможность делать более точный выбор оптимальных условий реакции или целесообразного синтетического пути. [c.628]

    Величина Qi будет зависеть соответствующим образом от энергии взаимодействия Di атома i-ro типа. Более подробно на смысле Di остановимся в следующем параграфе. В общем виде эту зависимость можно записать Qi = fi Di). Если мы рассматриваем плавление полимера или вклад в коэффициент объемного расширения, тогда в качестве Di будет выступать энергия ван-дер-ваальсового взаимодействия. Если нас интересует температура деструкции, то в качестве Di необходимо рассмотреть энергию химической связи. Однако этим не ограничивается вклад Qi в Q. Наряду с указанными выше взаимодействиями группы атомов могут образовывать новый тип взаимодействия, которое существенно влияет на термодинамические свойства полимеров. Так, группы —ОН, —NH O— и др. образуют водородные связи, а — = N, — l, — OO— и др. приводят к возникновению сильного диполь-дипольного взаимодействия. Кроме того, на термодинамические свойства может влиять надмолекулярная структура и т. д. Однако последними факторами мы будем пока пренебрегать, так как точность метода ( 5%) такова, что изменения, обусловленные этими факторами, будут находиться в пределах погрешности метода. Тем не менее учитываемые данным методом факторы позволяют определить ос- [c.7]

    Адсорбция гибких макромолекул на поверхности раздела раствор — воздух в-зависимости от концентрации, температуры и молекулярной массы изучалась Зильбербергом [54—60]. Он ввел в рассмотрение частичные функции системы и с их помощью определил ее равновесные термодинамические характеристики. Оперируя элементарными методами комбинаторики, используя приближение Стирлинга для факториала, Зильберберг определил для различных случаев число всевозможных конфигураций цепей, термодинамический потенциал раствора длинно- цепных молекул и показал, что это число тесно связано со структурой кристаллической решетки. [c.73]

    Необходимо понять, что из самого факта справедливости этой термодинамической теоремы вовсе не следует, что в действительности будет наблюдаться пропорциональная зависимость между любыми из этих величин. Из нее следует лишь то, что если существует пропорциональность между любыми двумя из этих величин, то будет наблюдаться пропорциональность и между другими параметрами. Как уже было сказано, пропорциональность энергетических параметров будет ожидаться только в том случае, если полярные эффекты могут быть выражены в виде отдельных произведений двух факторов и если отсутствуют пространственные эффекты и эффекты утяжеления. Экспериментально обнаруженная пропорциональность между бДЯ и 6Д5 представлена на рис. 51. В этом случае выполняются все указанные условия. Реакция представляет собой равновесия ионизации метагемоглобинов, на которые влияют ионные заместители, находящиеся на больших расстояниях, например на расстоянии 30 А (3 нм), от реакционного центра в жесткой структуре молекулы. На таких расстояниях не могут проявляться никакие эффекты, кроме кулоновских сил локальное окружение реакционного центра является постоянным, и даже масса молекул практически постоянна. Леффлер и Грюнвальд распространили свои взгляды и на кинетические параметры. Если оказывается, что вклады 6AG заместителей в кинетический параметр AG для двух реакций точно пропорциональны друг другу в данном интервале температур, то будет наблюдаться аналогичная пропор- [c.990]

    Что же касается попыток установить зависимость между первичной и вторичными структурами белков, то Ламри и Билтонен отмечают "Недавно появилась новая игра, в которой рентгенографические структуры белков объясняются расположением вдоль пептидных цепей полярных незаряженных групп, полярных заряженных групп и неполярных групп различных размеров. Хотя, по-видимому, опасно относиться к этому слишком серьезно, игра может принести существенную пользу как средство для классификации по значимости факторов термодинамической стабильности" [20. С. 64]. Как показано в предшествующей части книги, даже эта скромная надежда осталась нереализованной. Ситуация в изучении структурной организации белков в 1960—1980-е годы в чем-то аналогична 20—40-м годам нашего столетия — периоду в исследовании химического строения белков, который последовал сразу после Фишера и продолжался до фундаментальных работ Э. Вальдшмидт-Лейтца и Ф. Сенгера. Решение проблемы белка стараются отгадать, а не получить в результате исследования по тщательно продуманному плану, основанному на всестороннем анализе опытных данных, оригинальных методиках и нетривиальном подходе. [c.344]

    Окисление. Реконструкция большинства дисульфидных связен в некоторых белках достигается при окислении кислородом воздуха, т. е. при аэрировании раствора восстановленного белка [70]. По-видимому, молекуле нативного белка свойственна термодинамически наиболее выгодная конформация, и, следовательно, главным фактором, способствующим правильному сближению тиольных групп, является кооперативное (согласованнное) взаимодействие функциональных групп полипептидной цепи. Если распределение дисульфидных связей в белке определяется главным образом конформацией белка-предшественника (например, в случае инсулина проинсулином), то такие белки ренатурируют с трудом. Далее приводится общепринятая методика окисления белков с целью ренатурации, однако оптимальные условия реакции определяются в зависимости от индивидуальных свойств исследуемого белка, его первичной структуры и трехмерной укладки полипептидной цепи. Например, добавление 2-меркаптоэтанола и увеличение температуры до 38 °С оказались полезными при ренатурации [c.67]


Смотреть страницы где упоминается термин Структур зависимость от термодинамических факторов: [c.15]    [c.488]    [c.22]    [c.217]    [c.192]    [c.651]    [c.85]    [c.217]    [c.39]   
Структуры неорганических веществ (1950) -- [ c.225 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

О зависимости структур комплексных соединении от термодинамических факторов

термодинамический фактор



© 2025 chem21.info Реклама на сайте