Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение молибдена в присутствии ванадия

    Метод дает удовлетворительные результаты. Присутствие небольших количеств иона аммония, соответствующих 1—5 мл концентрированного аммиака, не влияет на результаты определения молибдена. Содержание в растворе, из которого осаждают молибден, вольфрам, ванадий и железо при помощи 8-оксихинолина (pH 5,3), 0,01 мол/л ортофосфорной кислоты, не сказывается на результатах определения названных элементов. [c.163]


    Молибден может быть определен в присутствии шестивалентного хрома (0,004—0,009 г). В этом случае осадок необходимо прокаливать до МоОз. Шестивалентный вольфрам осаждается реагентом из кислых растворов и мешает определению молибдена. Двухвалентный кобальт (0,1 г), никель (0,15 г) и медь (0,12 г) не мешают полученный в этом случае осадок промывают сначала 0,2 N НС1, затем 0,02 А/ НС1. В присутствии трехвалентного железа (0,8 г) и пятивалентного ванадия (0,008 г) прибавляют 1—2 г комплексона III. [c.166]

    Ванадий и молибден в особых условиях также образуют с перекисью водорода окрашенные комплексные соединения. Интенсивность окраски ванадиевого комплекса сравнима с интенсивностью окраски титанового комплекса, но окраска подобных соединений молибдена слабее. Мешают анализу окрашенные соли железа, хрома и никеля. Метод применяется для анализа промышленных сортов титана в этих материалах ни один из элементов, мешающих определению, не присутствует в количествах, которые могли бы оказать заметное влияние на результаты анализа. [c.98]

    Ванадий и молибден при содержании более 5% мешают определению. В присутствии ниобия получаются завышенные результаты [c.153]

    Определению мешают присутствующие в высоких концентрациях (свыше 200 жг/л) ионы Hg + и Hg 2+ с дифенилкарбазидом вступают в реакцию и окрашивают раствор также ванадий и шестивалентный молибден, которые в воде обычно отсутствуют. [c.147]

    Описанным способом можно проводить определение молибдена в присутствии всех катионов сероводородной группы железа, алюминия, хрома, бериллия, урана, цинка, кобальта, марганца и щелочноземельных металлов. Определению мешают вольфрам, ванадий и титан, также осаждающиеся оксином. Титан можно предварительно выделить аммиаком из растворов, содержащих комплексон. В фильтрате после доведения его до требуемого pH можно осадить молибден вышеприведенным способом. [c.111]

    Проведение определения. 100 мл анализируемого раствора нейтрализуют раствором соды в конической колбе, снабженной пробкой, до начинающегося помутнения, затем подкисляют 10 мл ледяной уксусной кислоты и тотчас же прибавляют 1 г иодида калия. Выделившийся иод титруют из микробюретки 0,1 М раствором тиосульфата натрия. Определению не мешает ванадий и молибден, восстанавливающиеся иодом в других условиях кислотности раствора. Четырехвалентный церий, как сильный окислитель, восстанавливается комплексоном почти моментально, так что можно и в его присутствии, гладко проводить определение шестивалентного хрома. [c.133]


    Исследования, проведенные по методу определения скорости разложения амальгамы, показали [245], что присутствие в рассоле ионов кальция в количестве 1 г/л способствует значительному возрастанию каталитической активности железа, никеля, марганца и серебра. Кальций является весьма заметным ингибитором по отношению к действию солей ванадия, молибдена, хрома и кобальта. Было показано, что ингибирующее действие кальция по отношению к молибдену и ванадию качественно может быть объяснено повышением перенапряжения водорода на этих металлах в присутствии кальция, а активирование действия серебра — снижением перенапряжения водорода на серебре в присутствии кальция. Усиление влияния примеси железа на кинетику разложения амальгамы натрия в присутствии ионов кальция обусловлено ухудшением смачивания металла амальгамой. Это было доказано опытами по амальгамированию железной проволочки на поверхности амальгамы натрия в рассоле. Оказалось, что при отсутствии кальция в растворе железная проволочка, прикоснувшись к поверхности амальгамы, вызывает бурное выделение водорода, но уже через 1—2 сек проволочка смачивается амальгамой и выделение водорода прекращается. Если же в растворе присутствует более 0,2 г/л ионов кальция, то выделение водорода на ней продолжается более часа, поскольку в течение этого срока не происходит полного смачивания, проволочки амальгамой. [c.40]

    Исследования, проведенные по методу определения скорости разложения амальгамы, показали 18], что присутствие в рассоле 1 г/л ионов кальция способствует значительному увеличению каталитической активности железа, никеля, марганца и серебра. Кальций является ингибитором каталитического действия солей ванадия, молибдена, хрома и кобальта. Ингибирующее действие кальция на молибден и ванадий качественно может быть объяснено повышением перенапряжения водорода на этих металлах в присутствии кальция, а активирование действия серебра — снижением перенапряжения водорода на серебре в присутствии кальция. Усиление влияния примеси железа на кинетику разложения амальгамы натрия в присутствии ионов кальция обус- [c.30]

    Мешающие влияния. Определению мешают присутствующие в высоких концентрациях (свыше 200 мг л) Hg - и Hgl -ионы с дифенилкарбазидом вступают в реакцию и окрашивают раствор также ванадий и молибден (VI), но они обычно отсутствуют в воде. [c.303]

    Примечание. См. видоизменение метода для определения ниобия в присутствии ванадия (стр. 617). Молибден, ртуть, золото, платину, медь, а возможно, селен(1У) и теллур(1У) осаждают в виде сульфидов (стр. 623). Простого метода разделения вольфрама и ниобия, по-видимому, нет. [c.619]

    Используют и раствор арсенита натрия для определения хромата в присутствии ванадатов, так как последние не восстанавливаются. Сильный восстановитель— раствор соли титана(III)—можно применять для определения железа и меди в смеси сначала железо (III) превращается в двухвалентное, а затем восстанавливается медь(II) до одновалентной. Существуют и методы титрования другими сильными восстановителями, например растворами солей хрома (II) или олова, хотя работа с такими растворами сопряжена с необходимостью защиты их от действия кислорода воздуха. Раствор хлорида олова (И) восстанавливает молибден (VI) до молибдена (V) и ва-надий(У) до ванадия(1П) так можно определить оба элемента при их совместном присутствии. [c.459]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Определению обычно мешают железо, медь, молибден (V) и ванадий (V). Влияние первых двух катионов устраняют прибавлением фторида и тиосульфата или иодида калия фторид маскирует также молибден и небольшие количества ванадия, при больших количествах ванадия его необходимо восстановить до четырехвалентного. Никель не мешает, даже если присутствует в 100-кратном количестве по отношению к кобальту. [c.158]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    В присутствии титана раствор окрашивается. Окраска, в зависимости от количества титаиа. Может быть от желтой до оранжево-красиой. Если исследуемый минерал содержит мешающие определению титана элементы ванадий, молибден нли фтор, то отделите их предварительно посредством сплавления исследуемой пробы с карбонатом натрия в ушке платиновой проволоки. Плав обработайте 1 мл воды в центрифужной пробирке при нагревании на водяной бане. Затем центрифугируйте и отделите капиллярной пипеткой раствор от нерастворимого остатка, содержащего титан. Прюмойте остаток 2%-ным раствором Карбоната натрия (мешающие определению титана элементы перейдут в раствор). Остаток в пробирке растворите при нагревании в 3—4 каплях сериой [c.158]

    Присутствие до 20% олова, марганца и ванадия, 10% алюминия, 5% меди, железа, хрома или никеля не мешает определению. Молибден в особых условиях также образует комплекс, имеющий зеленую окраску, но мешающее влияние молибдена можно подавить предварительной зкстракцией молибденилтиоцианата н-бутилацетатом, как описано в методике на стр. 104. [c.102]

    Ванадий (V), молибден (VI). Ванадий (V) в кислом растворе восстанавливается раствором Sn lj до ванадил-ионов [4, 33]. На этой реакции основан метод [4] определения в среде 3—5 п. соляной кислоты в присутствии дифениламина. К 20 мл анализируе-емого раствора добавляют 10 мл концентрированной соляной кислоты, 3 капли раствора дифениламина и около 2 г мрамора (для того, чтобы создать атмосферу двуокиси углерода) и титруют при комнатной температуре 0,1 н. раствором Sn l2 до перехода фиолетовой окраски раствора в зеленую. Вместо дифениламина можно применять внешний индикатор [34] — молибдат аммония (капельная проба при достижении конечной точки появляется синяя окраска). [c.187]

    К методам, оперирующим с обычными содержаниями веществ, относится метод определения титана в сталях, основанный на непосредственном полярографировании раствора после растворения 0,2—2 г образца. Фоном служит 1 N раствор Н2504, насыщенный оксалатом натрия. На этом фоне потенциал пика Т1(1У) равен — 0,50 в (нас. к. э.) между величиной максимального тока и концентрацией титана в растворе соблюдается линейная зависимость. Концентрацию титана определяют методом добавок или методом градуировочной кривой. Определение проводится за 20 мин. (после растворения навески). Ре " восстанавливают сульфатом гидразина до Ре . Ванадий в тех количествах, в которых он содержится в сталях, не мешает определению. Влияние молибдена устраняют построением градуировочного графика по растворам, в которых молибден присутствует в количествах, близких к его содержанию в определяемых сталях [24]. [c.200]

    При дегидратации кремневой кислоты выпариванием с хлорной кислотой практически полностью выделяются сурьма, ниобий, тантал, олово и вольфрам. Если присутствуют висмут, германий, молибден и ванадий в больших количествах, то они могут частично попадать в осадок. Так как эти элементы мешают определению кремния большинством фотометрических методов, то их необходимо удалять, что осуществляют следующим образом. Помешают бумажный фильтр с дегидратированной кремневой кг слотой в платиновую лодочку для сожжения и осторожно сжигают бумагу. Затем помещают лодочку в трубку печи для сожжения, нагретой примерно до 700°, и медленно пропускают [c.38]

    Определение в виде перрената тетрафениларсония. Рений осаждает хлоридом тетрафениларсония (стр. 155) из растворов, варьирующих от сильноаммиачных (6 М) до умеренно кислых (5 М НС1) Мешают определению перманганат-, nepxjtopaT-, перйодат-, иодид-, бромид-, фторид-и роданид-ионы, а также ртуть, висмут, свинец, сереб] о, олово и ванадил. Нитраты могут присутствовать лишь в очень незначительных концентрациях. Вольфрам и ванадаты не мешают определению. Молибден не влияет, если осаждение проводят из аммиачного раствора (6 М) или в присутствии винной кислоты (0,6 М). [c.376]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    В кислых средах для отделения вольфраматов и молибдатов от других ионов удобно пользоваться лимонной кислотой, образующей с молибдат- и вольфрамат-ионами прочные комплексы. Клемент [53] изучал отделение молибдат-ионов от таких металлов, как медь, свинец, никель, железо, хром и ванадий (IV), которые в лимоннокислой среде при pH 1 могут быть поглощены катионитами в Н-форме. Как показали И. П. Алимарин и А. М. Медведева [3], при более высоких значениях pH поглощение катионов затрудняется вследствие образования цитратных комплексов. Методика Клемента была тщательно проверена и слегка видоизменена Уоткинсопом [118 ], который установил, что она пригодна также для удаления элементов (железа, меди, олова и ванадия), мешающих спектрофотометрическому определению вольфрама (вольфрам и молибден оказываются в вытекающем растворе). Метод применялся для определения этих элементов, а также ванадия, в почвах и растениях. Аналогичный метод использовался для удаления иопов, мешающих полярографическому и снектрофотометрическому определению молибдена в сталях [17. 84] и минералах [51]. Если в растворе присутствует ванадий в виде ванадата, то перед катионообменным отделением от молибдата он должен быть восстановлен двуокисью серы [56]. [c.352]

    Для удаления молибдена (III) перед колориметрическим определением ванадия (IV) применялось анионообменное разделение этих металлов из раствора тиогликолевой кислоты [125]. В присутствии тиогликолевой кислоты молибден и ванадий восстанавливаются соответственно до трех- и четырехвалентного состояний одновременно образуется анионный комплекс молибдена (III). Добавляют серную кислоту до pH 1—1,5 и выполняют разделение на энионите в 304-форме. Затем колонку промывают 0,05Af H2SO4 и элюируют молибден разбавленным аммиаком (1 7) в присутствии 3% персульфата аммония. [c.359]

    Принцип метода. Двухвалеитный марганец в присутствии комплексона в кислой среде окисляется перекисью свинца до рубиновокрасного комплексоната марганца. После удаления перекиси свинца фильтрованием образовавшийся комплексонат марганца определяют потенциометрическим титрованием раствором сульфата железа (И). Потенциометрическое титрование можно заменить иодо-метрическим определением трехвалентного марганца. В соответствующей главе об иодометрическом титровании приведены дальнейшие указания по проведению определения, которых надо придерживаться и при потенциометрическом титровании. При потенциометрическом определении мешают главным образом молибден, вольфрам, ванадий и кобальт. Однако они не мешают при описанном выше иодометрическом определении. [c.141]

    Семь элементов-металлов — железо, кобальт, марганец, натрий, калий, кальций, магний — играют решающую роль в основных процессах жизнедеятельности и относятся к числу биогенных элементов. Перечень этот сократить нельзя, но можно расширить. По крайней мере, еще десяток элементов имеют существенное значение для нормального существования организмов медь, цинк, молибден, никель, ванадий, хлор, бром, иод. Некоторые из легчайших атомов — литий, бериллий, бор — присутствуют в небольших количествах в большинстве растений и животных. Определенным типам клеток обязательно нужен кремний и, вероятно, в некоторых случаях еще и фтор. Подавляющее большинство перечисленных элементов составляют члены 2—3-го периода таблицы Д. И. Менделеева. [c.175]

    Если присутствует ванадий (V), который образует желтые ва-надомолибдаты, то можно экстрагировать силикомолибдат бутанолом из 1 н. раствора серной кислоты 25 мг ванадия (V) не мешают. Поскольку силикомолибдатный комплекс малоустойчив, определению могут помешать все ионы, которые связывают в комплексы молибден большое количество хлорид-, цитрат- и тартрат-ионов и т. д. [c.852]

    Молибден редко присутствует в определимых количествах, даже в пробе весом 5 г, но изредка молибденит играет роль акцессорного минерала в гранитах, и тогда определение его заслуживает внимания. Мышьяк представляет собой другой редко определяемый элемент, хотя при наличии его в заметном количестве он будет обнаружен вместе с молибденом в ходе определения хрома и ванадия. Цинк редко ищут, хотя он был найден в пранитах и основных породах. Обычно он содержится в весьма малых количествах. [c.41]

    Разработан экстракционно-фотометрический метод определения молибдена(У) в ввде его анионного комплекса с тиогликолевой кислотой. ИА с ДФГ экстрагируют смесью изоамилового спирта и хлороформа (1 1). Определение молибдена производят из 0,3 н НС / растворов, что в практическом отношении является большим преимуществом. Максимальное светопоглощение экстракта ИА при 400 нм. Молярное отношение молибден(У) тиогликолевая кислота ДФГ =1 1 1. Чувствительность реакции 0,4 мкг/мл. Метод имеет некоторые преимущества по сравнению с аналогичным - без экстракции [10]. Благодаря ЭФ варианту повышена чувствительность, по крайней мере, в пять раз кроме того, повышается селективность определения.Молибден можно определять в присутствии любых количеств ванадия(У) и хрома(Ш). Не метают определению молибдена сульфат- и нитрат-ионы (до 100-150 мг), титан(1У), ванадий(1У), желсзо(П) и др. Следует отметить, что на примере экстракции молибдена(У1) и молибдена(У) в виде анионных комплексов с тиояблочной и тиогликолевой кислота- [c.133]

    Калибровочный график пригоден для определения ванадия в присутствии большого количества посторонних ионов. Из табл. 1 видно, что большинство ионов металлов не мешает определению при концентрациях 10 М, что соответствует превышению примерно на 6 порядков над концентрацией ванадия. Исключение составляют хром VI), вольфрам (VI) и молибден (VI), не мешающие в концентрациях, на 2—3 порядка превышающих концентрацию ванадия. Железо (II и III) связывается сульфосалициловой кислотой в неактивный комплекс. Однако из-за его окраски определение становится невозможным при концентрации железа более 10" М. Присутствие сильных окислителей и восстановителей мешает определению ванадия. Ионы-комплексообразователи также мешают определению, поскольку связывают ванадий в менее активный комплекс. [c.71]

    Ход определения. Раствор соли ванадия в разбавленной (2 98) серной кислоте, свободный от элементов, способных окисляться перманганатом после восстановления их сернистым газом, нагревают до кипения, вводят концентрированный раствор перманганата калия до появления розовой окраски и насыщают раствор 5—10 мин. сернистым газомЧ После этого пропускают сильный ток углекислого газа до полного удаления сернистого газа, что определяют, пропуская струю газа через сильно разбавленный, подкисленный раствор перманганата. Раствор охлаждают до 60—80° и титруют раствором перманганата калия, титр которого устанавливают по оксалату натрия. 1 мл 0,1 н. раствора перманганата калия соответствует 0,0051 г ванадия. В присутствии хрома лучше титровать холодный раствор до тех пор, пока появившаяся от капли перманганата окраска не перестанет исчезать после непрерывного перемешивания раствора в течение 1 мин. Восстановление и титрование можно повторить 1 или 2 раза. После многократного повторения этих операций накапливающийся в растворе сульфат марганца делает конечную точку титрования не четкой. Если результаты титрования указывают на содержание очень малых количеств ванадия, то после удаления таких мешающих элементов, как молибден, и титан, и после упаривания раствора до небольшого объема наличие ванадия должно быть проверено реакцией с перекисью водорода, как указано в разделе Колориметрический метод (стр. 472). [c.470]

    Определепию фосфора методом фосфорномолибденовой сини мешают прежде всего мышьяк(У), кремний и германий, также образующие с молибденом гетероноликислоты, восстанавливающиеся до соответствующих синей. Мышьяк(У) после восстановления сульфидом или тиомочевиной до А8(1И) не мешает. Ионы легко гидролизующихся элементов (КЬ, Та, Т1, Ъп, Зп , Ш, В ) при осаждении их гидроокисей захватывают фосфаты. При получении фосфорномолибденовой сини титан и цирконий катализируют восстановление молибдата [26[. В присутствии ванадия(У) образуется фосфорнованадие-во.молибденовая кислота. При определении фосфора в присутствии больших количеств ванадия(У) его восстанавливают солью Мора до ванадия(У1), после чего добавляют молибдат, экстрагируют фосфорномолибденовую кислоту и в экстракте восстанавливают ее до фосфорномолибденовой сини [32]. [c.428]

    Приведенный ниже ход анализа включает разложение анализируемого образца породы сплавлением с едким натром или со смесью едкого натра и перекиси натрия, выщелачивание сплава водой, отгонку мышьяка в виде мышьяковистого водорода из фильтрата и определение его методом образования молибденовой сини. Рекомендуется к плаву добавлять перекись натрия, если в образце присутствует большое количество сульфидов или органических материалов (осадочные породы). Содержание мышьяка в остатке после выщелачивания очень мало (максимум 3% при анализе диабаза), поэтому обычно не требуется проводить повторное сплавление. Показано, что извлечение мышьяка, добавленного к граниту и диабазу, составляет более 95%. В 0,5 г анализируемого образца можно определить мышьяк Б количестве нескольких десятых ч. на 1 млн. Оэобщают, что медь, серебро, германий и теллур не мешают определению мышьяка, присутствуя в количествах 1 мг. Известно также, что хром, кобальт, никель, молибден, вольфрам и ванадий не влияют, присутствуя даже в значительно больших количествах. Сурьма в таких количествах, в которых она присутствует в осадочных породах или породах вулканического происхождения, не приводит к ошибкам. [c.258]

    Найдено что оптическая устойчивость эфирных экстрактов возрастает при добавлении равного объема ацетона, который препятствует предполагаемой полимеризации роданистоводородной кислоты с образованием желтых продуктов полимеризации. Значение светопоглощения ацетоно-эфир-ного раствора остается постоянным по крайней мере в течение 20 час. Показано что помехи, связанные с присутствием ванадия, можно устранить, если вместо предварительного введения хлорида олова (И) в водный анализируемый раствор встряхивать эфирный экстракт с раствором хлорида олова(П) для удаления роданида железа(П1). Усовершенствованный метод позволяет определять 20 у ЫЬв присутствии 500 у ванадия и 10000 у железа, титана и урана. Молибден и вольфрам мешают определению ниобия, и их количества не должны намного превышать содержание ниобия. Если к желтому цвету экстракта, обусловленному присутствием ЫЬ, примешивается янтарная окраска, значит присутствует молибден. Не вызывая заметных ошибок, тантал может присутствовать в количествах, по крайней мере в 10 раз превышающих содержание ниобия. См. стр. 619, где даны указания для проведения анализа этим методом. [c.617]

    Ниже приведены две методики определения титана в материалах, содержащих железо обе они основаны на применении в качестве реагента перекиси водорода В методике А не указаны никакие операции разделения. Железо обесцвечивают фосфорной кислотой. Измеряя оптическую плотность при 400 и 460 мц, можно определить титан в присутствии значительных количеств ванадия. Окраску никеля, хрома и необесцвеченного железа исключают, измеряя экстинкцию анализируемого раствора относительно порции раствора пробы, не обработанной перекисью. Мешает определению молибден, и поэтому должна быть введена поправка на его содержание из независимого определения. Ниобий и вольфрам не оказывают большого влияния. Количество титана в пробе должно быть более 0,01%. Общую точность метода можно оценить на основании данных табл. 116. [c.788]

    Фосфорновольфраматный метод может быть с успехом использован при определении небольших количеств ванадия, находящегося в силикатных породах. Ванадий выделяют из раствора после выщелачив ания плава карбоната натрия описанным выше методом экстракции раство ром 8-окси-хинолина в хлороформе СггОз в количестве до 1 % и нескол ько процентов фтора не мешают определению. Обычно молибден присутств ует в достаточно малых количествах и не влияет на результат определения (ср. табл. 121, стр. 834). Следующие значения иллюстрируют надежность метода (первое значение дает процентное содержание V2O3, введенного в си нтетическую основную породу, второе — найденное процентное содержание). [c.838]

    Если битум из Мертвого моря всегда содержит ванадий, никель и молибден (что весьма вероятно), тогда любое вещество от мумий, не содержащее этих трех показательных элементов, не содержит и битума, на основании чего можно судить, что по крайней мере два образца (один — XXI дипастии и одип — Птолемеевской эпохи) свободны от битума. Что касается остальных трех образцов, содержавших все три показательных элемента, то Шпильман имеет серьезные основания предполагать присутствие в пих битума. Он считает, что эти вещества состоят из вара, содержащего битум в относительно небольшой дозе... так как характерные металлы не очень резко выражены , а также обыкновенную смолу, тоже в относительно небольшом количестве... так как охристая [468] флюоресценция весьма незначительна . Однако, мне кажется, было бы бессмысленным прибавлять к вару битум, и, напротив, есть все основания предполагать, что битум если и применялся, то в качестве самостоятельного вещества или в виде очень значительной примеси к любому другому материалу. Шпильман не принимает также во внимание результаты моих анализов тех же образцов . Согласно этим результатам, все пять образцов черного материала от мумий, кроме жирового вещества, заимствованного у самих тел, с которыми они соприкасались, пе содержали никаких примесей, растворявшихся в нетролейном эфире, между тем как образцы подлинного битума содержали от 38,8 до 53,7 % растворимого вещества. Далее, три образца черного вещества от мумий содержали один — 0,92 %, другой — 1,45 % и третий — 1,93 % серы , тогда как из двух образцов настоящего битума один содержал 8,58 %, а другой — 8,85 % серы. Черное вещество мумий не напоминало по запаху битум отсутствовала также характерная для битума флюоресценция при растворении вещества в различных растворителях не обладали цветом и запахом битума и извлеченные растворителями вещества. Возможно, однако, что исследовапие значительного количества образцов соответствующего вещества поздней эпохи дало бы нам вполне определенные доказательства присутствия битума ", и, как я уже писал несколько лет тому назад, я считаю вероятным, что приблизительно [c.256]

    В полученном солянокислом растворе непосредственно определяют железо. Очень редко приходится иметь дело с мешающими элементами и устранять их влияние. К таким элементам относятся ванадий, молибден и вольфрам, которые иногда могут находиться в незначительном количестве в железной руде. При восстановлении железа двухлористьш оловом эти элементы также восстанавливаются до низших степеней окисления и затем титруются перманганатом. В случае их присутствия анализ усложняется и для определения железа приходится пользоваться другими методами или вводить ряд дополнительных операций, которые подробно рассматриваются в специальных курсах анализа. [c.382]

    Метод определения рения а-фурилдиоксимом отличается большой чувствительностью и избирательностью. Молибден, вольфрам и ванадий, обычно сопутствующие рению в природных соединениях и сплавах, в соответствующих условиях не мешают определению малых количеств рения а-фурилдиоксимом. Соединение рения с а-фурилдиоксимом, полученное в присутствии хлорида олова (И) и ацетона (24— 26 об. %), при кислотности 0,6—1,0 и. НС поглощает при Хтах 530 нм е = 4,3 10". Раствор реагента в ацетоне поглощает в УФ-об-ласти спектра (220—330 пм) и не мешает измерению оптической плотности комплексного соединения рения. [c.196]


Смотреть страницы где упоминается термин Определение молибдена в присутствии ванадия: [c.171]    [c.206]    [c.344]    [c.164]    [c.180]    [c.174]   
Смотреть главы в:

Комплексоны в химическом анализе -> Определение молибдена в присутствии ванадия




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Определение молибденита



© 2024 chem21.info Реклама на сайте