Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения со специфическими веществами и ферментами

    Аффинная хроматография [27—31] представляет собой один из наиболее специфических методов выделения реакционноспособных соединений, в частности ферментов, и даже таких надмолекулярных агрегатов, как вирусы. Сорбентом в этом случае служит гель типа агарозы, к которому ковалентно присоединен подходящий лиганд, например субстрат фермента. Когда раствор, содержащий выделяемое вещество (скажем, фермент), пропускают через колонку с соответствующим образом приготовленным сорбентом, взаимодействие этого вещества с закрепленным на сорбенте лигандом (в данном случае фермента с субстратом) приводит к его удерживанию и, следовательно, к концентрированию. Поскольку сорбция носит обратимый характер, это вещество можно затем элюировать с колонки. Один из вариантов этого приема, который, строго говоря, уже не относится к области хроматографии, заключается в том, что иммобилизованный на геле фермент служит для непрерывного превращения растворенного в подвижной фазе субстрата. Разделение по методу аффинной хроматографии может быть основано на различного рода специфических взаимодействиях, таких, как связывание фермента с ингибитором, гормона с рецептором, антигена с антителом, а также гибридизация полинуклеотидов. Этот метод позволяет выделять даже целые клетки. [c.21]


    Общеизвестно, что никакие реакции обмена невозможны без специфических белков-ферментов, и в этом смысле белковый обмен определяет ход превращений соединений, относящихся к другим классам. Решающее значение имеет ход окислительного фосфорилирования и создание резервов АТФ в клетке. От уровня последней в клеточном содержимом зависит, в свою очередь, весь ход обмена веществ, ибо АТФ обеспечивает энергетические потребности биосинтеза соединений всех классов. Число подобных примеров глобальной взаимозависимости и взаимообусловленности обмена белков, нуклеиновых кислот, углеводов, липидов и других соединений огромно. В совокупности они и составляют учение о регуляции обмена веществ. Но каждый из них в отдельности подчеркивает ту или иную форму взаимосвязи обмена веществ в организме. [c.472]

    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]


    Ферменты обладают высокой специфичностью по отношению к субстрату, т. е. тому соединению, превращение которого он ускоряет. Эффективность действия фермента особенно сильно зависит от ряда факторов температуры (оптимальная температура 30—50 °С), некоторых специфических веществ, называемых активаторами и ингибиторами, pH среды. Активаторы повышают активность ферментов, ингибиторы снижают (угнетают ферменты). Применение ферментов дает возможность снизить энергию активации (энергетический барьер), осуществив превращение ис- одного вещества в конечное через промежуточное состояние Или состояние активного комплекса, что энергетически значитель- [c.21]

    Ферментный контроль обеспечивает регуляцию большинства физиологических функций организма. Ингибиторы ферментов, как правило, или сильные яды, или сильные лекарственно активные вещества. Например, ацетилсалициловая кислота, или аспирин, — это эффективный ингибитор ферментов, которые синтезирует простагландины — весьма важные биологические регуляторы. Непосредственно сами ферменты находят в настоящее время применение в терапии некоторых заболеваний 3) принципиально важные работы в настоящее время ведутся в области выяснения молекулярной природы иммунного ответа. В процессе эволюции наш организм приобрел способность бороться с проникающими в него чужеродными клетками, чужеродными белками. Иммунология и иммунохимия в настоящее время переживают бурный расцвет, и мы являемся свидетелями появления новых вакцин, иммуностимуляторов, иммунодепрессантов. Регуляция иммунной реакции —один из наиболее ярких примеров достижений биологической химии в медицине 4) все большее внимание в последние годы начинает привлекать рецепторный уровень регуляции физиологических ответов организма. Если предшествующие этапы внедрения химии в биологию и медицину были связаны в основном со случайным поиском новых веществ, то настоящее время характеризуется все более глубоким проникновением в регуляторные химические механизмы физиологических ответов клетки. В различных клетках нашего организма можно вызвать те или иные ответы путем воздействия на специфические клеточные рецепторы, понимающие и чувствующие химические сигналы, заданные структурой вводимого соединения. Это высокоэффективные регуляторные механизмы, позволяющие в ряде случаев весьма тонко повлиять на метаболические процессы в клетке. Пока мало известно о структуре и природе рецепторов. Это определяется в основном тем, что клетка содержит весьма мало рецепторов. Однако объем химической информации о клеточных рецепторах непрерывно растет, и мы являемся свидетелями появления новых лекарственных соединений, созданных на основе этой информации. [c.199]

    Ферменты являются специфическими белками, которые входят в состав всех клеток и тканей живых организмов. Они обусловливают способность живых организмов осуществлять самые разнообразные и в то же время совершенно необходимые для жизнедеятельности превращения веществ. Сюда могут быть отнесены процессы пищеварения белков, жиров и углеводов использование всасывающих питательных веществ клетками организма освобождение химической энергии, необходимой для всех проявлений жизнедеятельности поглощение кислорода тканями и ряд других процессов. Ферменты не только расщепляют вещества, но также синтезируют все то многообразие органических соединений, которое мы встречаем в организме. [c.99]

    Соединения со специфическими веществами и ферментами [c.1060]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]


    Ингибиторами ферментов являются соли тяжелых металлов, вещества, специфически влияющие на сульфгидрильные группировки ферментного белка (органические соединения ртути, мыщьяка), специфичные белки растений, микроорганизмов и животных, полисахариды, антибиотики, полипептиды, таннины и др. 126, 27, 28]. [c.205]

    Изучение свойств ферментов, разработка методов определения активности ферментов и, наконец, получение ферментов в чистом виде окончательно опровергли виталистические представления о ферментах, что создало широкие перспективы для развития ферментологии. Вместе с этим удалось выявить специфические особенности ферментов как биологических катализаторов, отличающие их от обычных катализаторов, являющихся чаще всего неор1 аническими веществами и иногда несложными по своей структуре органическими соединениями. Специфические особенности ферментов определяются их белковой природой. Коллоидальное состояние, большая чувствительность к изменениям температуры и разрушение при 80° и выше, строгая зависимость активности ферментов от концентрации водородных ионов отличают ферменты от обычных катализаторов, не относящихся к белкам. Однако самыми замечательными свойствами, характерными для биологических катализаторов — ферментов, является специфичность их действия и чрезвычайно высокая активность. Эти свойства позволяют считать ферменты идеальными катализаторами, играющими важную роль в процессах обмена веществ, лежащих в основе жизнедеятельности организмов. [c.176]

    Специфическая избирательность катализаторов. Исследования каталитических реакций показали, что катализаторы образуют временные промежуточные соединения с реагирующими веществами. Для эффективного действия катализатора необходимо, чтобы он обладал химическим сродством к реагенту. В этом отношении катализаторы обладают специфической избирательностью, особенно ярко проявляющейся у ферментов. Каждый фермент действует на определенный субстрат или на ограниченное их количество, или [c.99]

    Вернемся к такой специфической особенности нейронов, как высокая скорость обмена веществ. Ядро и большая часть рибосом расположены в теле нервной клетки. Однако многие белки необходимы в высокой концентрации в аксоне и синаптических окончаниях. К таким белкам относятся ферменты синтеза и распада нейромедиаторов, а также мембранные белки. При перерезке аксона отделенное синаптическое окончание очень скоро атрофируется это наблюдение еще много лет назад позволило заключить, что из тела клетки на периферию поступают какие-то необходимые вещества. Экспериментально установлено, что действительно многие соединения перемещаются от тела клетки вниз по аксону со скоростью 1—10 мм/день. Больший интерес, однака представ- [c.349]

    Ферменты, или энзимы, представляют собой высокоспециализированный класс веществ белковой природы, используемый живыми организмами для осуществления с высокой скоростью многих тысяч взаимосвязанных химических реакций, включая синтез, распад и взаимопревращение огромного множества разнообразных химических соединений. Жизнь и многообразие ее проявлений-сложная совокупность химических реакций, катализируемых специфическими ферментами. И.П. Павлов считал ферменты возбудителями всех химических превращений у живых существ. Как известно, важнейшим свойством живого организма является обмен веществ, ускоряющим аппаратом, основой молекулярных механизмов интенсивности которого являются ферменты. Вся тайна животной жизни,- писал Д.И. Менделеев,- заключается в непрерывных химических превращениях веществ, входящих в состав животных тканей . [c.114]

    Как видно из схемы, всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО,, Н,0 и МНз) и освобождением энергии. Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, образуется примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков). Это количество составляет около 10% от суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма. Например, даже при полном голодании или частичном белковом голодании с мочой постоянно выделяется небольшое количество азотистых веществ, что свидетельствует о непрерывности процессов распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена), и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови (см. главу 16). [c.429]

    Рибофлавин-5 -фосфат, флавинмононуклеотид, является коферментом и в соединении со специфическим белком в виде соответствующих ферментов катализирует окислительно-восстановительные реакции обмена веществ (см. флавиновые коферменты). [c.509]

    В качестве промежуточных веществ основного метаболизма образуются простые органические молекулы, такие как моносахариды, производные органических кислот и т.п. Некоторая часть их не окисляется до СО2 и Н2О, а служит исходным субстратом для вторичного метаболизма. В холе этого процесса такие простые молекулы, как, например, уксусная кислота, используются для конструирования — биосинтеза —- разнообразных веществ, необходимых для жизнедеятельности конкретного вида организмов. Биосинтез каждого природного соединения состоит из ряда стадий, каждая из которых катализируется специфическим белковым катализатором — ферментом. В результате из небольшого числа простых предшественников образуется огромное разнообразие органических соединений, называемых вторичными метаболитами. Изучением их структур и путей образования и занимается химия природных соединений. Поэтому ее можно назвать наукой о вторичном метаболизме, [c.10]

    Рассмотренные выше примеры касались выбора специфических ферментных показателей действия токсического вещества. Однако в ряде случаев целесообразен выбор неспецифических ферментных показателей, особенно в случае нормирования химических соединений, не содержащих в своей структуре группировок, близких к известным ингибиторам или субстратам действия ферментов. В качестве примера можно привести исследование ферментных систем, контролируемых гормонами коры надпочечников. [c.233]

    При дальнейших исследованиях селекции бактериальных деструкторов были получены микроорганизмы, способные к очистке сточных вод и от других токсичных веществ органических спиртов, жирных кислот, неорганических соединений и др. Для глубокого обезвреживания сточных вод многокомпонентного состава можно использовать ступенчатую очистку специфической для каждой ступени микрофлорой либо одноступенчатую очистку сочетанием различных по ферментативной способности микроорганизмов или одноступенчатую — монокультурами бактерий с широким спектром ферментов биодеградации и др. [13]. [c.305]

    Важными ингибиторами служат также фосфорорганические соединения — специфические ингибиторы ферментов, катализи-)ующих гидролиз сложных эфиров и некоторых других веществ. 1аиболее резко они подавляют действие холинэстеразы я аце-тилхолинэстсразы, участвующих в расщеплении эфиров холина. Так как холинэстераза наиболее активна в нервных тканях, то эти ингибиторы иногда называют нервными ядами . [c.49]

    Токсическое действие. Для проявления токсических и канцерогенных свойств нитрозоамины требуют активации в организме до электрофильных соединений под действием ферментов. Предполагается, что активными метаболитами Л -нитрозоаминов с короткой углеводородной цепочкой являются диазоалканы. Молекулой-мишенью при действии веществ этой группы является ДНК. 10 % общего количества вещества, связывающегося с ДНК, приходится на алкилирование атома кислорода в положении 6 гуанина, что, по-видимому, определяет канцерогенное действие. Л -Нитрозоамины, вызывая повреждение эндоплазматического ретикулума, резко угнетают синтез белка в печени. Их взаимодействие с ДНК, РНК и белками клеток вызывает разного рода дистрофии и гибель большей части клеточных популяций. Установлено иммунодепрессивное действие Л -нитрозоаминов на специфические и неспецифические иммунные системы организма. [c.709]

    Молекулярный вес энзима в тысячи раз превышает молекулярный вес субстрата. Размеры частиц ферментов лежат в коллоидной области, во много,раз превышая размеры молекул субстрата. Поэтому при образовании промежуточного соединения на молекуле фермента должна быть область, к которой присоединяются как продукт, так и субстрат. Промежуточное соединение представляет собой своеобразное переходное состояние субстрат-фермент и фермент-продукт. Имеется ряд доказательств того, что в молекуле фермента каталитически активными являются определенные группы. Активная часть ферментов составляет малую долю от всей его молекулы. Для выявления этой активной части применяют специфические реагенты, не вызывающие денатурации фермента, но реагирующие с активной группой. Такой реагент должен тормозить действие фермента и связывать определенную группу в низкомолекулярных соединениях. Торможение активности под действием ингибитора обычно обратимо и по удалении ингибитора активность восстанавливается. Так, например, п-хлормеркурибензоат реагирует с 5Н-группой низкомолекулярных веществ, образуя меркаптиды. 5Н-группа часто является активной функциональной группой ферментов, в частности дегидраз. При добавлении п-хлормерку-рибензоата происходит торможение дегидраз за счет реакции [c.258]

    Тот факт, что перекись водорода активируется пероксидазой при окислении трех различных классов соединений (фонолы, ароматические амины и иодистоводородная кислота), позволяет предположить, что в пероксидазе имеются три различных фермента, обладающие специфическим действием. Однако несмотря на все усилия, до сих пор не удалось разделить эти предполагаемые ферменты или хотя бы приостановить одну из функций пероксидазы, не уничтожая одновременно и обе другие . При современном состоянии наших знаний можно, таким образом, не без основания считать, что процесс активации определяется не химической природой вещества, окисляющегося перекисью водорода, а присутствием в нем подвижного водорода. Другими словами, пероксидаза ведет себя как неспецифический фермент. Принимая во внимание полную равноценность системы пероксидаза — перекись водорода и обыкновенной оксидазы, последняя также не должна обладать специфичностью. Этот вывод находится, однако, в противоречии с тем фактом, что тирозин не окисляется обычной оксидазой, а только определенной оксидазой, открытой Буркло и Бертраном и названной тирозиназой . В соответствии с этим и система пероксидаза — перекись водорода не оказывает никакого действия на тирозин . В данном случае, повидимому, имеет место специфическое действие фермента, связанное с химическим строением субстрата. Для выяснения этого противоречия мною были поставлены систематические опыты, результаты которых я вкратце привожу ниже. [c.433]

    Окисление одного и того же соединения может осуществляться в клетке как прямым путем, с участием специфического для данного вещества фермента, так и косвенными неспецифи-ческими путями. [c.274]

    В процессе гликолиза из углеводов образуется пировино-градная кислота. Углеводы могут вступать на этот путь после фосфорилирования. Полимерные углеводы — весьма распространенные запасные материалы, например у современных клостридиев. Для простоты за исходное вещество мы возьмем глюкозу. На пути до пировиноградной кислоты она проходит девять этапов, причем каждый катализируется специфическим растворимым ферментом. Пировиноградная кислота — менее восстановленное соединение, чем глюкоза, а утраченный ( активный ) водород, обозначенный в уравнении (7.1) как [Н], снова появляется в виде НАД-Н. Общее уравнение (см. рис. 7.2) записывается как [c.78]

    К веществам, в течение многих десятилетий успешно применявшимся в медицине, относятся сердечные гликозиды, из которых наиболее хорошо известны, уабаин, строфантин и дигоксин. Сердечные гликозиды из растения наперстянка и их синтетические аналоги до настоящего времени являются, пожалуй, единственным средством терапии сердечной недостаточности, позволяющим усиливать сократительную деятельность сердца. Данные соединения специфически ингибируют Ыа, К-АТФазу путем взаимодействия с Ыа-связывающим участком на цитоплазматической поверхности фермента. Каким образом этот фермент влияет на силу сердечных сокращений В последние годы благодаря открытию системы Ыа/Са-обмена удалось проследить связь между сердечными гликозидами и Са - -. Блокирование Ыа, К-АТФазы вызывает увеличение концентрации Ыа+ в миоплазме, в связи с этим активируется Ыа/Са-об-мен через сарколемму и увеличивается уровень Са2+ около сократительного аппарата. К сожалению, длительная гликозид-ная терапия приводит к интоксикации всего организма. Поэтому крайне актуальными представляются поиски новых средств, обеспечивающих рост концентрации Са + в кардиомиоците (например, нетоксических кальциевых ионофоров) или увеличение сродства кальцийсвязывающих клеточных систем к этому катиону. [c.109]

    Предельные и непредельные жирные кислоты играют важную роль в живой природе. Они входят в состав глицеридов, образующих основу клеточных мембран, и их следует классифицировать как биологически важные соединения. Непредельные алифатические кислоты — линолевая, линоленовая и арахидоновая, кроме этой функции, выполняют и другую, не менее важную. Освобождаясь из состава глицеридов и подвергаясь действию окислительных ферментов, они дают начало последовательностям реакций, приводящих в конечном счете к гидроксилированным непредельным соединениям с высокой биологической активностью. Из линолевой и линоленовой кислот образуются метаболиты с восемнадцатью углеродными атомами в цепи, из арахидоновой — двадцатизвенные. Много биологически активных веществ встречается также среди окисленных производных специфических разветвленных длинноцепных кислот, продуцируемых отдельными организмами. [c.28]

    К сожалению, очень мало работ, посвященных изучению особенностей доведения порфиринов в нефтяных системах и специфических свойств ископаемых порфиринов. Такие свойства порфиринов, как способность к переносу электронов и протонов от одних органических систем к другим [857] и катализу некоторых органических реакций, вполне могут активно проявляться в условиях нефтезалегания в качестве химических. факторов преобразования органического вещества нефтей. В этом случае обнаруживаемые в нефти порфиринпептидные соединения можно рассматривать как примитивные аналоги ферментов. РГсследования в этом направлении помогут понять особенности эволюции органических систем на небиологическом этане. [c.158]

    Специфическая избирательность катализаторов. Исследования каталитических реакций показали, что катализаторы образуют временные промежуточные соединения с реагирующими веществами. Для эффективного действия катализатора необходимо, чтобы он обладал химическим сродством к реагенту. В этом отношении катализаторы обладают специфической избирательностью, особенно ярко проявляющейся у ферментов. Каждый фермент действует на определенный субстрат или на ограниченное их количество, или только на определенный тип химической связи в молекуле вещества так, например, фермент сахароза разрывает в сахарозе глюкозидную связь между глюкозой и фруктозой и эту же связь —в молекуле трисахарида —рафинозы —с образованием дисахарида мелибиозы и фруктозы и т. д. Хотя некоторые системы могут реагировать и по нескольким направлениям, катализа-уоры вызывают ускорение процесса только в каком-либо одном [c.121]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    Особый интерес представляют способы адсорбционного концентрирования, связанные с применением электродов с модифицированной поверхностью. Заметим, что придание поверхности электрода специфических свойств путем соответствующей обработки (нанесение полимерной пленки, пришивка функциональных групп или ферментов и т.п.) существенно повышает селективность определений методом ИВА. Модифицирование электродной поверхности зачастую обеспечивает избирательное определение соединений с близкими окислительно-восстановительными свойствами либо электрохимически инертных на обычных электродах, когда прямое детектирование требует высоких потенциалов. Так, нанесение на поверхность графитового электрода порфириновых комплексов кобальта облегчает восстановление кислородсодержащих органических соединений. Аналогичные эффекты наблюдаются при модифицировании электродной поверхности сорбентами, фенантролиновыми и дипиридильными комплексами кобальта и железа, макроциклами, К4-комплексами, которые необратимо адсорбируются на углеродных материалах. Такие электроды проявляют высокую селективность к определяемым веществам и имеют низкие пределы обнаружения. [c.434]

    По механизму взаимодействия сорбента и сорбата можно выделить несколько видов хроматофафии распределительнся хроматография основана на различии в растворимости разделяемых веществ в неподвижной фазе (газожидкостная матофафия) или на различии в растворимости веществ в подвижной и неподвижной жидких фазах ионообменная хроматография — на разной способности веществ к ионному обмену адсорбционная хроматография — на различии в адсорбируемости веществ твердым сорбентом эксклюзионная хроматография — на различии в размерах и формах молекул разделяемых веществ, аффинная хроматография — на специфических взаимодействиях, характерных дпя некоторых биологических и биохимических процессов. Существуют пары веществ, реагирующих в растворах с высокой избирательностью, например антитело и антиген, фермент и его субстрат или ингибитор, гормон и соответствующий рецептор, и т. п. Если одно из соединений пары удерживается ковалентной связью на [c.267]

    Фосфорорганические соединения относятся к наиболее сильным из известных ядов. Необычайно высокая биологическая активность этих соединений связана с тем, что они полностью подавляют (угнетают) специфический фермент — холинэстеразу, находящийся в организме в очень небольшом количестве. Ввиду большой токсичности фосфорорганических соединений при их производстве большое внимание уделяется технике безопасности. Прежде всего должны быть исключены непосредственные контакты работников с этими активными веществами, что успешно достигается полной автоматизацией процесса. Кроме того, на предприятиях необходимо постоянно контролировать содержание фосфорорганических соединений в атмосфере рабочих помещений. Периодическое обследование рабочих, занятых в производстве фосфорорганических соединений, дает возможность сразу нее, при первых, еще не опасных симптомах отравления (чрезмерная возбудимость, подергивание мышц, тошнота, потовыделение) отстранить на время этих людей от работы во вредных цехах. [c.349]

    Хроматографические методы, в которых разделение компонентов смеси основано на различии в размерах, форме или суммарном заряде молекул, часто недостаточно эффективны для разделения смесей белков. В таких случаях может оказаться полезной аффинная хроматография [48]. Успех метода зависит от того, удастся ли найти вещество, которое будет специфически взаимодействовать с подлежащим очистке белком. Для фермента таким веществом может быть конкурентный ингибитор катализируемой этим ферментом реакции, а для участвующего в гормональной регуляции белка-рецептора — соответствующий гормон. Это вещество связывают с подходящим нерастворимым гидрофильным носителем, и полученный материал используют при хроматографии как стационарную фазу. Вещества такого типа часто сами оказываются большими природными макромолекулами, и приемы, используемые для соединения их с носителями, сходны с методами приготовления иммобилизованных ферментов [см. разд. 27.4.2 (5)]. Реакции, с помощью которых белки, содержащие аминогруппы или фенольные группировки, могут быть связаны с носителем на основе сшитого полиакриламида, содержащего некоторое число гидразидных или 4-аминоанилидных остатков (схемы 30, 31 Б — остаток белка). Хорошие результаты получены в тех случаях, [c.322]

    Никотинамидадениндинуклеотид (XLI) и никотинамидадениндинуклео-тидфосфат (XLIV), как указывалось выше, представляют собой коферменты, которые со специфическим белком многочисленных ферментов, относимых преимущественно к классу оксидоредуктаз, образуют биокаталитические комплексы. Б процессе обмена веществ в клетках живого организма они катализируют реакции дегидрирования различных органических соединений и передают водород, как правило, промежуточному акцептору—флавино-вым ферментам и в итоге — на кислород. [c.316]

    Аффиная хроматография является самостоятельной областью жидкостно-адсорбционной хроматографии, выделяемой по специфическому механизму взаимодействия разделяемых веществ с сорбентом. Метод основан на характерной особенности биологически активньгх веществ селективно и обратимо связывать определенные вещества, называемые аффинными лигандами или аффиантами. Таким образом, ферменты связывают соответствующие ингибиторы, антитела — антигены, гормоны — их рецепторы и т.п. Если по аналогии с обращенными фазами приготовить сорбенты с привитыми аффинными лигандами, появляется возможность селективного хроматографического выделения близких по свойствам биологически активных соединений и их разделения между собой. Наиболее часто применяемые аффинные лиганды приведены в табл. 3.65. [c.201]


Смотреть страницы где упоминается термин Соединения со специфическими веществами и ферментами: [c.530]    [c.192]    [c.122]    [c.205]    [c.130]    [c.214]    [c.104]    [c.427]    [c.22]   
Смотреть главы в:

Химия кремнезема Ч.1 -> Соединения со специфическими веществами и ферментами




ПОИСК





Смотрите так же термины и статьи:

Вещества ферменты

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте