Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия работы с полярографами ЦЛА

    В 114 будет показано, что в условиях работы полярографа это предположение не выполняется. Последнее связано с существенным различием в условиях прохождения тока через верхнюю и нижнюю половины капельного электрода. По этой причине наш основной вывод о существовании двух максимумов в обычных условиях работы полярографа неприменим. [c.574]

    Значительная часть работ, относящихся к катодному выделению металлов из неводных сред, сводится к полярографическим исследованиям на ртутном капельном электроде. Наиболее полно они представлены в библиографическом указателе по полярографии [50]. Поскольку ртуть в некоторых органических растворителях окисляется при потенциалах, предшествующих потенциалам восстановления ионов отдельных металлов (например, Ag+ в ДМСО, ДМФ [796]), дальнейшим расширением границ полярографических исследований явились вольт-амперные измерения на твердых, преимущественно платиновых, электродах [796, 681, 766, 689, 588, 892, 1118, 814], гораздо реже — на электродах типа Ме/Ме -1- [681, 479, 162, 609, 642]. Особого внимания заслуживает применение вращающегося платинового электрода, который обладает высокой чувствительностью, сочетающейся с иными преимуществами твердых электродов (отсутствие колебаний силы тока, обусловленных капанием на ртутном капельном электроде, емкостного тока). На вращающихся платиновых электродах целесообразно исследовать растворы деполяризаторов, в которых вследствие низких коэффициентов диффузии весьма малы диффу знойные токи, так как здесь предельный ток во много раз больше, чем на ртутном электроде. На таком электроде редко появляются максимумы. Оптимальными условиями работы вращающегося платинового электрода являются строго постоянные температура и скорость вращения электрода, обеспечивающие постоянство диффузионного тока и низкие концентрации деполяризатора, позволяющие избежать изменения электродной поверхности из-за осаждения металлов. Большое значение имеет форма электрода [433]. При вольт-амперных измерениях на твердых электродах довольно часто используют скорости изменения потенциала — гораздо большие, чем в классической полярографии на ртутном капельном электроде. Широкое распространение в последнее время [c.73]


    Условия работы ка квадратно-волновом полярографе  [c.135]

    Условия работы на квадратно-волновом полярографе  [c.161]

    Таким образом, при условиях, характерных для осциллографической полярографии, уравнения, выведенные с учетом линейной диффузии, согласуются с данными эксперимента. Никольсон [14] вывела уравнение обратимой электрохимической реакции для случая диффузии к цилиндрическому электроду, которая, например, имеет место в случае применения платиновой проволоки в качестве электрода, и провела экспериментальную проверку теории на примере системы цианидов двух- и трехвалентного железа. Из ее работы следует, что в условиях осциллографической полярографии уравнение Рэндлса и Шевчика применимо также при описании процессов, протекающих на цилиндрическом электроде. [c.475]

    Условия работы с полярографами ЦЛА [c.156]

    Из уравнения (12) следует, что в обычных условиях амальгамной полярографии 99 % металла, первоначально сконцентрированного в капле, окисляется во время анодного цикла менее чем за 3 мин. Ранее [25] этот факт был установлен эмпирически при разработке условий работы на одной и той же капле без ее замены. [c.148]

    В связи с этим в публикуемых работах по полярографии всегда сообщается так называемая характеристика капилляра, вычисляемая как Наиболее широко применяется в количественной полярографии метод калибровочного графика на основе уравнения (1Х.4). График строят по данным полярографирования, как правило, не менее чем трех стандартных растворов. На оси ординат откладывается пропорциональная силе диффузионного тока высота полярографической волны, а по оси абсцисс — концентрация восстанавливающегося иона. В соответствии с уравнением (1Х.4) калибровочный график должен представлять прямую линию, проходящую через начало координат, и при исследовании многих систем такой график получается в действительности. При отклонении от линейной зависимости приходится увеличивать число стандартных растворов с тем, чтобы увеличить число точек для построения калибровочного графика. Метод дает точные результаты при условии строгой идентичности условий полярографирования стандартных растворов и неизвестной пробы. К условиям полярографирования относят условия работы капилляра, температуру и среду (фоновой электролит). Метод кали- [c.125]

    При параллельных определениях концентрации растворенного кислорода с помощью полярографа и методом Винклера авторами были получены идентичные результаты на различных видах промышленных сточных вод. Применение полярографа улучшает условия работы обслуживающего персонала при исследовании радиоактивных и токсичных сточных вод. [c.215]


    Описанные два последних варианта усилителей не рассчитаны на работу с РКЭ и на компенсацию влияния составляющей на частоте каплеобразования и не могут использоваться для режимов, в которых применяется временная селекция. Ниже приводятся универсальные схемы усилителей, которые могут быть применены для полярографов, работающих в режимах ВПТ-С с ФС, ВПТ-П, ВПТ-Т, ДИВ и НИВ, предназначенные для высокочувствительного выделения сигнала в условиях работы с РКЭ и со стационарными электродами. [c.94]

    В докладе на предыдущей сессии [1] было показано, что элементарная сера в условиях осциллографической полярографии на кривых г = ср кислых фонов в катодной области образует два пика. Для обоих пиков была приведена зависимость величины тока в пике от концентрации серы и предложен состав четырех фонов, пригодных для практического определения серы в нефтепродуктах. Одпако определению мешает сероводород, который в общем случае необходимо удалять из нефтепродукта обработкой его кислым раствором хлористого кадмия или раствором щелочи. Тот факт, что элементарная сера образует два пика, в каждом из которых ток падает до нуля, в литературе не описан и не поддается простому объяснению. Работа в дальнейшем проводилась в направлении накопления фактов, необходимых для объяснения поведения серы, проверки и доработки метода определения, а также разработки методики определения меркаптанов, [c.97]

    Но химическим и физическим свойствам диметилацетамид (ДМА) несколько похож на диметилформамид. Растворитель находится в жидком состоянии в удобной.для работы области температур (от -20 до +165°С) и обладает высокой диэлектрической, постоянной (39). Смешивается с водой. В литературе имеется лишь одно упоминание об использовании ДМА в качестве растворителя электролитов [I]. В нем проводилась полярография Т1, РЬ, Сс1 и 2п на КРЭ. Диметилацетамид может служить эффективным, заменителем диметил-формамида. Например, если необходимо установить, не являются ли продукты реакции производными растворителя, то можно заменить ДМФ на ДМЛ без существенных изменений других условий. [c.18]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]

    Несмотря на то что этому разделу полярографии посвящено большое число исследований, остается еще много неясного в теории вопроса. Большинство работ в этой области имеет описательный характер, и, кроме того, многие результаты получены в различных условиях, так что их невозможно сравнивать между собой. Последнее обстоятельство выступает на первый план особенно при использовании безводных растворителей, когда на полярографическое поведение деполяризаторов влияют трудноустранимые следы воды и недостаточная чистота применяемого растворителя. Поэтому мы ограничимся рассмотрением только некоторых имеющих практический интерес результатов. [c.436]

    В этой книге термин вольтамперометрия принят для методов, в которых на микроэлектрод накладывается потенциал и измеряется протекающий ток. Полярография, согласно этой классификации, представляет вид вольтамперометрии с использованием ртутного капельного электрода в качестве рабочего. Область положительных потенциалов, в которой можно работать с ртутным электродом, ограничена, поэтому иногда для изучения анодных реакций используют другие материалы платину, пирографит, стеклоуглерод и угольные пасты. Полярографические эксперименты со стационарными электродами дают значительно более неопределенные результаты, чем эксперименты с капельным ртутным электродом. Это объясняется целым рядом причин. Поверхность ртутной капли непрерывно обновляется, поэтому адсорбция оказывает меньшее влияние на результаты измерений, чем при работе со стационарным электродом. Падающие из капилляра капли слегка перемешивают раствор, в результате чего каждая новая капля образуется в свежей порции раствора, и, следовательно, состав раствора однороден во всем объеме. Поэтому при использовании капельного ртутного электрода условия диффузии вблизи электрода должны сохраняться всего несколько секунд (время образования одной капли), тогда как при использовании стационарного электрода — в течение всего времени эксперимента. [c.16]


    В работах [20—21] показано, что в условиях диффузии из электрода ограниченного объема и при скоростях, значительно меньших обычно применяемых в осциллографической полярографии, глубина пика связана со скоростью изменения потенциала соотношением  [c.146]

    Более важное значение имеет точность и воспроизводимость потенциала, приложенного к рабочему электроду. При использовании потенциостатического метода необходимо знать, каким требованиям в конкретном случае должен удовлетворять потенциал рабочего электрода при условии, что потенциал электрода сравнения достаточно стабилен и точно известен. Для обычного анализа электроактивных веществ достаточна точность поддержания потенциала 10 мв, но для исследовательских целей она должна быть сравнима с точностью хороших полярографов. У большинства выпускаемых промышленностью потенциостатов кроме грубой регулировки потенциала имеется более точная система измерения потенциала для проведения тонких работ. Стабильность поддержания потенциала тесно связана с временем отработки и управляющим током. Как правило, желательно применять наименьший управляющий ток, чтобы свести к минимуму поляризацию электрода сравнения и иметь возможность использовать электрод -сравнения с высоким сопротивлением. [c.27]

    Полезное введение в методику моделирования дано в монографии [115]. Интересные примеры применения различных методов моделирования публикуются также в литературе по аналитической химии. В частности, в гл. 4 монографии [114] рассматривается использование в исследовании химической кинетики очень популярного и хорошо известного метода Монте-Карло. Авторы публикаций, в которых обсуждаются достоинства метода моделирования, как правило, сами пользуются им. Так, авторы статьи [117] продемонстрировали роль компьютерного моделирования в исследованиях факторов, определяющих оптимальный режим работы высокоэффективного жидкостного хроматографа, предназначенного для препаративного разделения в данном случае при помощи компьютерного моделирования изучалось влияние на элюирование изменения числа теоретических тарелок в хроматографической колонке. Авторы статей [118— 120] интенсивно изучали применение моделирования в дифференциальной импульсной полярографии как выяснилось, в результате моделирования можно предсказать форму полярографического пика и его положение как функции экспериментальных переменных, таких, как высота и длительность импульса и время спада. В этом примере метод моделирования позволяет аналитику осуществить выбор и оптимизацию экспериментальных условий без проведения длительных эмпирических исследований. [c.392]

    А. К. Бабко, по применению методов физико-химического анализа к аналитическим системам с целью отыскания оптимальных условий реакций, особенно в фотометрическом анализе. А. К. Бабко и его последователям принадлежит также заслуга массового введения в практику анализа окрашенных тройных комплексов. Можно отметить работы по серусодержащим органическим реагентам, механизму реакций оксикислот с металлами, состоянию ионов в растворах, хемилюминесцентному анализу (А. Т. Пилипенко), по экстракции, полярографии (И. В. Пятницкий). Широкой известностью пользуются работы киевских химиков в области кинетических методов анализа (К- Б. Яцимирский). [c.205]

    С целью дальнейшего усовершенствования метода в 1955—1956 гг. нами была проведена экспериментальная работа по нахождению условий дифференциального полярографирования элементарной серы в нефтепродуктах. На II сессии по химии сераорганических соединений уже сообщалось о преимуществах этого метода перед обычной полярографией [6]. [c.54]

    В настоящей работе преследовалась цель изучить методом полярографии поведение перекисной связи —О О— в зависимости от природы окружающих ее радикалов. Вначале была поставлена задача несколько подробней изучить условия полярографического восстановления перекисных соединений на примере грег-бутилгидроперекиси. [c.451]

    Как мы указывали выше, предска ания теории о существовании двух симметричных полярографических максимумов не оправдываются в обычных условиях работы полярографа. Обзор многочисленных экспериментальных работ показывает, что исследователям удавалось [c.576]

    Работа О Дина и Остерьянга [24] также подтверждает, что многие системы, которые дают искаженные и плохо выраженные волны в условиях обычной постояннотоковой полярографии, могут дать исключительно хорошо выраженные волны в условиях импульсной полярографии. На рис. 6.10 показаны полярограммы окисления ртути в присутствии бромида в условиях нормальной импульсной и классической полярографии. Импульсный метод лозволяет легко отнести электродный процесс к обратимой одноэлектронной стадии окисления  [c.402]

    Чувствительность. Христи и Остерьянг [3] использовали расчеты вышеуказанного типа, чтобы охарактеризовать обнаруживаемую концентрацию o.i электрохимически активного вещества, где Сол — это [РЬ ], которая дает сигнал, составляющий 10% от максимальной разности фонового сигнала между О и —0,8 В (отн. нас. КЭ). Результаты расчетов представлены в. табл. 6.1. Такие данные служат характеристикой чувствительности дифференциальной импульсной полярографии при различных условиях работы. [c.411]

    Нам представляется, что схема реакции восстановления серы, приводимая в работах М. И. Гербер [5], А. А. Ратовской [1] и некоторых других авторов описывает лишь конечный результат восстановления, не вскрывая самого механизма. В работе Кальвода [6] приводится четыре возможных варианта восстановления серы, однако их нельзя считать доказанными. Подробное изучение полярографического поведения серы в работе Штакель-берга [9] относится к обычной полярографии, где на каждой капле процесс происходит при постоянном потенциале и условия сильно отличаются от условий осциллографотеской полярографии. Мы предполагаем, что процесс восстановления серы в кислом растворе можно описать следующим образом. [c.102]

    Во второе издание введены новые разделы иономет-рия, полярография, свойства полиэлектролитов. Переработаны теоретические введения к главам, внесены изменения и дополнения в описание лабораторных работ, обновлены условия расчетных многовариантных задач. [c.3]

    Возможность замены в ряде случаев ртутного капельного электрода твердыми электродами является большим преимуществом метода амперометрического титровання по сравнению с полярографией, так как ртуть ядовита и работа с ней требует снеаи-альных условий (см. выше). [c.180]

    Для проведения следующей части работы на полярографе подбирают максимальную концентрацию Са +, добавление которого к митохондриям в среде с сукцинатом вызывает обратимую активацию дыхания. Для прочносопряженных митохондрий печени крысы (4—5 мг белка в пробе) это составляет около 200—400 мкМ Са +. Дальнейшие измерения проводят на регистрирующем рН-метре. В ячейку рН-метра со средой инкубации и погруженными электродами добавляют последовательно митохондрии, сукцинат и выбранную концентрацию Са +. Регистрируют быстрое освобождение ионов Н+ (закисление среды) из матрикса в ответ на добавление Са +. После аккумуляции всего добавленного Са + изменения pH среды прекратятся и на фоне нового стационарного значения pH в суспензии добавляют 1—2 раза одинаковое количество титрованной НС1 или КОН для калибровки шкалы (конечная концентрация НС1 или КОН в используемых условиях должна составлять около IO М). Проводят серию аналогичных проб, содержащих увеличивающиеся концентрации ДНФ, и каждый раз регистрируют скорость закисления среды в процессе активного транспорта Са2+. Для полного торможения транспорта Са + в митохондриях диапазон концентрации ДНФ должен быть значительно (в 2—3 раза) расширен по сравнению с опытами по измерению сукцинатоксидазной активности. Делают 5—6 измерений и строят графическую зависимость скорости транспорта Са + от концентрации разобщителя (5—6 экспериментальных точек). [c.470]

    Полярографии карбонильных соединений, в частности альдегидов и кетонов, посвящено очень много работ (см., например, [1, 3]). Поэтому здесь мы не будем останавливаться специально на полярографических характеристиках указанных соединений, а отметим только работы по применению полярографии для определения альдегидов и кетонов в системах, представляющих интерес при получении высокомолекулярных соединений. Укажем лишь, что, как правило, альдегиды восстанавливаются легче кетонов и некоторые из них образуют в водных растворах гидраты (а в спиртовых — полуацетали), что определяет высокий температурный коэффициент предельного тока. В частности, большое число работ посвящено полярографии формальдегида (см., например, [1]). Он восстанавливается на ртутном капающем электроде, образуя волну, удобную для количественных определений. На фоне 0,2 М LiOH 1/2 формальдегида равен —1,59 В. Одной из существенных особенностей восстановления формальдегида является то, что этот процесс протекает с кинетическими ограничениями. Поэтому при полярографическом анализе формальдегида необходима тщательная стандартизация условий. Однако линейная зависимость тока от его концентрации сохраняется в широком интервале температуры. [c.133]

    Имеются многочисленные работы и по применению полярографии для изучения процессов сополимеризации двух и большего числа мономеров. Этот метод был использован для изучения сополимеризации стирола с акрилонитрилом [282]. Полярографический метод был применен также для анализа реакционной смеси на остаточный стирол (или метилметакрилат) при определении относительных активностей в условиях совместной полимеризации винилэтилсульфида со стиролом и метилметакрилатом (Шостаковский). [c.185]

    Применение полярографии в нейтральных и щелочных растворах наиболее целесообразно для определения небольших концентраций рения, так как восстановление в этих условиях протекает с участием восьми электронов, а в кислых — с участием трех. В работе Рубинской и Майрановского [1322] сообщается, что наиболее вероятно трехэлектропное восстановление Re(VII) до Re(IV) как в щелочных, так и в нейтральных растворах. Электродный процесс сопровождается диспропорщюнированием неустойчивых проыегкуточных продуктов реакции. [c.155]

    На протяжении почти 20 лет после возникновения полярографии (1922 г.) основное внимание сосредоточивалось на объяснении кривых зависимости силы тока от напряжения (потенциала электрода), полученных при электролизе с применением ртутного капельного электрода. Позднее на ртутном капельном электроде исследовались и другие зависимости (например, аависимость производной от тока по потенциалу от потенциала, зависимость тока от времени, зависимость потенциала капельного электрода от времени, зависимость производной от потенциала по времени от времени и др.). Успехи, достигнутые при работе с ртутным капельным электродом, дали толчок к исследованиям с помощью других электродов, например со струйчатым электродом, висящей ртутной каплей, с вращающимся и вибрирующим ртутными электродами и др. Благодаря этому содержание понятия полярография значительно расщирилось. Оно не охватывает исследования, проведенные на твердых электродах, но включает исследование физико-химических процессов и явлений, наблюдаемых на ртутных капиллярных электродах при их поляризации заданным напряжением или заданной силой тока. Под выражением капиллярный электрод мы понимаем прежде всего ртутный капельный электрод, с которым было проведено наибольшее количество исследований, ртутный струйчатый электрод и висящую ртутную каплю. Наиболее важным свойством этих электродов является то, что результаты, полученные с их помощью, очень хорошо воспроизводятся. Еще со времен Фарадея ртуть в электрохимии применяется как наилучший материал для электродов. Это обусловлено ее сравнительно высокой химической стойкостью, большим перенапряжением водорода на ртути, а также тем, что ее можно сравнительно легко получить в очень чистом виде. К тому же применяемые в полярографии электроды (капельные и струйчатые) непрерывно обновляют поверхность, вследствие чего изучаемые процессы протекают в достаточно строго определенных условиях и не подвергаются влиянию предшествующих процессов. [c.11]

    Это высокое перенапряжение позволяет работать с капельным ртутным электродом в кислой среде при потенциалах до —1,5 В. В области положительных потенциалов, т. е. когда капельный ртутный электро д служит анодом, его применение ограничивается 4-0,4 В, так как выше этого значения начинается анодное окисление и растворение ртути. Поэтому и область использования этого электрода в полярографии для кислых растворов ограничена интервалом от —1,5 до - -0,4 В. В сильнощелочной среде, созданной четвертичными аммониевыми гидроокисями типа МК40Н, дополнительно возрастает перенапряжение водорода на ртути, в силу чего в подобных растворах капельный ртутный электрод можно, использовать при потенциалах —2,4 В. В этих условиях становится возможным полярографическое определение ионов щелочноземельных и даже щелочных металлов. Так, в 0,2 н. М(СНз)40Н можно определять Ма+ (Б/г = — 2,1 В), чему не мешает присутствие небольших количеств К (если [Ыа ИК ] 8). В присутствии большого количества калия его необходимо предварительно осадить и отделить, например, магниевой солью дипикриламина. [c.323]

    Здесь г О для суммарного катодного или анодного тока, соответственно >0 и а > 0. Отсюда и для 1 0 соответственно. Уравнения (34) справедливы как для ста ционарного, так и для нестационарного электролиза. В послед нем случае можно подставить вместоиточные выражения, полученные в результате детального исследования диффузионной задачи. Сочетание формул (31) и (34) непосредственно приводит к уравнению полной поляризационной кривой. Первые ко личественные расчеты этого типа были проделаны Гейровским и Ильковичем [48] применительно к условиям полярографии (см. также работу Агара и Боудена [48а]). Впоследствии к этой проблеме обращались многие авторы [17, 18, 25, 31, 32, 51, 52], рассматривавшие ее в различных приближениях (см. обзор Ге-ришера [45] и работы [39—43]). [c.183]

    Решение первой задачи может производиться всеми известными в настоящее время методами исследования функциональных групп — с помощью методов химического и физико-химического анализа. В то же время после точки гелеобразования из-за перехода системы в твердое агрегатное состояние целый ряд методов становится неприменимым (например, полярография, ЯМР, ГЖХ), а использование других методов требует постановки специальных исследований для выбора условий анализа. Так, например, определение непрореагировавших или образовавшихся функциональных. групп методами химического анализа [115] требует предварительной тщательной работы по выбору метода дробления анализируемой пробы, установлению необходимой дисперсности частиц, анализу и учету возможных механо-эсимических процессов в ходе диспергирования, подбору растворителя. [c.30]

    Выше указывалось, что фоновый электролит выполняет очень важную функцию в электрохимическом эксперименте. При выборе электролита нужно учитывать такие его свойства, как растворимость, электрохимическая и химическая инертность. Во многих органических растворителях неорганические соли нерастворимы, однако в них довольно хорошо растворимы многие органические соли, которые и используются в качестве фоновых электролитов. Для полярографии необходимо, а для препаративного электролиза, по крайней мере, желательно, чтобы фоновый электролит был неактивен в интересующей исследователя области потенциалов. Обоим условиям удовлетворяют алифатические четвертичные аммониевые соли. При работе с большинством органических растворителей необходимо брать соли с алкильными группами, имеющими не менее двух углеродных атомов, т. е. тетраэтиламмониевые соли. Очень часто удобными бывают соли тетрапропил- и тетра- [c.32]

    В последнее время широкое распространение получил новый метод полярографического анализа, основанный на предварительном электролитическом концентрировании металлов на стационарных электродах и последуюш,ем анодном растворении их при постепенно снижаюш,емся отрицательном потенциале [1—4]. Брос-ковый ток на стационарном электроде, полученный в определенных условиях, правильно отражает явление концентрационной поляризации и может быть использован для построения полярографических 1—Е кривых [5—6]. Необходимым условием воспроизводимости бросковых токов является полная гальваническая деполяризация электрода после каждого измерения, осуш,ест-вляемая коротким замыканием электродов. При коротком замыкании электродов после предварительного электролиза наблюдается обратный бросок тока, являюш,ийся следствием разрядки гальванического элемента. До последнего времени обратный брос-ковый ток не привлекал достаточного внимания исследователей, и поэтому в настояш ей работе нами была предпринята попытка изучить это явление и выяснить возможности применения его в полярографии. [c.179]

    Характерная особенность всех изложенных опытов — работа с искусственно приготовленными системами, для которых метод приготовления в значительной мере предопределяет химический результат. Возникает естественный вопрос, как все это применимо к генезису катализаторов в обычных условиях в отсутствие таких химически активных агентов, как металлоорганические соединения, сильные минеральные кислоты и т. д. Экспериментальные работы в этой области очень трудны, так как дело идет о захвате очень небольших количеств обычных веществ высокодисперсными твердыми телами, анализ которых представляет сам по себе трудную задачу. Из работ в этой области следует упомянуть работы Левиптова по спектральной методике определения металлоидов в твердых телах, использование полярографии Жабровой и другими. Однако па этом пути результаты будут получены не так скоро, так как мало обнаружить по линиям спектра или по полярографической волне наличие определенных примесей следует узнать, какие из них влияют на активность, какие — нет. Весьма перспективен другой путь введения в генетическую систему веществ в виде меченных молекул, за которыми можно следить непосредственно в сколь угодно сложной обстановке. Разведочные работы в этом направлении мы вели в 1940—1941 гг., и они оказались успешными. Ограничимся упоминанием о наблюдениях Брежневой и Озиранера над захватом и промотированием металлической платины и палладия следами фосфата. Для этого из серы нейтронным облучением приготовляли высококонцентрированный препарат радиофосфора, который в виде фосфат-иона вводили в раствор муравьинокислого натрия, применявшегося для выделения платины и палладия из их хлоридов. Концентрацию фосфат-иона легко было при этом менять в очень широких пределах, а захват наблюдать по р-изпучению катализатора. [c.42]

    К настоящему времени опубликовано огромное количество работ, описывающих электрохимические превращения на электродах из углеродных материалов. В этих работах ставились разные задачи, и они в1ыполнены на различном экспериментальном уровне. Большая часть исследований проводилась с целью подбора оптимальных условий применения углеродных материалов в электроаналитической химии, а именно в обычной и инверсионной полярографии, хронопотенциометрии, кулонометрии и т. д. Целый ряд электрохимических реакций, изучавшихся для решения полярографических задач, протекает через адсорбированное состояние и носит электрокаталитический характер, В первую очередь это относится к реакциям органических веществ. Однако зачастую в этих работах отсутствуют данные о механизме реакции и тем более о природе электрокаталитических эффектов, обусловленных изменением структуры углеродного материала. [c.102]

    Полярографическое определение урана было исследовано Кольтгофом и Х аррисом [1016], установившими независимость потенциала полуволны от кислотности раствора, с одной стороны, и большую зависимость диффузионного тока от этого же фактора, а также от наличия различных солей, с другой. Более поздние работы по полярографии урана были выполнены чешскими исследователями [1016], показавшими возможность определения 0,08% урана в рудах в присутствии железа и 0,008% в его отсутствие (после экстрагирования железа эфиром). Современное состояние полярографии урана освещено в докладе А. П. Виноградова [967] и в книге Т. А. Крюковой, С. И. Синяковой и Т. В. Арефьевой [55]. Очень интересен и практически важен тот факт, что ионы ванадия и здесь сказываются на определении урана они увеличивают высоту волны восстановления урана. Это явление, наблюдавшеесу различными исследователями, было изучено В. Г. Сочевановым с сотрудниками [1017] и затем Ю. В. Морачевским и А. А. Сахаровым [1018]. Если ванадий присутствует в руде вместе с ураном и содержание его неизвестно, то полярографическое определение урана невозможно если же исследуемый раствор урана не содержит ванадия, то можно, вводя определенные количества ванадия, в несколько раз повысить высоту волны урана и тем самым улучшить условия его определения. [c.385]

    Ртутный капающий электрод, наряду с достоинствами, имеет и н.едостатки. В частности, его нельзя использовать при потенциалах положительнее равновесного потенциала ртути в данном растворе, поэтому он непригоден для изучения большинства анодных реакций. Работа с р.к.э. неудобна, напри.мер, в полевых условиях. Вследствие этого во многих случаях для полярографических измерений используют твердые электроды. При этом должны быть подобраны такие условия, когда можно количественно учитывать диффузию вещества в растворе, с тем, чтобы по значению предельного тока рассчитывать концентрации. Это можно сделать в двух случаях при использовании микроэлектродов [на которых довольно быстро устанавливается стационарное состояние, см. уравнение (7.27)] или вращающихся дисковых электродов. Эти электроды пригодны для измерений как в классическом полярографическом варианте, так и в различных новых вариантах. Следует отметить, что в настоящее время термин полярография применяют только для измерений с р.к.э., измерения с другими видами электродов называют вольтамперометрическими (см. гл. 20). [c.157]


Смотреть страницы где упоминается термин Условия работы с полярографами ЦЛА: [c.127]    [c.566]    [c.577]    [c.104]    [c.223]    [c.136]    [c.35]   
Смотреть главы в:

Практикум по электрохимическим методам анализа -> Условия работы с полярографами ЦЛА




ПОИСК





Смотрите так же термины и статьи:

Полярограф

Полярография



© 2025 chem21.info Реклама на сайте