Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы взаимодействия и методы анализа

    Для определения мер по улучшению социально-психологических отношений в коллективе и совершенствованию управления коллективом необходимы изучение специфических социальных процессов взаимодействия людей, анализ методов и стиля руководства, его коллегиальности и демократичности, изучение социально-психологического климата в коллективе. Мероприятия должны быть направлены на его улучшение, совершенствование стиля руководства и методов воздействия на коллектив, повышение его сплоченности и др. [c.279]


    Исследование непрерывного процесса взаимодействия алкилфенолов с пентасульфидом фосфора в растворах масла и ксилола. Определенные оптимальные параметры процесса. Ускоренный метод анализа продуктов реакции. [c.335]

    В процессе анализа структуры все приведенные интегральные характеристики материала рассчитываются по результатам анализа представительного объема и, таким образом, число составных частей фазы, среднее значение поверхностной кривизны, связность и другие характеристики обычно относятся к единице его объема, т. е. являются средними статистическими значениями удельных объемных характеристик. Строго говоря, связность G, рассматриваемая как род гомеоморфных поверхностей, не должна быть подвержена статистическим колебаниям. Однако в природе формирование контактов частиц является статистическим процессом, зависящим от таких стохастических факторов как перемешивание в системе, смачивание, диффузия, растворение и рост частиц фаз, взаимодействие фаз и др., поэтому в принципе возможно рассматривать Gy как статистическую величину. Потребность экспрессного определения связности фаз в многофазных средах в последнее время быстро растет в связи с определяющей ролью этой характеристики в описании и прогнозировании механического поведения структурно неоднородных материалов, выявления структуры многофазных потоков в его объеме. Вместе с тем существующие методы определения Gy до сих пор практически основывались на методе анализа параллельных сечений структуры. В работах [47, 481 предложен иной метод определения статистической характеристики связности на основании простых измерений характеристик одного случайного представительного сечения материала. Разрабатываются также методы стереоскопической оценки Gy. [c.136]

    Представленные в этой главе данные об изотопном эффекте, дейтерообмене и внутримолекулярных перегруппировках, а также особенностях взаимодействия циклопропановых и парафиновых углеводородов с бензолом в условиях реакции алкилирования позволяют установить основные закономерности процесса. Важное значение при этом приобретают использование современных методов анализа и интерпретация полученных с их по- [c.86]

    Существенно облегчает масштабирование полученных при исследовании результатов знание кинетики химических реакций, происходящих при проведении процесса. К сожалению, кинетика многих химических взаимодействий еще не раскрыта. Для выявления хотя бы формальной кинетики, нахождения теплового эффекта реакции, скорости и порядка реакции, энергии активации и т. д. применяют термоаналитические методы анализа. Эти методы реализуются в теплоизолированных установках (не хуже, чем в сосудах Дьюара), и при исследованиях с помощью дифференциальных термопар с большой точностью фиксируются перепады и приращения температур. По полученным термограммам можно рассчитать интересующие исследователя параметры. [c.174]


    Так как процессы взаимодействия разделяемых веществ с твердой и жидкой неподвижными фазами имеют существенное различие, пособие разделено на две части в первой рассматриваются хроматографические процессы на твердой неподвижной фазе (адсорбция, ионный обмен), во второй — процессы на жидкой неподвижной фазе (распределение, ситовой анализ). Несколько шире, чем другие методы, рассматривается газовая хроматография как наиболее распространенный вариант хроматографии, для которого теория процесса разработана наиболее полно. [c.3]

    Аналогия в химико-аналитических свойствах элементов, занимающих соседние клетки в периодической системе, открывает широкие возможности для прогнозирования и разработки новых методов анализа. Было известно, например, что Мо (V) дает цветную реакцию с тиоцианатом. Можно было ожидать, что N6 (V), как соседний элемент по периодической системе, также будет давать соединение с тиоцианатом. Эксперимент оправдал эти ожидания и для ниобия был также разработан тиоцианатный метод фотометрического определения, широко используемый в настоящее время. Аналогичные примеры известны для методов определения тантала и протактиния и для многих других сочетаний элементов. Аналогия свойств, соответствующая периодическому закону, проявляется не только непосредственно в химических реакциях кислотно-основного взаимодействия, комплексообразования, осаждения и т.д., но и во многих других процессах, имеющих химико-аналитическое значение, — их экстрагируемо- [c.15]

    Подавляющее большинство химических реакций, которые применяются в гравиметрических, титриметрических и многих физико-химических методах анализа, протекает в растворе. Это реакция кислотно-основного взаимодействия, комплексообразования, осаждения малорастворимых соединений и т. д. Закономерности, управляющие протеканием этих реакций, являются наиболее важной составной частью теоретических основ химических (гравиметрических и титриметрических) и некоторых физико-химических методов анализа. Поэтому изложение теоретических основ аналитической химии начинается с рассмотрения процессов в растворе. Теоретические основы оптических и других физикохимических методов анализа будут рассмотрены позднее. [c.22]

    Физико-химический анализ основан на изучении зависимости между химическим составом и какими-либо физическими свойствами системы (плотность, вязкость, растворимость, температура плавления, температура кипения и др.) с применением геометрического метода изображения полученных результатов. Найденные опытным путем данные для нескольких состоянии системы наносятся в виде точек на диаграмму состав—свойство , на оси абсцисс которой откладывается состав системы, на оси ординат — свойство. Сплошные линии, проведенные через эти точки, отображают зависимость свойства от состава системы н позволяют устанавливать соотношение любого произвольно взятого состава системы с исследуемым свойством. Плавный ход сплошных линий соответствует постепенному увеличению или уменьшению исследуемого фактора (состава, температуры, давления и т. п.), не влекущему за собой изменения качественного состава системы. Резкие перегибы и пересечения линий указывают на превращения и химические взаимодействия веществ. Анализ линий и геометрических фигур на диаграмме состав—свойство позволяет судить о характере химических процессов, протекающих в системе, а также устанавливать состав жидкой и твердой фаз, не прибегая к разделению системы на составные части. [c.272]

    Различают прямые и косвенные физико-химические методы. В прямых методах анализа данное свойство является критерием содержания определяемого вещества, эти методы основаны на изучении диаграммы состав — свойство. В косвенных методах определенное свойство служит указателем (подобно индикатору) конца реакции, т. е. в косвенных методах используется данное свойство определяемого вещества для фиксирования конца процесса взаимодействия (например, процесса нейтрализации) определяемого вещества с реактивом точно известной концентрации. [c.18]

    Способы проявления хроматограмм. В основу всех хроматографических методов анализа положен принцип чередования процессов сорбции и десорбции. В соответствии с этим способы выполнения хроматографических методов различны и приводят к получению зон хроматографического разделения различного вида (полосы, пятна). Этот процесс называют проявлением хроматограмм. Сорбция в процессе хроматографического разделения веществ происходит вследствие взаимодействия вещества со стационарной фазой. Десорбция может происходить при взаимодействии подвижной фазы с веществом или со стационарной фазой. Кроме того, можно использовать и зависимость сорбционных равновесий от температуры повышение температуры приводит к десорбции. [c.344]


    В третьей группе методов фиксируют изменения, происходящие с самим определяемым веществом X в процессе взаимодействия с реагентом Р . К этой группе относят, в частности, некоторые методы газового анализа. Так, содержание СОа в сложной газовой смеси можно определить, измерив его объем до и после пропускания через раствор гидроксида натрия. Последний поглощает СОг и уменьшение объема смеси пропорционально содержанию СО2 в ней  [c.21]

    Взаимодействие электронов с энергиями от нескольких электронвольт до 1000 кэВ с атомами образца лежит в основе нескольких наиболее важных методов локального анализа и анализа поверхности и межфазных границ. Обзор фундаментальных процессов взаимодействия, т. е. основных аналитических сигналов, методов и областей их применения приведен в табл. 10.2-1. В принципе эти методы можно разделить на две группы. Методы первой группы характеризуются высокой поверхностной чувствительностью (малой глубиной [c.321]

    К собственно химическим методам исследования относятся синтез минералов и являющихся продуктами процесса соединений, изучение их состава и поведения в разных условиях при взаимодействии с теми или иными реагентами, а также фазовый химический анализ изучаемых продуктов. Обычно химические методы не используются изолированно, а сочетаются с физико-химическими и все чаще—физическими методами. Даже простая операция количественного определения pH или Ен раствора основана на применении потенциометрии — физико-химического метода. Да и определение качественного и количественного состава вещества проводят не только химико-аналитическими методами, а с широким использованием физических и физико-химических методов анализа (эмиссионного и атомно-абсорбционного спектрального, рентгеноспектрального, активационного и др.). Для обеспечения правильности результатов анализа применяют стандартные образцы веществ и материалов, состав которых установлен на основе комплексного использования химических и различных инструментальных методов. [c.199]

    Оптический неразрушающий контроль основан на взаимодействии светового излучения с контролируемым объектом и регистрации результатов этого взаимодействия. Методы, характерные для оптического контроля, используют электромагнитное излучение в диапазоне длин волн в вакууме от Ю до 10 мкм (зЛО —ЗХ Х10 ° Гц), и охватывают диапазоны ультрафиолетового (УФ), видимого (ВИ) и инфракрасного (ИК) света. При этом объединяются они между собой общностью применяемых методик, способов и приемов проведения контроля. В большинстве вариантов контроля длина волны света мала по сравнению с геометрическими размерами деталей, элементов и дефектов контролируемых объектов, что позволяет использовать при анализе возможности неразрушающего контроля расчет взаимодействия с ним излучения методами геометрической оптики (см. 4.6). Вместе с тем в ряде случаев (обнаружение дефектов малых размеров, контроль тонких пленок, испытания голографическими и интерференционными методами и др.) применяются методы, характерные для анализа волновых процессов. В этой части методы оптического контроля близки методам радиоволнового контроля, но при большем отношении геометрических размеров к длине волны аналогичны и величины, несущие полезную информацию (см. 4.1, 4.6). [c.222]

    Электромагнитное излучение при взаимодействии с веществом может вызывать в нем процессы разнообразной физической природы, используемые в методах химического анализа. Общий характер этих процессов зависит от энергии фотонов. Следовательно, для классификации методов анализа весь диапазон энергий электромагнитных квантов целесообразно разделить на области, соответствующие тому или иному физическому процессу. [c.203]

    При взаимодействии радиоактивного излучения с веществом обязательным процессом является взаимодействие излучения с электронами атомных оболочек. При этом возможно частичное поглощение излучения, его рассеяние и отражение. Методы анализа, основанные на измерении абсорбции или изменении направления ядерного излучения в результате взаимодействия с веществом, хотя и не универсальны, но в ряде случаев могут быи. полезны, особенно при определении одного из компонентов бинарной смеси. В зависимости от типа излучения различают у -абсорбционный, Р -абсорбционный и нейтронно-абсорбционный методы. Кроме того, следует упомянуть методы, основанные на отражении уЗ-частиц и на замедлении нейтронов. Существуют и другие методы [c.381]

    Вместе с тем, по мнению авторов, становится все более очевидной необходимость введения курса биохимии в систему химического образования. Это важно как с чисто прагматической точки зрения, так и для формирования более цельного мировоззрения специалистов-химиков. Направленный синтез биологических веществ — лекарственных препаратов, гербицидов для борьбы с сорняками в сельском хозяйстве, инсектицидов для истребления вредных насекомых, развитие методов анализа, имеющих диагностическую значимость, изучение природы воздействия токсических веществ на человека и другие живые организмы — все это и многое другое требует понимания механизма взаимодействия химических веществ с биологическими системами. Без этого химические исследования имеют в основном эмпирический характер. В то же время биохимические процессы все в большей мере начинают использоваться для осуществления химических превращений вне живых организмов, и знание возможностей биохимии существенно обогащает арсенал подходов, с помощью которых химик может решать стоящие перед ним проблемы. Особенно существенно для химика знание основ биологического катализа как наиболее совершенного класса каталитических процессов, принципы которого могут открыть новую страницу в развитии науки о катализе в целом. Широко обсуждается и в ряде случаев уже реализуется использование сложных биохимических структур в качестве биосенсоров для аналитических целей и в перспективе для развития принципиально новой базы для электроники. [c.8]

    В процессах перегонки и ректификации вопросы двухфазного паро-жидкого равновесия играют существенную роль, так как взаимодействующие контактирующие паровые и жидкие смеси в той или иной степени удалены от равновесного состояния и стремятся к нему как к известному пределу. Из последующего изложения выяснится основа метода анализа этих процессов, состоящая в допущении предельного равновесного состояния между парами и жидкостью, что позволяет вести количественные расчеты. [c.84]

    Анализ накопленных результатов показывает, что высокотемпературная кристаллизация из расплава отличается от низкотемпературной многообразием физико-химических процессов взаимодействия расплава с окружающей средой, существенно влияющих на реальную структуру монокристаллов, а также кинетическими явлениями в образовавшемся монокристалле при охлаждении. Иначе говоря, высокотемпературная кристаллизация из расплава полифункциональна и охватывает целиком всю систему. В связи с этим для полного описания данного процесса необходимо совместное рассмотрение физической и химической кинетики как единого целого. Очевидно, что для этого требуется дальнейшее развитие теории роста с учетом новых экспериментальных данных. Комплексный подход к рассмотрению высокотемпературной кристаллизации из расплава с учетом состояния исходного вещества, его плавления и кристаллизации позволит полнее обосновать методы выращивания монокристаллов и определить тенденции их развития. Особое внимание, видимо, следует уделить использованию лазерного нагрева, поскольку он практически не зависит от внешних условий и открывает новую перспективу при исследовании элементарных процессов на фронте роста и создании новых методов выращивания монокристаллов в результате высокотемпературной кристаллизации из расплава. [c.152]

    Взаимосвязь отдельных этапов процесса экструзии показывает, что для анализа процесса надо рассматривать совокупность всех фаз процесса. При таком анализе следует иметь в виду, что основным фактором, управляющим взаимодействием отдельных фаз процесса, является постоянство материального расхода полимера для любого сечения червяка. Поскольку объемная производительность экструдера определяется работой зоны дозирования, рассмотрим прежде всего методы математического описания работы этой зоны. [c.205]

    В известном смысле можно считать, что эти три метода анализа представляют собой разновидности некоторого единого метода макрокинетического анализа процессов взаимодействия дисперсной и сплошной фаз на основе экспериментально определяемой кинетики интегральной отработки материала. Такого рода методы находят применение также и при расчетах иных массообменных процессов (например, сушки, адсорбции, каталитических процессов с твердым зернистым катализатором и т. д.). [c.142]

    В монографии рассмотрены теоретические основы процессов взаимодействия между газами и жидкостями в интенсивных аппаратах, режимы работы, а также методы расчета и моделирования эффективных аппаратов. Проводится анализ влияния гидродинамических и масштабных параметров на показатели работы аппаратов, обобщены данные по коэффициентам скорости массо- (тепло-) передачи и к. п. д, в разных производственных процессах. Обобщены многочисленные работы авторов и других советских и иностранных ученых в области проведения абсорбции и десорбции, охлаждения и нагревания газов и т. п,, а также их обеспыливания и очистки от вредных загрязнений при промывке жидкостями в таких современных аппаратах колонного типа с турбулентным режимом работы как пенные аппараты различных типов, аппараты со взвешенной насадкой, аппараты с вертикальными решетками, полые колонны с распылением жидкости. [c.2]

    Современная химическая технология изучает производства самых различных веществ продуктов переработки нефти, каменного угля и природного газа, органических и неорганических веществ, полимерных и других материалов. В перечисленных и многих других технологиях, помимо собственно химических превращений, используются типовые процессы перемещения жидкостей и газов (паров), разделения гетерогенных смесей, нагревания и охлаждения, концентрирования растворов твердых веществ, разделения газовых (паровых) и жидких смесей, обезвоживания капиллярно-пористых материалов, растворения, кристаллизации и др. Все эти процессы имеют одинаковую физическую и физико-химическую основу независимо от свойств взаимодействующих веществ, поэтому методы анализа и расчетов и аппаратурное оформление также оказываются одинаковыми. [c.9]

    Исследованные силиконовые жидкости по характеру поведения при граничном трении разделены на две группы. Жидкости первой группы, типичным представителем которых является полидиме-тилсилоксан, обладают плохими антифрикционными и противоизносными свойствами при трении твердых металлов и хорошими в случае мягких металлов. Фторированные силиконы, составляющие вторую группу, обладают удовлетворительными сл азочными свойствами в контакте любых металлов. Эти особенности поведения силиконов не связаны с химической активностью металлов, поскольку не было получено каких-либо доказательств того, что между металлом и силиконами протекают процессы физико-химического взаимодействия. Метод анализа размерностей показал, что даже в условиях низких скоростей скольжения и высоких нагрузок эффективное смазочное действие фторированных силиконов обусловлено тем, что эти соединения обладают благоприятными зависимостями вязкости от давления. [c.138]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]

    Теоретическое пояснение. При кондуктометрическом титровании к раствору анализируемого вещества, находящемуся в кондуктометрической ячейке, порциями по 0,1—0,2 мл из полумикробюрет-ки приливают раствор титранта и после каждой порции измеряют сопротивление раствора. Строят коидуктограмму — график в координатах /Я — объем титранта (Р т). На графике находят конечные точки титрования, представляющие собой точки пересечения отрезков прямых линий. По объему титранта, пошедшему па титрование до к. т. т., рассчитывают количество вещества в анализируемом растворе. Такой метод анализа возможен, если при химическом взаимодействии титранта и определяемого вещества изменяется концентрация ионов в растворе или ионы раствора заменяются эквивалентным количеством ионов титранта, имеющими другую величину Л, или оба процесса идут одновременно. После к. т. т. определяемое вещество израсходог.ано (случай, когда в растворе находится один компонент), в растворе появляется избыток титранта, что вызывает резкое возрастание электрической проводимости. [c.77]

    Именно изучение кривых зависимости 1 = /( ) помогает установить наличие соединений, мешающих правильному ходу кулонометрического титрования. Для устранения их влияния на ход основной реакции следует поступить так, как это указано выше (см. стр. 193). Сказанное, однако, вовсе не означает, что в растворе всегда должны отсутствовать другие соединения, способные восстанавливаться или окисляться раньше, чем вспомогательный реагент (при соответствующих электродных процессах генерации). Если продукты подобных электроактивных веществ способны химически взаимодействовать с определяемым веществом, то присутствие их не мешает кулонометрическому титрованию определяемого вещества. Если же подобные примеси, кроме того, способны в свою очередь химически взаимодействовать с промежуточным реагентом, электрогенерированным из вспомогательного реагента, то это позволяет ди( )ференцированно определить примеси и искомое вещество. Возможность последовательного кулонометрического титрования нескольких соединений основывается, следовательно, на тех же принципах, что и теории других электрохимических методов анализа, в первую очередь — потенциометрического титрования. Для решения таких задач весьма важно знать формальные потенциалы ред-окс систем, участвующих в реакциях. [c.202]

    При взаимодействии радиоактивного излучения с веществом происходят процессы ионизации и возбуждения атомов и молекул. Фотоны и частицы с достаточно высокой энергией могут вызвать ядерные реакции. Однако преобладающий процесс — взаимодействие излучения с электронами атомных оболочек и электрическим полем атомного ядра. При подобном взаимодействии частицы или фотоны теряют энергию или часть ее. Некоторые столкновения приводят к изменению направления движения частицы. Это значит, что радиоактивное излучение абсорбируется и рассеивается веществом. Указанные процессы взаимодействия положены в основу методов обнаружения а-, Р- и у-излучения. На этом же принципе основаны методы радиометрического анализа веществ без их разру шения [1,2, 6]. [c.304]

    Проведен анализ литературных и патентных источников по окислению D-глюкозы и этиленгликоля. Разработаны методики гетерогенно-каталитического окисления D-глюкозы и этиленгликоля молекулярным кислородом, приготовления новых катализаторов и их модификации разработаны методы анализа реакционной массы. Изучена каталитическая активность синтезированных катализаторов (Pd-Bi/Сибунит) в реакции селективного окисления D-глюкозы. Определены оптимальные условия проведения процессов окисления D-глюкозы и этиленгликоля при варьировании следующих параметров интенсивности перемешивания, температуры, количества субстрата, катализатора и подщелачивающего реагента, скорости подачи кислорода. Показано, что скорость и селективность процесса существенно зависят от pH среды и температуры. Получены результаты по определению характеристик катализатора, реакционной смеси субстрата и продукта физико-химическими методами ИК-, РФЭ-спектроскопией, рентгенофлюоресцентным анализом, электронной микроскопией дериватографическим анализом. Данные РФЭ-спектроскопии показали что в биметаллическом катализаторе Pd-Bi/Сибунит (в окислении D-глюкозы) - содержится как Pd (0) так и Pd (2+), а висмут в состоянии Bi(3+). Данные дериватографического анализа показали, что катализатор Pd-Bi/Сибунит устойчив при температурах до 400 С, что удовлетворяет условиям эксперимента. Методом ИК-спектроскопии, по анализу смещения характеристических полос субстрата до и после координации с катализатором, установлено, что имеет место существенное взаимодействие катализатора с субстратом. В каталитическом окислении этиленгликоля оптимизирован реакционный узел и условия процесса окисления этиленгликоля в стационарном слое катализатора. [c.67]

    Анализ литературных данных о поверхностных соединениях, образующихся в процессе взаимодействия СО и Иг с поверхностями различных металлов и, в первую очередь, с поверхностями кристаллических Ре, Со, Ni, Ru, а также возможных трансформаций и конкретных стадий позволили сформулировать набор трансформаций для программы hemNet, построить различные по мощности P и провести их анализ. Проведены исследования по разработке методов оценивания теплот элементарных стадий. Полученные P включают все известные и ряд новых механизмов реакции синтеза Фишера - Тропша. Выявлены различные механизмы образования важнейшей в синтезе Фишера - Тропша частицы - поверхностного метилена, который рассматривается как главный участник стадий роста молекулярных цепей. [c.72]

    В жидкостной хроматографии применяют селею-ивные детекторы (амперометрический, флуориметрический и др.), способные детектировать очень малое количество вещества. Очистка образца до ввода в жидкостной хроматограф минимальна, Циередко его вводят без предварительной обработки, и без получения производных, что часто невозможно при применении других методов анализа. Наконец, в жидкостной хроматографии возможно создание уникального диапазона селективных взаимодействий за счет изменения подвижной фазы, что значительно улучшает разрешающую способность всей хроматографической системы. Работа с микропримесями налагает ряд требований на весь процесс разделения. Особенное значение имеет разрешающая способность колонки, выбор детектора, предварительная обработка образца и построение калибровочного графика. Правильный выбор условий хроматографирования позволяет повысить чувствительность, надежность и воспроизводимость результатов, что очень актуально при работе с микропримесями. [c.84]

    Английский физик Дж. Томпсон, исследования которого положили начало развитию масс-спектрометрического метода анализа, в своей книге Лучи положительного электричества и их применение для химического анализа ( Кембридж, 1913 ) отмечал [1] Одна из основных причин написания этой книги - надежда убедить снециали-стов-химиков применять положительные лучи для химического анализа . Однако только в середине 30-х годов были зарегистрированы первые масс-спектры молекул органических соединений. С этого времени были начаты исследования взаимодействия ионов в газовой фазе, что совпало с необходимостью создания экспрессньпс и надежных количественных методов определения состава смесей газообразных углеводородов, образующихся в процессах переработки нефти. В 1943 г. такая методика была разработана Национальным Бюро Стандартов США при поддержке нефтеперерабатывающих корпораций. В нашей стране к разработке методов органической масс-спектрометрии подошли в конце 40-х - начале 50-х годов. [c.125]

    Природа взаимодействия сталь различашихся по анергии квантов с веществом принципиально неодинакова. Так возникновение У - квантов связано с ядерными процессами, излучение квантов рентгеновского аз-луче.чин обусловлено электронными переходами во внутренних квантовых слоях, испускание квантов УФ и видимого излучения или взаимодействие вещества с ними - сфера оптических методов анализа - следствие электронных переходов внешних, валентных электронов, поглощение ИК и микро- [c.5]

    Термические методы анализа основаны на взаимодействии вещества с тепловой энергией. Наибольшее применение в аналитической химии находят термические эффекты, которые являются причиной или следствием химических реак1щй. В меньшей степени применяют методы, основанные на выделении или поглощении теплоты в результате физических процессов. Это процессы, связанные с переходом вещества из одной модификации в другую, с изменением агрегатного состояния и другими изменениями межмолекулярного взаимодействия, например, происходящими при растворении или разбавлении. В табл. 14.1 приведены наиболее распространенные методы термического анализа. [c.387]

    Выбор способа регастрации ответного сигаала на заключительной стадии выполнения анализа зависит как от целей анализа, так и от механизма и степени взаимодействия определяемого вещества и индикаторного организма. Чем сложнее организм, тем большее число его жизненных функций можно использовать в качестве аналитических индикаторов, тем выше информативность биологических методов анализа. Ответный сигнал индикаторного организма на одно и то же вещество зависит от концентрации вещества малые концентрации обычно стимулируют процессы жизнедеятельности организма, высокие — угаетают. Существенное повышение концентрации биологически активного вещества приводит к летальному исходу. [c.399]

    Как указывалось выше, определение фенилендиаминов диазотированием невозможно, так как при взаимодействии с азотистой кислотой, помимо диазотирования, протекает ряд побочных процессов. Метод анализа смеси основан на том, что о-изомер количественно выделяют из смеси, обрабатывая бисульфитным соединением фенантренхинона. При этом образуется фенантро-9,10 ( на-зин. л-Фенилендиамин сочетается с диазобензолом в присутствии тиосульфата натрия о- и п-фенилендиамины в этих условиях не сочетаются. п-Фенилендиамин определяют по разности после сочетания с п-нитродиазобензолом. [c.301]

    Приведенные уравнения, как указано выше, описывают кинетику насыщения только в условиях малоинтенсивного взаимодействия фаз. Аналитическое решение вопроса массопередачи в условиях пенного и струйного режимов пока невозможно, так как система математических уравнений, описывающая процесс в этих условиях, не поддается решению. Поэтому уравнения для интенсивных процессов Э. К. Сийрде [16, 17] были получены методом анализа размерностей. Он исходит из выражения для коэффициента насыщения в виде (326), откуда после соответствующих преобразований получается [c.182]


Смотреть страницы где упоминается термин Процессы взаимодействия и методы анализа: [c.6]    [c.112]    [c.425]    [c.9]    [c.3]    [c.109]    [c.439]    [c.3]    [c.604]    [c.530]   
Смотреть главы в:

Кристаллография рентгенография и электронная микроскопия -> Процессы взаимодействия и методы анализа




ПОИСК





Смотрите так же термины и статьи:

Анализа процесс



© 2025 chem21.info Реклама на сайте