Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Матрица отбора

    Оценка перспективы упрочнения металлов и неметаллов нитевидными кристаллами приводит к выводам, что работы в этом направлении позволят получить группу новых конструкционных материалов, обладающих высокой удельной прочностью и ценными свойствами при высоких те.мпературах. Успехи в этой области зависят от рещения ряда вопросов, в первую очередь таких, как разработка методов непрерывного получения волокон, развитие модели упрочнения короткими волокнами, достижение максимальной передачи нагрузки от матрицы к волокну путем соответствующего подбора волокна и матрицы, отбор и использование высокопрочных волокон, разработка технологии получения комбинированных материалов с заданной ориентацией усов, которые хорошо смачиваются металлом. [c.344]


    Если значения В и С фиксированы, то изменения руды и характеристик аппарата измельчения описываются матрицей отбора, которая для каждого данного процесса определяется подгонкой кривых. Обычно оказывается, что в соответствии с априорными представлениями диагональные элементы матрицы S уменьшаются с уменьшением крупности частиц. [c.60]

    Элементы главной диагонали матрицы отбора размером 9X9 (получены расчетным путем)  [c.79]

    По мере совершенствования средств вычислительной техники и снижения ограничений по занимаемой памяти методы второй группы находят все более широкое распространение. Основной причиной этого является меньшая склонность методов второй группы к накоплению ошибок округления и соответственно большая устойчивость вычислительных схем при расчете колонн с несколькими вводами и боковыми отборами. К тому же при расчете комплексов аппаратов, по существу, снимается проблема задания топологии системы — все связи между колоннами отражены соответствующими коэффициентами в матрице системы уравнений баланса. Следует заметить, что матрицы коэффициентов систем уравнений баланса многостадийных процессов являются неплотными. Поэтому применение специальных методов хранения данных позволяет свести к минимуму объем занимаемой памяти. [c.134]

    В методах второй группы по каждому из компонентов исходной смеси записывается система уравнений и решение осуществляется матричными методами. Поскольку начальное приближение выбирается произвольно, то после выполнения очередной операции производится коррекция искомых переменных. Методы второй группы находят все более широкое применение, так как при этом проявляется меньшая склонность к накоплению ошибок округления и соответственно большая устойчивость вычислительных схем при расчете колонн с несколькими вводами питания и боковыми отборами. К тому же при расчете комплекса колонн снимается проблема задания топологии системы, так как все связи между колоннами отражены соответствующими коэффициентами в матрице системы уравнений баланса. [c.78]

    Нитевидные кристаллы ( усы ) рассматривают как перспективный материал для армирования матриц из металлов, полимеров и керамики. Сверхвысокая прочность в широком диапазоне температур при малой плотности, химическая инертность по отношению ко многим матричным материалам, высокая жаростойкость и коррозионная стойкость нитевидных кристаллов оксидов алюминия и магния, карбида кремния делают их незаменимыми армирующими элементами. К сожалению, пока на пути их практического применения стоит много трудностей. Предстоит решить проблемы получения их в промышленном масштабе, отбора годных усов , ориентации их в матрице, методов формирования композиций с усами . [c.69]


    По Куну, предбиологическая эволюция началась с коротких цепей нуклеотидов, из которых отдельные нуклеотиды полимери-зовались. Цепи, содержащие только один стереоизомер рибозы, действуют как матрицы для самовоспроизведения их большая стойкость к гидролитическому разложению дает им шансы стать исходным пунктом ряда репликаций. В дальнейшем предполагается возникновение третичной структуры этого прообраза РНК, причем из всех третичных структур остаются также наиболее устойчивые к гидролизу. Добавочный механизм отбора, по Куну, представляет собой образование агрегатов РНК, облегчающееся, например, попаданием компактной молекулы РНК на частицы глин в водной среде. [c.385]

    На основе результатов предварительного анализа параметры модели, определяющие объемы перерабатываемых ресурсов, выпуск готовой продукции, производительности технологических установок и процессов, коэффициенты отбора нефтепродуктов, в зависимости от величины вариации принимаются детерминированными или случайными. Ограничения на математические ожидания невязок стохастических условий задачи выбираются в зависимости от вероятностных характеристик случайных величин с учетом рекомендаций экспертов-технологов и работников планового отдела предприятия. Аналогичным образом устанавливаются штрафы за коррекцию решения задачи. Для НПП топлив-но-масляного профиля задача календарного планирования включает порядка 1400 переменных, 940 уравнений, 300 верхних и 280 нижних граничных условий. Коэффициент заполненности матрицы условий задачи равен 0,21. [c.178]

    Методами нейтронной спектроскопии измеряют на поликристаллич. образцах спектр тепловых колебаний атомов (фононный спектр), а на монокристаллах с линейными размерами ок. 1см-т.наз. дисперсионные кривые, определяющие мн. физ. св-ва кристаллов. Нек-рые сведения можно получить также о диффузии атомов, об их подвижности и временах релаксации, влиянии примесей на матрицу и т. д., причем исследуют не только кристаллы, но и твердые аморфные в-ва и жидкости. Нейтронная спектроскопия, в отличие от оптической, позволяет проводить исследования при низких частотах (до 20 см ), причем в спектре проявляются все колебания (отсутствуют правила отбора). [c.206]

    Земная кора, или литосфера, включает твердую поверхность Земли глубиной около 17 км. Она представляет собой главным образом силикатную матрицу, в отдельных местах которой находятся включения или области повышенной концентрации других веществ, образовавшиеся в результате протекавших в прошлом физических или химических процессов. Анализ земной коры осуществляется путем отбора образцов, которые могут считаться типичными для ее состава в целом. В табл. 25.1 приведены результаты наиболее тщательных исследований такого типа, выполненные Кларком и Вашингтоном в 1924 г. и в более позднее время Гольдшмидтом и др. [c.443]

    Итак, корреляцию на рис. 9.1, а можно объяснить с помощью матрицы вероятности мутаций. Корреляция выдерживается, хотя в каждом конкретном случае замены аминокислот находятся под сильным давлением отбора. Очевидно, что на основании корреляции между такими суммарными величинами, как частоты встречаемости аминокислот, невозможно заключить, что эволюция следовала нейтральному, т. е. недарвиновскому пути. Отметим, что корреляция, приведенная на рис. 9.1, б, пока еще никак не объяснена. [c.206]

    Для калибровки масс-спектрометров, газо-жидкостных хроматографов и устройств для отбора проб необходимы газообразные матрицы с двумя уровнями концентраций органических компонентов. Здесь определяющим фактором может являться устойчивость разбавленных газовых смесей, зависящая от концентрации следовых компонентов, чистоты и концентрации других компонентов смеси. Стенки подавляющего большинства со- [c.58]

    Это правило отбора утверждает, что для наблюдения перехода-между некоторыми двумя состояниями соответствующий переходный диполь должен иметь хотя бы одну ненулевую компоненту (либо координату, так как (1 = ег или, в других обозначениях, ед). В отличие от ситуации в микроволновой спектроскопии координаты атомов (а следовательно, и диполь молекулы) изменяются в процессе колебаний. Поскольку мы уже получили выражение для гейзенберговской матрицы О, нам известно, какие колебательные состояния имеют компоненты координат, связывающие их, и это сразу же позволяет вывести правила отбора для инфракрасных спектров в приближении гармонического осциллятора. Из уравнения (4.19) следует, что [c.85]

    Колебательная спектроскопия включает также метод комбинационного рассеяния. Спектроскопия комбинационного рассеяния основана на явлении неупругого рассеяния света. Энергия рассеиваемого света отличается от энергии падающего света на величину, соответствующую энергии колебательного возбуждения. Взаимодействие между светом и колеблющейся молекулой зависит от ее поляризуемости. Соответствующий оператор, по которому определяется правило отбора, представляет собой оператор квадрупольного момента, включающий квадраты координат. Уравнение (4.25) определяет гейзенберговскую матрицу для (Х . Эта матрица имеет ненулевые элементы на диагонали и на расстоянии двух элементов от нее. На первый взгляд может показаться, что Ап должно быть равно 2, однако исследование матричных элементов показывает, что они зависят только от ненулевых элементов матрицы О. Поэтому правило отбора в спектроскопии комбинационного рассеяния, выраженное через Ап, в приближении гармонического осциллятора должно было бы совпадать с правилом отбора в спектроскопии инфракрасного поглощения. Однако в дальнейшем мы убедимся, что существуют налагаемые симметрией правила отбора, которые неодинаковы для инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. [c.86]


    Матрица отбора является одним из двух варьируемых параметров математической модели процесса измельчения в стержневой мельнице. Другим параметром является число стадий. Матрица отбора отражает описание руды и характеристик мельницы, тогда как число стадий разрушения связано с расходом и крупностью питания, скоростью вращения мельшщы и другими параметрами цроцесса. [c.60]

    В технической литературе содержатся некоторые другие данные, достаточно детальные для проведения таких анализов. Однако анализ имеющихся данных показал, чт графики Р—и такого типа, как показано на рис. 4.11, применимы в любом случае. Удовлетворительное совпадение наблюдаемых распределении по крупности и данных моделирования наблюдалось во всех случаях (Линч, 1959). Митчелл и др. (1954 а,Ь) провели широкий комплекс работ на стержневых мельницах (0,76X1.22 м) с открытым сливом и с периферической разгрузкой. Каллкотт (частное сообщение) проанализировал полученные ими результаты на основе представлений о стадиях разрушения и обнаружил, что при максимальной крупности питания 0,038 м и матрице отбора 8, приравненной к I, матрица классификации С имела следующие элементы 1 0,5 0,2  [c.62]

    Теперь должно быть очевидно, что все недиагональные элементы, обусловленные этим гамильтонианом, равны нулю, поскольку все они имеют вид <ф Но ф, > - <ф ф, >, который отличен от нуля только при 1 = т. Поскольку матрица га.мильтониана диагональна, детерминант уже разложен, и мы непосредственно получаем четыре значения энергии, что и показано выше для и Рд - На рис. 9.2,В приведены эти четыре величины 1, 3, 3 и 4. Обычными правилами отбора для ЭПР являются Дш/ = О и Дш = 1. Следует отметить, что два перехода ЭПР (Дш = 0), показанные на рис. 9.2, В, имеют одну и ту же энергию. Если рассматривать только два первых члена гамильтониана, спектр ЭПР атома водорода должен быть таким же, как и спектр свободного электрона, т. е. при напряженности поля hv/g или д = 2,0023 должна наблюдаться одна линия.  [c.10]

    Принципиальная возможность расчета и перспективность использования азеотропно-экстрактивной ректификации была показана в работе [481, где предложена и схема алгоритма, основанная на методике релаксации. Однако основная задача состоит в разработке эффективной процедуры решения системы уравнений материального баланса, поскольку, обладая устойчивой сходимостью, метод релаксации весьма времеемок. Позднее был предложен комбинированный метод, основанный на методах релаксации и трехдиагональной матрицы [791. Другим подходом является использование метода Ньютона—Рафсона для решения системы уравнений материального баланса [801. И все же в виду сложности задачи основное внимание до сих пор уделяется разработке алгоритмов сведения материального баланса при отборе одной из фаз со ступени разделения или расслаивании целевых продуктов в гравитационных декантаторах. Но этим не исчерпываются особенности ректификации с расслаиванием жидких фаз. Большие возможности этого процесса заключаются в перераспределении потоков отдельных фаз внутри колонны на специальных устройствах [811 для создания необходимого температурного режима, а также изменения условий протекания процесса. [c.355]

    Ауз = 5 и 7 м соответственно, для Sa Ava = 23 см" при переходе от газа к жидкости, а для Sea — 36 см". Как видно, чем меньше у сходственных молекул частота, т. е. упругость связи, тем сильнее ослабляет связь ван-дер-ваальсово взаимодействие. Изменяется при взаимодейств 1и и вероятность переходов, т. е. интенсивность полос. Нарушение первичной симметрии молекулы в результате взаимодействия ослабляет строгость правил отбора, в спектрах могут проявляться запрещенные частоты. В кристаллах поле симметрично распределенных зарядов может привести к снятию вырождения, например, в кристалле СОа снимается вырождение деформационного колебания V2 = 667 СМ и проявляются две частоты va 660 и 653 см". В спектре кристаллов могут проявляться также колебания решетки. Спектр молекул, изолированных в матрице (область менее 200—300 см" ), может отличаться от спектра свободных молекул, благодаря взаимодействию между ними и кристаллом матрицы, особенно для сильно полярных молекул. [c.178]

    В некоторых ситуациях возникает необходимость в построении полного списка остовных деревьев графа. Например, в том случае, когда надо отобрать наилучшее дерево, а критерий, позволяюш,ий осуществить такой отбор, является очень сложным, так что непосредственное решение задачи оптнянзации оказывается невыполнимым. Или при составлении систем уравнений материал ьно-тепловьк балансов химико-технологической системы построение полного списка деревьев графа позволяет выбрать оптимальное соотношение межд) свободными и зависимыми потоками. В других ситуациях, например, при на-хождешш передаточной функции системы или при вычислении некоторых матриц в макроэкономической теории, с помощью порожденная всех остовов соответствующих графов добиться упрощения вычислительных процедур. [c.198]

    Измерение давления. Падение столь же важный фактор, как и теплообмениые характеристики. Экспериментальное оборудование может быть подобрано таким образом, чтобы поперечное сечение трубопровода было таким же, как и входное сечение исследуемой теплообменной матрицы в этом случае можно ограничиться простым измерением статического давления в трубе В противном случае необходимо учитывать различие динамического давления за счет изменения размера проходного сечения. Конечно, желательно установить перед теплообменной матрицей прямую трубу длиной по меньшей мере десять диаметров, чтобы обеспечить однородное распределение скорости по сечению трубопровода. Если необходимо получить особенно достоверные данные о падении давления, можно использовать пьезометрическое кольцо, т. е. ряд соединенных между собой отверстий для отбора статического давления, выполненных по периметру трубы в плоскости, перпендикулярной направлению потока. Перепад давления в теплообменнике можно измерять непосредственно с помощью манометра или дифференциального датчика типа трубки Бурдона. [c.318]

    Вполне очевидно, что успехи в решении задач эколого-аналитического мониторинга суперэкотоксикантов во многом зависят от эффективности аналитического контроля. Для получения достоверной и надежной информации о содержании загрязняюпщх веществ пробоотбор дотокен производиться так, чтобы анализируемые образцы бьши типичными для природных объектов. Представительными являются такие пробы, в которых содержание определяемых ингредиентов не изменяется при отборе проб, их хранении и транспортировке к месту анализа. Иными словами, отношение матрицы к анализируемым компонентам должно оставаться постоянным как в общей массе исходного материала, так и во взятой пробе. Изменение состава матрицы во времени может происходить, например, из-за переменного состава воды в реке или флуктуаций состава дымовых газов промьппленных предприятий. [c.169]

    Таким образом, во всей процедуре пробоотбора критическим параметром является репрезентативность пробы, т е ее соответствие составу исходного материала. Однако при определении суперэкотоксикантов, содержащихся в следовых количествах в образце, часто приходится работать с неоднородными матрицами, что усложняет как пробоотбор, так и анализ в целом. Для неоднородных материалов иногда щ)ибегают к стратификации (разделению пробы на более однородные части). Этот важный прием широко используется в статистических процедурах с применением классического дисперсионного анализа. При этом представительность и оценка однородности пробоотбора обеспечиваются планом отбора проб и способом их рандомизации, т е. возможностями попадания определяемого вещества в пробу. В последнее время для прослеживания за однородностью проб и воспроизводимостью методов пробоот(юра во времени широко используются контрольные карты [1]. [c.170]

    При отборе проб растительности предполагают, что большинство суперэкотоксикантов (ПАУ, ПХДД и ПХДФ, ПХБ, ХОП) оседает на поверхности образца и находится там в подвижной форме. Частички пыли или почвы, содержащие зафязняющие вещества, прилипают прежде всего к листьям, стеблям и пл(1 шм. покрьггым воскообразным веществом Рекомендуется отбирать растения, нс подвергавшиеся химической обработке При этом целые растения или их части следует отбирать в поле, где они находятся в естественном окружении. В этом случае представительность пробоотбора определяется правильностью выбора индикаторных растений и мест отбора проб Для веществ, которые попадают в растения из почвы (ХОС, тяжелые металлы, радионуклиды), необходимо учитывать тот факт, что определяемые соединения могут прючно связываться с внутренними тканями растений. Для их вьщеления из матриц следует применять специальные методы В некоторых методиках эта стадия предшествует непосредственно анализу [c.192]

    Большинство формул в теории многоэлектронных систем в случае стационарных состояний можно записать в компактном и удобном для работы виде, если использовать редуцированные матрицы плотности (РМП). В одноэлектронном приближении использование РМП особенно выгодно в случае неортогональных спинюрбиталей. Роль РМП не сводится только к упрощению формул, хотя и это весьма существенно. РМП играют важную роль и в общих построениях теории многоэлектронных систем, и в приближенных методах, связанных с выходом за рамки приближения Хартри - Фока. В частности, они весьма полезны при выборе оптимальных базисных спинюрбиталей фр х) и при отборе наиболее существенных слейтеровских детерминантных функций, которые входят в разложение (2.30) для полной волновой функции с наибольшими коэффициентами. Понятие РМП лежит также в основе упрощенного метода функционала плотности, который в последнее время получил широкое распространение, в частности, в теории хемосорбции. [c.80]

    Разработка эффективных методов генерирования МГ приобретает особое значение в связи с проблемами компьютерного синтеза и молекулярного дизайна [19—25], автоматизации обработки данных спектральных исследований молекул, идентификации химических соединений ио набору спектральных данных, полученных методами ПК-, ЯМР-, ЯКР-спектросконии и масс-спектрометрии [26— 29]. Во всех этих направлениях возникает проблема описания изомеров с данной брутто-формулой или нахождения всех возмоншых продуктов реакций, удовлетворяющих определенным критериям отбора. Наиболее общие способы генерации химических структур ориентированы на современные ЭВМ, с помощью которых ио определенным алгоритмам можно находить структурные формулы всех возможных изомеров с заданной брутто-формулой. Эти методы основаны на онисаиип структуры молекулы в виде топологической матрицы. [c.22]

    Рассмотренные модификации алгоритма решения задачи планирования нефтеперерабатываюших производств при переменных коэффициентах отбора и затрат позволяют в определенной мере сократить число итераций и объем вычислений. Однако при большой размерности исходной задачи, высоком проценте заполненности матрицы условий, большом числе варьируемых векторов и ненулевых элементов в них этот подход не обеспечивает высокой эффективности расчетной процедуры. Частично данный вопрос может быть решен с учетом особенностей прикладных задач. [c.33]

    КИМ, Этот ВЫВОД подтверждается вращательной структурой (см. ниже). Дальнейшим его подтверждением служит тот факт, что в системе полос радикала D3 около 2100 А наблюдается полоса О—2 по деформационному колебанию V2> но отсутствует полоса О—1 в соответствии с правилами отбора для плоско-плоских переходов. Значение частоты деформационного колебания при таком отнесении. полос согласуется со значением V2 полученным в инфракрасном спектре в твердой матрице Миллиганом и Джекоксом [Й1. Заключение, что радикал СН3 имеет почти плоское (если не вообще плоское) строение, подтверждается также исследованием сверхтонкой структуры спектра электронного спинового резонанса в твердой матрице [82]. [c.162]

    Слюна является биологической матрицей, имеющей некоторые преимущества перед другими традиционными биожидкостями (кровь или моча) как объект исследования для обнаружения наркотиков из-за быстроты и неинвазивности процесса отбора пробы. После ВВ [c.95]

    Слюна по некоторым критериям является лучшей биологической матрицей для судебно-химического анализа при доказательстве факта недавнего потребления ТГК-содержащих продуктов. Отбор слюны осуществляется просто и быстро, исключается возможность инвазии. Концентрации активных веществ в слюие после приема обычных доз ТГК 5—20 мг достигают 1000 нг/мл, т.е. значительно превосходят величины, получаемые при анализе крови, и, кроме того, коррелируют с динамикой психотропных эффектов в отличие от данных, полученных при анализе мочи, пота или волос. Через 3-4 ч концентрация ТГК в слюне уменьшается примерно до 50 нг/мл 28]. Контролированный прием ТГК, КБН и КБД по 5 мг в этиловом спирте орально показал [19], что через 1 ч содержанке в слюне (4,5 мл) составляет 135,1 178,3 и 157,7 нг/мл, соответственно. Через 3 ч концентрация каннабиноидов падает до 20—35 нг/мл, а через 4 ч — ни один иэ них не детеетируется. Неидентифицированный метаболит появляется также в пределах 1—3 час после приема смеси. [c.129]

    Как уже упоминалось, ПК в качестве лигандов могут обладать как групповой специфичностью (для белков хроматина, факторов управления трансляцией, нуклеаз и др.), так и индивидуальной (для индивидуальных мРНК, белков-регуляторов транскрипции и др.). Во втором случае на аффинном сорбенте должны быть закреплены вполне определенные участки генома. Это стало возмолшым после создания способов отбора и наработки в достаточных количествах строго идентичных фрагментов ДНК методами генной инженерии. В последнее время возникла еще одна область использования иммобилизованных НК — в качестве праймеров матричного синтеза. Эти приложения предъявляют разные требования к характеру фиксации НК на матрице. В первом случае расположение точек закрепления на молекуле НК может быть произвольным, во втором определенные и достаточно протяженные участки полинуклеотидной цепи должны быть свободны для комплементарного взаимодействия, а в третьем закрепление НК на матрице желательно осуществить лишь по одному определенному концу молекулы. Что же касается возможности реакций с активированными матрицами, то вдоль всей молекулы НК во множестве располагаются химически эквивалентные группы аминогруппы нуклеиновых оснований, гидроксилы сахаров и др. В особом положении находится только концевой остаток фосфорной кислоты или сахара. [c.387]

    Принцип метода иллюстрирует рис. 148. Фрагмент ДНК, по которому ведется отбор, например содержащий определенный ген, встраивают и размножают в плазмиде. Очищенные плазмиды дробят ультразвуком или линеаризируют действием рестриктаз, а затем меркурируют, как описано выше. Фрагментированные ДНК или РНК, из которых надлежит отобрать комплементарные участки, гибридизуют с ДНК меркурированных плазмид в условиях, когда последняя находится в избытке. Гибридные молекулы (вместе с молекулами ренатурпрованной плазмидной ДНК) вносят на колонку SH-сефарозы. При этом нити плазмидной ДНК через атомы ртути ковалентно связываются с сорбентом (на рис. 148 для ясности он изображен в виде ааштрихованных полосок у стенок колонки, тогда как в действительности он заполняет весь ее объем). Промывка колонки удаляет из нее не вошедшие в состав гибридов, т. е. пе комплементарные к плазмидной ДНК фрагменты нуклеиновых кислот. Затем следует элюция 97 %-ным формамидом нри повышенной темнературе. Двунитевые структуры диссоциируют, и очищенные комплементарные участки ДНК или РНК, не будучи связанными с матрицей, выходят из колонки. Остающуюся в колонке меркурированную плазмидную ДНК можно снять, как обычно, элюцией -меркаито-этанолом. [c.438]

    Описанный подход люжно использовать и для очистки рестриктов ДНК, содержащих определенную последовательность, из продуктов переваривания рестриктазами суммарных нативных ДНК или для оценки содержания определенных генов в исследуемой ДНК путем титрования избытком меченой кДНК. Авторы отмечают, что аналогичные задачи решались путем гибридизации с НК, сорбированными на целлюлозе. Однако гибридизация с участием иммобилизованных НК идет хуже, а при последующем плавлении гибридов с матрицы могут частично сниматься и пе закрепленные ковалентной связью молекулы, по которым идет отбор. [c.439]

    В ходе лабораторного практикума студенты, как правило, имеют дело с гомогенными образцами. Поэтому они склонны недооценивать важность процедуры пробоотборв, являющейся на самом деле ключевым звеном любой аналитической методики [2.2-1]. На практике достоверность результатов анализа часто определяется качеством пробоотбора. Иногда анализируют весь объект целиком (например, древнее украшение) с помощью неразрушающего рентгенофлуоресцентного метода. Однако в большинстве случаев (подобных, скажем, определению железа в партии руды, перевозимой по морю) пробоотбср необходим. Пробоотбор состоит из двух стадий а) разработка плана пробоотбора и б) отбор проб как таковой. Химику никогда не следует приступать к анализу, не выяснив предысторию образца (как выполняли отбор, хранение и консервацию пробы, подвергали ли пробу предварительной обработке и т. д.), а также насколько он представителен по отношению ко всему объекту. В зависимости от способа пробоотбора, природы определяемого компонента и его содержания, состава матрицы зависят меры, которые необходимо принять, чтобы избежать какого бы то ни было изменения состава пробы. [c.58]

    Следует отметить недостаточную селективность, которая остается одним из лимитирующих факторов в реализации промышленного ПИА для on-line анализа сложных матриц в химической промышленности. Кроме того, много технических проблем связано с отбором проб, особенно в случае фильтрации частиц при анализе многофазных технологических сред, а также с обслуживанием линий подвода проб и реагентов. Практическая реализация ПИА в различных технологических средах является серьезной технической задачей, поскольку требования к надежности и простоте обслуживания анализаторов весьма высоки. В конструкциях таких анализаторов используются различные типы насосов, клапанов и детекторов. Пространственное разделение собственно детектора и электронных компонентов проточно-инжекционной системы дает большой положительный эффект, поскольку при этом уменьшается протяженность линий пробоотбора [16.4-59]. В целом, отсутствие коммерчески доступных проточно-инжекционных анализаторов существенно ограничивает применение промышленного ПИА для мониторинга и контроля технологических сред. [c.664]

    Стратегия пробоотбора зависит от природы аналитов, матрицы, вида требуемой информации и типа измеряющего прибора [16.5-1]. Привязка анализаторов к промышленному процессу достигается отбором представительной пробы из технологического процесса для оп-ипе-анализаторов введением ш-1те-сенсоров в технологическую цепочку контролируемого процесса для проведения т-1ше-анализа обеспечением соответствующей связи для неразрушающих методов. В этой главе обсуждается отдельно каждая из этих методик и приводятся примеры. [c.665]

    Универсальная эмпирическая зависимость СДСП электрона от его кинетической энергии приведена на рис. 11.34. До 99% фотоэлектронов выходит из поверхностного слоя толщиной ЗЛ. Для (фазреженных матриц (например, полимерных материалов) глубина отбора аналитической информации составляет 5—10 нм, а для плотных матриц (например, металлов) — 2—3 нм. Столь малая глубина отбора аналитической ин- [c.260]

    Каждый акт элонгации цепи должен начинаться с отбора субстрата (рис. 49). Скорее всего этот процесс происходит путем перебора всех альтернативных субстратов, присутствующих в системе. Для этой цели активный центр должен обладать сродством к универсальной части субстратов, которая имеется у всех типов мономеров. Так, у нуклеозит-5 -трифосфатов такой частью является трифосфат-ный фрагмент и остаток рибозы или дезоксирибозы. Попадание в активный центр нужного субстрата, опознаваемого кодирующим элементом матрицы, является сигналом для осуществления ферментативной реакции соединения мономерного фрагмента с концом синтезируемой полимерной цепи. В чем заключается природа этого сигнала, до настоящего времени не установлено. Можно лишь полагать, что взаимодействие мономера с кодирующим элементом, например образование водородных связей между комплементарными гетероциклами субстрата. и матрицы, вызывает конформационное изменение, приводящее к нужной ориентации реагирующих групп и соответствующих групп каталитического центра фермента или рибосомы. [c.175]


Смотреть страницы где упоминается термин Матрица отбора: [c.60]    [c.58]    [c.169]    [c.385]    [c.420]    [c.144]    [c.350]    [c.91]    [c.168]   
Смотреть главы в:

Циклы дробления и измельчения -> Матрица отбора




ПОИСК





Смотрите так же термины и статьи:

Матрица

Матрица Т в схеме jm. Правила отбора для

Матрица отбора или скорости разрушения



© 2025 chem21.info Реклама на сайте