Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связывание и реакционная способность

    Если отношение Уд.ф/Уд.с изменить так, чтобы получить систему с повышенными значениями вяжущих свойств и с меньшей объемной устойчивостью по сравнению с пропитывающими веществами, то пеки по своим свойствам могут стать веществами, используемыми для связывания в единый монолит коксовых частиц (связующие вещества) вначале физическими, а на более поздних этапах химическими связями. В этом случае основное требование к связующим веществам — получение однородного по физико-химическим свойствам монолита, обеспечивающего одинаковое поведение всего его объема и поверхности в эксплуатационных условиях (одинаковая механическая прочность, реакционная способность, электропроводность и др.). [c.74]


    Исходной стадией гетерогенного катализа обычно является адсорбция реагентов. Как уже отмечалось в гл. 2, адсорбцию следует отличать от абсорбции. Адсорбция-это связывание молекул с поверхностью, тогда как абсорбция означает поглощение молекул в объеме другого вещества. Адсорбция происходит вследствие чрезвычайно высокой реакционной способности атомов или ионов на поверхности твердого вещества. В отличие от таких же частиц в объеме твердого вещества они имеют ненасыщенные валентные возможности. Благодаря способности поверхностных атомов или ионов к образованию связей молекулы из газовой фазы или раствора могут связываться с поверхностью твердого вещества. В действительности не все атомы или ионы поверхности обладают реакционной способностью, так как на поверхности могут быть адсорбированы различные примеси (загрязнения), которые занимают многие потенциально реакционноспособные центры и блокируют дальнейшую реакцию. Места поверхности, на которых могут адсорбироваться реагирующие молекулы, называются активными центрами. Число активных центров, приходящееся на единицу массы катализатора, зависит от природы катализатора, от способа его приготовления и обработки непосредственно перед использованием. [c.28]

    Один из наиболее интересных выводов, к которым приводит модель ключа и замка , объясняющая механизм ферментативного действия, заключается в том, что определенные молекулы способны ингибировать фермент. Допустим, что некоторая молекула способна притереться к активному центру фермента, но по какой-либо причине не обладает реакционной способностью. Если такие молекулы присутствуют в растворе наряду с субстратом, они конкурируют с ним за связывание с активными центрами. Это препятствует образованию необходимых фермент-субстратных комплексов и понижает скорость образования продукта. Металлы с высокой токсичностью, например свинец и ртуть, по-видимому, действуют как ингибиторы ферментов. Ионы тяжелых металлов особенно прочно связываются с серусодержащими группами белковых боковых цепей. В результате образования прочных комплексов с этими центрами белков они препятствуют нормальным реакциям ферментов. [c.454]

    Количество известных углеродных соединений составляет мил ЛИОНЫ и значительно превышает число соединений других элементов а возможные комбинации порядка связывания атомов углерода ирак тически неисчислимы. Установлением порядка связывания, простран ственного расположения и взаимного влияния атомов в молекулах а также реакционной способности соединений углерода занимается органическая химия. [c.7]


    Реакционная способность анионов, используемых при проведении реакций нуклеофильного ароматического замещения, очень сильно зависит от их состояния в растворе. Связывание с противоионами в ионные пары или же образование прочных сольватных оболочек значительно уменьшает их нуклеофильность и скорость реакции. Поэтому оптимальной средой для проведения таких реакций являются биполярные апротонные растворители, разрушающие ионные пары, но слабо сольватирующие анионы. [c.162]

    Теория 5г-связей объясняет трансвлияние способностью трамс-лиганда образовывать двойные связи с комплексообразователем. На рис. 63 представлено образование двойной а- и тг-связи в комплексе. Для простоты даны только орбитали, лежащие в плоскости уг тг-Связывание может осуществляться в тех комплексах, в которых комплексообразователь имеет неподеленные электронные пары, а лиганд — свободные орбитали. В результате донорно-акцепторного взаимодействия электронная плотность с (/у рбиТали центрального атома частично переходит на орбиталь лиганда. Возникающая асимметрия облака открывает доступ к траис-лиганду. Чем интенсивнее гг-связывание с левым лигандом (рис. 63), тем больше правый лиганд открыт для атаки, т.е. легче происходит замена Ь1 на Ь. Таким образом, по этой концепции, реакционная способность лиганда не связывается с ослаблением связи между ним и комплексообразователем, а зависит от способности транс-лиганда к взаимодействию с комплексообразователем. Поэтому нет ничего удивительного в том, что часто скорость обмена более прочно связанных лигандов оказывается большей, чем менее прочно связанных. [c.113]

    Согласно другой концепции, объясняющей высокую скорость ферментативных реакций, ферменты способны индуцировать напряжение, или искажение в молекуле субстрата, приводящее к ослаблению специфических связей (см. гл. 7, разд. В, 4, а, посвященный лизоциму). Напряжение может либо сопровождаться конформационным изменением в самой белковой молекуле, либо возникать в результате подобного конформационного изменения. Еще один факт, который необходимо принять во внимание, состоит в том, что некоторые реакции протекают быстрее в среде с низкой диэлектрической постоянной, чем в воде. Возможно, полярные группы субстрата дегидратируются при связывании с активным центром фермента, и это приводит к повышению их реакционной способности. [c.62]

    Хотя стадия связывания и каталитический процесс на практике взаимозависимы и неразделимы, полезно обсудить их по отдельности. В этом разделе мы начинаем рассмотрение химизма процессов, проходящих внутри фермент-субстратного комплекса, как проблему механизма органической реакции. Необходимо начать с предположения, что реакционная способность рассматриваемых групп хотя и значительна, но в данных условиях близка к обычной. Это означает, что если мы сможем каким-либо образом воспроизвести в эксперименте условия фермент-субстратного комплекса, то сможем воспроизвести и высокую реакционную способность. [c.456]

    Реакционная способность нуклеофила четко зависит от степени его связывания, но практически не изменяется от основности (коэффициент Бренстеда р = 0) [62]. Это связано с синхронностью переноса протона в реакции общего основного катализа. В случае ферментативного процесса это явление превращается в большое преимущество, так как реакционная способность слабого нуклеофила типа воды здесь лишь ненамного ниже таковой более основных реагентов. В случае простых карбонильных соединений нуклеофильность таких реагентов обычно гораздо выше. [c.497]

    Дифенилолпропан может взаимодействовать с К,Ы -карбонилди-имидазолом, что также приводит к поликарбонатам. Штааб впервые синтезировал замещенный диамид угольной кислоты — К,Ы -карбонилдиимидазол — взаимодействием имидазола с фосгеном. Автор исследовал также реакционную способность этого соединения и нашел, что оно легко реагирует с алифатическими и ароматическими окси- и аминосоединениями и может быть использовано для связывания амино- и оксигрупп этих соединений с карбонильным остатком, так же, как и фосген. Реакцию Ы,Ы -карбонилдиимидазола с дифенилолпропаном можно записать так  [c.46]

    Как было показано выше, вклад я-аллильного лиганда в дативное связывание с металлом невелик и устойчивость этих комплексов обусловлена в основном донорно-акцепторным взаимодейст вием [61]. Из всех трех атомов углерода л-аллильного лиганда лишь центральный углеродный атом участвует только в донорно-акцепторном взаимодействии с переходным металлом [83]. Исходя из этого, увеличение электронодонорной силы заместителей в л-аллильных лигандах, особенно у среднего углеродного атома, должно способствовать упрочнению связи л-аллильный лиганд — металл. Относительная реакционная способность 2-алкил-1,3-бута-диенов при взаимодействии с (С407Ы11)2, а также активность аддуктов 1 1 в последующих реакциях присоединения к соответствующему 1,3-диену подтверждают этот вывод. Из кинетических кривых образования аддуктов 1 1 (С4В7Н11)2 с диеновыми углеводородами (рис. 9) видно, что активность диенов увеличивается в ряду  [c.125]


    Металлы, относящиеся к легкой и тяжелой платиновым триадам, встречаются довольно редко, и их реакции еще недостаточно полно изучены. Все они обладают сравнительно низкой реакционной способностью и в природных условиях встречаются в виде свободных металлов. Наиболее важное значение для них имеют состояния окисления +2, 4- 3 и 4-4, находясь в которых эти металлы образуют в растворе октаэдрические или плоские квадратные комплексы. Комплексные ионы Р1(1У) и 1г(П1) имеют структуры октаэдра. Комплексы Р1(П) имеют плоское квадратное строение. Ион тетрахлороплатината(П), Р1С1 , обнаруживает большую склонность к связыванию с серой в белках и используется для получения производных белков, включающих тяжелые атомы, с целью проведения их рентгеноструктурного анализа. [c.446]

    Содержание гетероэлементов нежелательно. Они могут влиять на реакционную способность пека, Бар и Левис [8] показали, что мягкое окисление на воздухе приводит к дегидратационной полимеризации, а более жесткое окисление— к поперечному связыванию молекул при помощи -0-, что в конечном счете делает пек неплавким и его впоследствии невозможно сформовать. Кислород или сера, присутствуя в определенных количествах, изменяют реакционную способность и могут решительно изменить микроструктуру. Большие количества (выше 5-7%) кислорода и серы вообще предотвращают образование мезофазы, делая предшественник неграфитируемым. Кроме того, при выделении гетероатомов в виде газообразных продуктов при повышенных температурах упорядочение кристаллитов в [c.183]

    Гидролиз промежуточного ацилхимотрипсина. Для того чтобы решить вопрос о внутренней реакционной способности ферментного нуклеофила, действующего в ацилферменте, сравним скорость этой псевдо-внутримолекулярной реакции с аналогичной межмолекулярной реакцией. Атакующая группа составного нуклеофила — это молекула воды, эффективная концентрация которой в псевдовнутримолекулярных реакциях вряд ли может превысить, как полагает Дженкс [10], значение 55М, даже если учитывать некоторую степень ориентации молекулы воды при связывании ее в систему с переносом заряда (см. 3 в гл. II). Следовательно, эффективную величину константы скорости второго порядка, которая следует из экспериментальных значений з, можно принять равной к /ЪЪ. [c.164]

    Иначе говоря, время жизни карбокатнона в активном центре фермента должно быть столь большим, чтобы успели пройти процессы десорбции отщепившегося агликона, связывания подходящего акцептора гликоновой части субстрата и атака акцептором карбокатиона с образованием соответствующего продукта переноса. Вместе с тем исходя из известных данных об исключительно высокой реакционной способности карбокатионов такое большое время жизни для них маловероятно, даже при учете стабилизирующих факторов в активном центре фермента. Так,- по данным работы [103] время жизни гликознльных карбониевых [c.173]

    Возбуждение может менять как размеры, так и форму молекул. Для определенной реакции изменение стерических факторов приводит к увеличению или уменьшению реакционной способности. Движение электронов по связывающим, несвязывающим и разрыхляющим орбиталям влияет на молекулярные размеры, а природа связывания — на форму молекул. Например, В ТО время как основное состояние алкеиа, такого, как этилен, плоское, в равновесной структуре возбужденного состояния (я, я ) две группы СН2 лежат перпендикулярно плоскости. Активирование электрона сопровождается распариванием л-орбитали, так что между углеродными атомами остается только [c.149]

    Для использования в пищевых отраслях наиболее перспективным методом иммобилизации, обеспечивающим получение биологически активного материала (БАМ), является ковалентное присоединение БАД к полимеру, основанное на образовании химической связи между функциональными группами молекулы БАД, не определяющими его каталитическую активность, и реакционно-способными группами полимерного носителя. Ковалентное связывание БАД с полимером предотвращает миграцию БАД в пищевую среду и обеспечивает возможность многократного использования БАМ. Однако образование ковалентной связи осуществляется, как правило, с применением токсичных растворителей, активаторов и высоких температур, что приводит к инактивации многих БАД и образованию побочных продуктов реакции. ГГоследнее недопустимо при получении БАМ, предназначенных для пищевых отраслей промышленности. [c.215]

    Прежде всего, необходимо подчеркнуть, что при сравнении внутримолекулярных реакций с их межмолекулярными аналогами часто наблюдается превышение скоростей первых из них над вторыми до восьми порядков величины. Первой стадией любой ферментативной реакции галяется связывание субстрата с ферментом с образованием фермент-субстратного комплекса. Таким образом, вторая, т. е. собственно ферментативная реакция, оказывается внутримолекулярной, так что должна существовать близкая аналогия между этой стадией и обычными эффектами ускорения во внутримолекулярных чисто химических реакциях. Следует, однако, иметь в виду, что общепринятой трактовки влияния внутримолекулярности на скорости реакций пока не существует (обсуждение этого вопроса см. в работах [ЗбЬ-ё]). Во всяком случае, поучительно будет рассмотреть один из простейших примеров, показывающих, как много можно получить путем имитации высокой реакционной способности ферментов с помошью конструирования моделей соответствующих внутримолекулярных реакций. [c.487]

    Некоторые хиноны обладают столь большой реакционной способностью и столь чувствительны, что для их получения окисление следует проводить в тщательно контролируемых условиях. Так, все попытки превратить пирокатехин в соответствующий хинон были безуспешными до тех пор, пока Вильштеттер (1904) не выяснил, что о-бензох>гаон чрезвычайно чувствителен к влаге, и разработал способ получения этого соединения, заключающийся в том, что окисление проводится безводной окисью серебра в растворе абсолютного эфира в присутствии плавленого сульфата натрия для связывания образующейся воды  [c.417]

    Реакционная способность элементарного иода в реакциях замещения в ароматическом ядре незначительна, так что прямое. иодпроваяне возможно только для фенола и ароматических аминов. Добавление окислителей (концентрироваиная серная кислота, азотная кислога или окнсь ртути), которые необходимы для образования иод-катион ов соответственно для связывания образующегося свободного иодистого водорода, также способствует прямому иодированию инертных ароматических соединений. [c.411]

    Поверхностные ОН-группы часто используются и в других реакциях связывания (рис. 7.8-7,а-е), помимо них можно использовать и другие группы, например, амидо-, -СООН н т. д. (рнс. 7.8-8). На поверхности металлов, таких, как серебро и золото, особенно эффективным способом создания полезных функциональньк групп для иммобилизации стало использован самоорганизующихся слоев [7.8-21], таких, как тиолы с длинной цепью, имеющие концевую группу для связи с распознающей молекулой. В случае иммобилизации ДНК концевая КНа-группа обеспечивает связывание через тиминовое кольцо [7.8-22]. Многие другие соединения структуры У(СН2)пХ, имеюшие две концевые функциональные группы, разделенные гидрофобной цепью (разделитель), самоорганизуются на поверхности в соответствии с реакционной способностью функциональных групп. Если для реакции с поверхностью выбран V, [c.529]

    Концепция агглютинации известна с 1920-х гг. в микробиологическом анализе. Этот принцип можно положить в основу офазования комплекса между антителом и антигеном, где имеется поливалентное связывание. Поливалентный белок будет реагировать со своим антителом, образуя осаждающийся комплекс, но реакция в высокой степени зависит от таких факторов, как нонная сила и ионные частицы, и осложняется изменением реакционной способности различных антигенных связывающих центров на антителе В принципе, по мере протекания реакции образование комплекса может приводить к изменению способности среды рассеивать свет, но в адеале комплекс должен оставаться во взвешенном состоянии. [c.584]

    При этом методе эквимольную смесь исходных веществ в инертном растворителе быстро нагревают до 200-210 °С в токе инертного газа и выдерживают при этой температуре определенное время (3-10 ч). Рост полимерной цепи (образование полиамидокислоты) и внутримолекулярная циклизация протекают практически одновременно. Весьма успешным оказалось проведение одностадийной полициклизации в присутствии кислотных катализаторов [49, 181, 182, 211-214]. В этом случае удается или существенно уменьшить продолжительность реакции (до 1-3 ч), получая при этом весьма высокомолекулярные полимеры, или проводить процесс при более низких температурах (140-160°С). Карбоновые кислоты, например бензойная, оказались эффективными катализаторами и в случае синтеза высокомолекулярных полиимидов из мономеров пониженной реакционной способности, например в случае диангидрида 1,4,5,8-нафталинтетракарбо-новой кислоты [214]. Поскольку, как отмечалось выше, процесс образования полиимидов является равновесным, для получения высокомолекулярных полиимидов необходимо возможно более полно удалять из сферы реакции выделяющуюся при циклизации воду, что достигается повышением температуры реакции, проведением ее в токе инертного газа, связыванием воды химическими агентами и т.п. Следует отметить, что простота осуществления одностадийной полициклизации, ее хорошая воспроизводимость, возможность получения полиимидов с высокой молекулярной массой, практически не содержащих дефектных <э-карбокси-амидных звеньев, позволяют считать этот метод перспективным для синтеза самых разнообразных полиимидов [211]. [c.131]

    Енамин ( VIII <— - IX) может вступать в необратимые реакций с алкилгалогенидами причем в результате реакции могут образовываться продукты N- или С-алкилирования. При их гидролизе получаются в первом случае (путь А) растворимые четвертичные соли, во втором (путь Б)— моноалкилированные кетоны. Моноалкилирование возможно ввиду пониженной реакционной способности моноалкилированного енамина XI, который может образоваться из соли типа СХ в результате связывания протона исходным енамином, как показано на схеме. [c.27]

    Наконец, реакционную способность анионов можно повысить путем связывания соответствующего катиона в комплекс с макро (поли) циклическими лигандами [643]. Органические соединения, в молекулах которых имеются жесткие полости, по размерам не уступающие по крайней мере небольшим катионам (и анионам), называют кавитандами [644]. Связывание катиона такими макро (поли) циклическими лигандами приводит к диссоциации ионной пары и к солюбилизации соли. Образование комплексов с липофильными органическими лигандами превращает небольшие катионы в объемистые липофильные сложные катионы, обладающие значительно более высокой раствори- [c.337]

    Заместители в ароматическом кольце субстрата относительно мало влияют на скорость процесса ио сравнению с их влиянием на аналогичные реакции электрофильного замещения некоторые парциальные факторы реакции замещения фенильными радикалами приведены при формулах (34) — (36). Более высокую реакционную способность орто- и пара-положений можно объяснить способностью заместителя X делокализовать иеспаренный электрон [в (37)]. Однако возможно также, что циклогексадиенильный радикал является плохой моделью переходного состояния для экзотермического присоединения реакционноспособных радикалов типа Ме- или РЬ-, когда в переходном состоянии можно ожидать слабого связывания. Данные по ориентации в различных субстратах коррелируют с рассчитанными энергиями локализации [ЗЗа]. Заместители в арильном радикале оказывают вторичный эффект как на реакционную способность по отношению к субстрату, так и на соотношение изомеров за счет полярных эффектов, например и-МОгСбН4- реагирует с нитробензолом медленнее, чем /г-СНзСбП4-. Были рассчитаны величины р Гаммета для реакций замещения большим количеством замещенных арильных и других радикалов [ЗЗа]. [c.583]

    Функциональные мицеллы не относятся к числу наиболее известных примеров мицеллярного катализа, главным образом потому, что заряженные концевые группы обычных детергер1тов представляют собой сопряженные основания сильных кислот нли тетраалкнламмониевые катионы, в силу чего их реакционная способность ниже, чем у нуклеофилов или общих оснований. Анионная мицелла (см. рис. 24.1.15) может катализировать реакции специфического кислотного катализа, такие как гидролиз ацеталей ил и ортоэфиров с гидрофобными группами, путем связывания субстрата таким образом, что полярная функциональная группа [c.507]

    Реакционная способность сложноэфнрного нли амидного субстрата может, таким образом, существенно повышаться при связывании на ферменте в непланарной или просто в цис-конформа-ции. Подобные эффекты возможны для многих других групп, реакционная способность которых чувствительна к конформации или к небольшим изменениям в геометрии молекулы. [c.528]

    Дифференциация мета- и /гара-замещенных фенилацетатов обусловлена характером связывания молекулы-гостя в полости молекулы-хозяина, и в частности характером связывания неполярной (углеводородной) части молекулы-гостя в полости молекулы-хозяина. При объяснении этого эффекта следует принимать во внимание следующее I) максимальная мета1пара-специфичность наблюдается для наиболее громоздких групп 2) реакционная способность незамещенных субстратов занимает промежуточное положение между реакционными способностями пара- и иега-замещенных субстратов, причем пара-за-мещенные молекулы характеризуются отрицательной специфичностью, а л ега-замещенные— положительной. Исходя из этих фактов, была предложена модель катализатора, показанная на рис. 12.11. В случае пара-замещенного эфира (небольшое ускорение) его сложноэфирная свя зь расположена на значительном расстоянии от каталитически активных групп циклоамилозы, тогда как в случае л ега-замещенного эфира (большое ускорение) сложноэфирная связь находится вблизи вторичных гидрок-сигрупп, окружающих полость циклоамилозы. Следовательно, катализ должен обеспечиваться стереоспецифическим взаимодействием одного из гидроксилов циклоамилозы с карбонильной группой сложного эфира (стереоспецифическое связывание). [c.324]

    Ни один из сахаров полностью не реагирует с ионами гидросульфита. При равном массовом содержании и pH степень связывания определяется описанным в 7.4.3 рядом реакционной способности открытоцепных форм моносахаридов по карбонильной группе. Однако для всех образующихся сахарогидросульфитных соединений имеются зоны максимальной стабильности, определяемые величиной pH раствора. Как видно из рис. 8.1, с повышением реакционной способности сахара по карбонильной группе не только возрастает степень его связывания с ионами гидросульфита, но и расширяется эта зона. Так, степень связывания глюкозы лишь в довольно узкой зоне pH 4,5— 5,5 приближается к 40%, а ксилозы — в зоне pH 3,5—6,5 достигает 70 % (не показанные на рисунке кривые маннозы и галактозы занимают промежуточные положения, кривая арабинозы не представлена в связи с незначительным содержанием этого трудно биохимически утилизируемого сахара). Соответственно при pH 4,5 /(дне ксилозогидросульфитного соединения равна 6-10 против 3-10-2 у такого же соединения глюкозы, т. е. первое соединение на порядок стабильнее второго. Поэтому условия подготовки сульфитного щелока, обеспечивающие освобождение гексоз из связанной формы и качественное проведение спиртового брожения, могут оказаться недостаточными для пентоз и для процессов биосинтеза белка. [c.245]

    В противоположность поликоиденсации ступенчатая полимеризация протекает без выделения побочного продукта связывание мономерных звеньев сопровождается в этом случае передачей атома водорода (см. уравнение реакции образования полиуретана из диола и диизоцианата в разделе 4.2.1). Как и поликонденсация, ступенчатая полимеризаг я представляет собой ступенчатый процесс, состоящий из отдельных независимых стадий. Поэтому средняя молекулярная масса образующегося полимера непрерывно возрастает в процессе реакции. Олигомерные и полимерные продукты, образующиеся на каждой стадий , содержат те же функциональные группы, что и исходный мономер. Эти продукты можно выделить, причем их реакционная способность не уменьшается (в отличие от продуктов полимеризации). Ступенчатая полимеризация подчиняется тем же кинетическим закономерностям, что и равновесная поликонденсация [см. уравнения (4.1) — (4.4) в разделе 4.1]. Аппаратурное оформление в основном то же самое. [c.225]

    Полимеризация. О процессе полимеризации, с помощью которого меланиновая макромолекула строится из мономерных единиц, практически ничего не известно. В молекуле хинона, подобного индолил-5,6-хинону (7.17), атомы углерода в положениях 4 и 7 обладают высокой реакционной способностью. Связывание мономеров по этим положениям через атом азота, атомы углерода 2 и 3 гетероциклического кольца происходит довольно легко (рис. 7.6). Такая же легкость присуща сополимеризации с молекулами других мономеров, таких, как дофа-хинон. Наличие столь большого числа реакционноспособных атомов в молекулах мономеров обеспечивает возможность пе- [c.269]


Смотреть страницы где упоминается термин Связывание и реакционная способность: [c.355]    [c.132]    [c.61]    [c.41]    [c.147]    [c.62]    [c.194]    [c.334]    [c.259]    [c.159]    [c.407]    [c.561]    [c.595]    [c.166]    [c.506]    [c.518]    [c.566]   
Смотреть главы в:

Основы органической химии -> Связывание и реакционная способность




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2025 chem21.info Реклама на сайте