Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол сшивание

    Полиэтилен, который сшивается при отсутствии кислорода, реагирует с кислородом во время облучения [23] и либо требует больших доз для образования геля [24], либо претерпевает в присутствии кислорода деструкцию [25]. Полистирол, в котором в отсутствие кислорода преобладает сшивание, не дает геля в присутствии кислорода независимо от величины дозы [24, 26]. [c.68]


    Практически часто применяется смешанная классификация химических реакций в полимерах по видам соответствующих превращений макромолекул и видам воздействия на них. В ряде случаев определенный вид воздействия приводит и к одному виду изменений макромолекул, но иногда в зависимости от химической природы полимеров один И тот же вид воздействия может привести к разным изменениям структуры макромолекул. Например, при действии высоких температур может протекать деструкция, т. е. распад линейных макромолекул у одних полимеров (полипропилен, полистирол), циклизация — у других (полиакрилнитрил), образование сетчатых структур — у третьих (1.2-полибутадиен, сополимер бутадиена со стиролом), а также смешанные случаи (полиизопрен и др.). При облучении, например, полиэтилена одновременно протекают реакции соединения макромолекул друг с другом (сшивание) и распада отдельных молекул (деструкция). [c.219]

    Облучение полимеров частицами высокой энергии (порядка 0,1 МДж/кг и выше) вызывает сшивание цепей макромолекул, вследствие чего полимер упрочняется, приобретает высокую устойчивость к образованию трещин, расширяется температурная область его применения. Например, пленка из облученного полиэтилена выдерживает кратковременное нагревание до 250°С и длительное воздействие температуры при 125°С, что полностью исключено для необлученного полиэтилена. Устойчивость к облучению у полимеров не одинаковая. Одним из наиболее устойчивых к облучению синтетических полимеров является полистирол. В его макромолекулах имеется бензольное кольцо (—СНа—СН—) , требующее большей дозы облучения, чтобы [c.338]

    В результате хлорирования алифатических цепей в молекулах полистирола, что достигается действием хлора на полистирол в растворе, и последующей обработки полученного производного катализаторами Фриделя — Крафтса [105, 106] можно получить сшитый полистирол. Сшивание полистирола происходит и при хлорировании твердого полимера. В этом случае образуется смесь производных, содержащих хлор в алифатических цепях и бензольных ядрах [107]. [c.245]

    Размер пор можно изменять, варьируя соотношение дивинилбензола и полистирола, что определяет также структуру и прочность ионита, способность к набуханию. Это соотношение является характеристической величиной — степенью сшивания. Степень сшивания выражается массовым содержанием диви-нилбензола. Наименее прочными, легко разрушаемыми потоком ПФ являются иониты со степенью сшивания менее 4 %. Применение ионитов со степенью сшивания выше 12 % затруднительно вследствие медленной массопередачи внутри узких пор таких материалов. Наиболее распространенными являются смолы с 8 % дивинилбензола. Ионный обмен осуществляется по всему объему таких смол. [c.604]


    При хлорировании полистирола наряду с галогенированием бензольных колец происходит галогенирование алифатических цепей и протекают реакции сшивания. [c.19]

    Равновесное набухание макросетчатых изопористых полимеров в термодинамически хороших растворителях, например толуоле, дихлорэтане, значительно превосходит набухание стандартных сополимеров стирола с ДВБ с равной степенью сшивания. При этом набухание макросетчатых полимеров сильно зависит от концентрации исходного раствора полистирола или от содержания ДВБ в исходных набухших гранулах сополимера, подвергаемого дополнительному сшиванию. Чем больше растворителя присутствует в исходной системе, тем выше равновесное набухание конечных гелей. Поэтому нетрудно получить макросетчатые изопористые полимеры со 100%-ной степенью сшивания и набуханием в толуоле порядка 2—4 мл/г, что соответствует набуханию слабосшитых сополимеров стирола, с ДВБ [70]. [c.28]

    Цри отсутствии четвертичных атомов углерода и большой теплоте полимеризации (Полиэтилен, полиакрилаты, полистирол и т. д.) происходит в основном сшивание  [c.639]

    Создание ионообменной смолы сводится к синтезу нерастворимого в воде и других растворителях твердого органического полимера, образующего трехмерный высокомолекулярный каркас с активными группами путем сшивания линейного высокомолекулярного соединения — полистирола — в пространственную сетку с помощью различных мостикообразующих веществ (например, дивинилбензола). [c.386]

    Поскольку ароматические группы могут оказывать защитное действие за счет межмолекулярного переноса энергии, следует ожидать, что они будут давать по крайней мере столь же сильные внутримолекулярные эффекты и будут весьма эффективно защищать чувствительные к излучению группы, расположенные внутри той же молекулы. Отчетливо показано, что это предположение справедливо. Сравнение энергий, необходимых для деструкции или сшивания Полистирола и полиэтилена (стр. 117 и 135), демонстрирует сильное влияние фенильных групп на коротком расстоянии (порядка одного или двух углеродных атомов). Энергия может переноситься и на большее расстояние. [c.72]

    Уолл и Браун [33, б] в последнее время изучали влияние замещения водорода дейтерием в полистироле на энергетический выход реакций сшивания и газовыделения под действием -из-лучения. Их результаты приведены в табл. 12. [c.137]

    Если весь водород образуется в результате сшивания, то Ед должно быть равно 2Ес- Оказалось, что на самом деле Ед равно примерно 4 с, т. е. скорость сшивания вдвое больше скорости выделения водорода. Как уже упоминалось, в полиэтилене образуется примерно вдвое больше водорода, чем можно объяснить согласно реакции сшивания. В этом отношении эти два полимера сильно отличаются друг от друга. Очевидно, по крайней мере половина поперечных связей в полистироле образуется путем некоторой реакции, при которой не выделяется водород. Подобное же положение наблюдается для силиконовых полимеров (см. стр. 193). [c.138]

    Из результатов, полученных Чарлзби, следует, что присутствие двойных связей не оказывает при облучении защитного эффекта, подобного тому, который производит фенильная группа в полистироле или в меньшей степени карбонильная группа. в полиметакрилатах или в полиакрилатах. Возможно, что подобный эффект все же существует, и наблюдаемый результат является проявлением компенсирующих друг друга процессов повышенная активность двойных связей компенсируется общим защитным действием в отношении процесса сшивания на других участках молекулы. То обстоятельство, что выход газообразных продуктов для диеновых полимеров значительно меньше, чем [c.177]

    Сшивание полиэтилена при облучении протекает легко и сопровождается незначительной деструкцией. Полипропилен сшивается значительно менее интенсивно и претерпевает при этом сравнительно интенсивную деструкцию. Полистирол обнаруживает значительно меньшую тенденцию к сшиванию, объясняющуюся способностью фенильных групп к поглощению энергни. Полимеры с ненасыщенными группами — натуральный каучук и полибутадиен — не обладают по сравнению с углеводородными полимерами, не содержащими непредельных связей, повышенной способностью к сшиванию. Основной газообразный продукт радиолиза всех этих полимерных углеводородов — водород. [c.169]

    Чарлзби [53] нашел, что облучение в атомном реакторе вызывает в полистироле сшивание. Сопоставление соотношения доза растворимость с кривыми рис. 19 (стр. 94) показывает, что величина /a не больше 0,2, а поэтому деструкция не играет сушественной роли. Измерения набухания [54] находятся Б соответствии с предположением о том, что сшивание происходит беспорядочно и что число поперечных связей растет примерно пропорционально дозе. Установленная энергия Ес, при-ходяшаяся на одно сшитое звено, равна 1500—2500 эв. однако пересчет данных Чарлзби показывает, что на самом деле величина Ес составляет 600—800 эв. Сопоставление со значением Ес для полиэтилена, которое составляет всего 11 эв, дает представление о сильном стабилизируюшем действии бензольных колец. Энергия, требующаяся для одного разрыва в главной цепи, составляет по крайней мере 3000—4000 эв и, вероятно, даже больше. Эти результаты получены в опытах с полисти-рольными стержнями диаметром 1,27 см, и поэтому можно принять, что кислород не оказывает заметного влияния. Шульц, Рот и Ратманн [55] наблюдали, что даже в тонких пленках полистирола при облучении электронами с энергией 800 кэв происходит сшивание при интенсивности облучения до 31 мегафэр мин. Очевидно, что при таких высоких мощностях доз присутствующий вначале кислород очень быстро расходуется, и его количество не может быть пополнено за счет диффузии в такой степени, чтобы он мог влиять на ход реакци Для полимера, обладавшего исходным молекулярным весом М ,, равным примерно [c.135]


    Первой стадией пептидного синтеза Меррифилда является сшивание аминокислот (с защищенной азотной функцией) схлор-метилированным полистиролом путем образования сложноэфирной группы. Эту стадию можно ускорить, используя калиевую соль Вос-аминокислоты и молярное количество 18-крауна-6 в ДМФА (972]. [c.131]

    Доза облучения, вызывающая структурное изменение полимера, также зависит от его химического строения. Содержащиеся в макромолекуле полимера двойные связи или бeнзoльгiыe кольца оказывают защитное действие при облучении. Для сшивания таких полимеров, как каучуки и полистирол, требуется большая доза облучения, чем для сшивания парафиновых углеводородов. Защитное действие при облучении полимеров оказывает также добавка производных нафталина. Обычные дозы облучения полимеров составляют 258—25 800 Кл/кг (1 —100 МР). [c.295]

    Основным типом катионных ионообменных смол являются иолизлектролиты, получаемые на основе полистирол — дивинил-бензольных сульфированных полимеров. В 1950-х гг. катионообменные смолы начали применяться в качестве мембран при электродиалнзе (для очистки различных растворов) и в топливных элементах. Использование катионообменных мембран в топливных элементах химических источников тока выявило острую необходимость создания новых полиэлектролитов, обла- дающих высокой термостойкостью и стойкостью к окислителям. Естественно, что химики прежде всего обратились к классу фторсодержащих полимеров, известному своей непревзойденной стойкостью к химическим реагентам и высокой теплостойкостью, и, прежде всего к фторированным аналогам полистиролсульфо-кислоты. Был разработан способ получения поли-а,р,р -трифтор-стирола, его сульфирования и сшивания [1]. Оказалось, что такие катнонообменные мембраны резко превосходят по термо-и химической стойкости обычные мембраны и пригодны для использования их в водород-кислородных топливных элементах источников тока. [c.178]

    В пром-сти П. у. получают гл. обр. термич. полимеризацией в массе по непрерывной схеме так же, как и полистирол, и т. наз. блочно-суспензионным способом по периодич. схеме. В первом случае бутадиеновый или бутадиен-стироль-ный каучук измельчают и растворяют в стироле (4-15%-ная концентрация). При нагр. и интенсивном перемешивании р-ра параллельно протекают полил1еризация стирола и прививка его на каучук. После образования 2-3% полистирола реакц. среда расслаивается на стирольную фазу (р-р полистирола в стироле) и каучуковую (р-р каучука и привитого сополимера в стироле). Образование привитого сополимера протекает на границе раздела фаз. Структура, размеры дискретной каучуковой фазы, содержание в ней окклюдированного полистирола зависят от интенсивности перемешивания, концентрации основных компонентов и модифицирующих добавок. При степени превращения стирола 30-40% реакц. система из-за высокой вязкости становится стабильной и перемешивания уже не требуется. На завершающей стадии процесса происходит частичное сшивание каучука в частицах микрогеля, в результате чего возрастает их устойчивость к сдвиговым деформациям. Продукт представляет собой расплав П. у., содержащего 0,5-10% непрореагировавшего стирола, к-рый удаляют в вакууме, а полимер гранулируют. [c.25]

    Существенное влияние на физические свойства полимеров оказывают четыре фактора, характеризующие структуру макромолекул (полимерных цепей). Один из факторов - средняя длина цепи, к другим трем факторам относятся сила взаилюдействия между полимерными цепями, регулярность упаковки цепей и жесткость отдельных цепей, a юe сильное меж-молекулярное взаимодействие возникает, когда цепи имеют поперечные. мостики, т.е, образуют друг с другом хи.мические связи. Этот процесс называют сшиванием, он часто происходит при нагревании, Образование поперечных связей замыкает полимерные цепи в трехмерную сетку, поэтому таким поли.мерам при нагреве уже нельзя придать новую форму. Жесткие полимеры такого типа называют термоактивными К ним относятся полиэфирные, эпоксидные, алкидные и другие с.мольг Трехмерная (сшитая) структура позволяет эластомерам (напри.мер, каучук) долго вьщерживать достаточно высокие те.мпературы и циклические нагрузки без остаточной деформации. Многие перспективные полимеры, напротив, термопластичны и размягчаются при нагреве (например, полиолефины, полистирол и др ). [c.48]

    Гомополимер глицидилметакрилата является одним из самых чувствительных негативных резистов (D Mw = 0,023). Его широкому использованию препятствует низкий коэффициент контрастности (v si 1,0), причиной чего является цепной характер сшивания, а термическая стабильность рельефа (Тс полимера 78°С) и стойкость к плазменному травлению у резиста удовлетворительные Добавки низкомолекулярных эпоксидов, например циклогексил-эпоксида, вводимые в концентрациях от 5 до 30 % в полистирол или полибутадиен, повышают чувствительность в 3 раза [франц. пат. 2250138 пат. США 3916035]. Сополимеры 2,3-эпптиопропил-метакрилата с эфирами акриловой и метакриловой кислоты, например метилметакрилатом, бутилметакрилатом, этилакрилатом, [c.250]

    Разновидностью метода фракционирования на колонке является гель-хроматография [86]. В качестве разделительного вещества применяют органические или неорганические вещества (например, силикагель) пористой структуры с размером пор, зависящим от плотности сшивок и условий получения. Для фракционирования полимеров, растворимых в воде, чаще всего применяют набухший в воде декстран с различной степенью сшивания (сефадекс). Для растворов полимеров в органических растворителях применяют сшитые полистиролы или сополимеры метилметакрилата с этилен-гликольдиметакрилатом. Образец полимера растворяют, заливают в колонку и элюируют, используя тот же самый растворитель. Небольшие молекулы полимера свободно диффундируют внутрь геля. Размеры некоторых молекул оказываются настолько большими, что им не удается проникнуть внутрь пор, в результате чего они первыми выходят из колонки при элюировании. Продолжительность элюирования фракций возрастает с уменьшением размера макромолекул. Существует критическое значение молекулярной массы, ниже которого макромолекулы полимера могут проникать в поры сетки и поэтому могут быть разделены. Молекулы большего размера уже не могут быть разделены, так как они не могут диффундировать в гель. Частота сетки геля и критическое значение молекулярной массы связаны между собой простой зависимостью чем чаще сетка, тем меньше критическое значение молекулярной массы. [c.83]

    Для сшивания при высоких температурах (горячее отверждение) 0,1 г перекиси бензоила растворяют в 10 г раствора полиэфира. Полимеризация начинается через несколько минут после достижения 80 °С (образуется гель) и в основном заканчивается через 15 мин. Полученные образцы заполимеризованы еще не полностью, и для достижения оптимальной жесткости отверждение желательно продолжать еще 1—2 ч при 70—100°С. По 1 г каждого из образцов (холодное, горячее и постотверждение) тщательно растирают и обрабатывают 10 мл бензола в течение 30 мин. После фильтрования и промывания бензолом образцы сушат в вакууме при 60 °С для определения потери массы. Для осаждения и выделения полистирола бензольные растворы выливают в метанол. Определите способность к набуханию отвержденных образцов в органических растворителях. [c.201]

    Научно-исследовательским институтом пластических масс (НИИПМ) и Кемеровским Научно-иссле-довательским институтом химической промышленности (КНИИХП) разработана технология получения изопористых ионитов путем хлорметилирования полистирола или слабосшитого сополимера стирола с дивинилбензолом [16, 66]. Равномерность сшивания полистирольных цепей при хлорметилировании косвенно оценивается по изменению емкости, степени па-бухания, ИК-спектроскопией и др. Для этой цели используется и оценка степени отравления ионита органическими веществами природных вод, [c.26]

    Дроблением геля получают частицы неправильной формы Макросетчатые изопористые полимеры сти рола могут быть получены и в виде гранул, если сши ванию подвергается не раствор полистирола, а набух шие в инертном растворителе гранулы сополимера тирола с небольшим количеством (0,3—1,57о) ДВБ При проведении реакции Фриделя — Крафтса удается добиться количественного включения сшиваю щего агента в структуру конечного геля Поэтому сте пень сшивания геля может быть легко рассчитана из состава исходной реакционной смеси [c.27]

    Значительно облегчается процесс сульфирования полимеров стирола изопористой макросетчатой структуры. Уже при 80 °С сульфирование серной кислотой приводит к практически количественному замещению ароматических ядер. При 100 °С даже полимеры со степенью сшивания 40—100% превращаются в сульфокатиониты с обменной емкостью 4,5—4,7 мг-экв/г [79]. Легкая сульфируемость свидетельствует о высокой доступности всех ароматических ядер в макросет-чатом изопористом полистироле. О том же свидетельствует и то обстоятельство, что все введенные в полимер сульфогруппы способны обменивать свой протон на такую объемистую группировку как ион тетрабу-тиламмония. Для сравнения следует отметить, что в стандартных катионитах уже при 10%-ном содержании ДВБ для обмена на тетрабутиламмоний половина сульфогрупп становится недоступной. [c.38]

Таблица 3.4. Соотношение между степенью поперечного сшивания и набухаемос-тью полистирол-дивинилбензольных катионообменников содержащих группы -ЗОзН [12] Таблица 3.4. <a href="/info/26387">Соотношение между</a> <a href="/info/315316">степенью поперечного сшивания</a> и набухаемос-тью <a href="/info/1618888">полистирол-дивинилбензольных</a> катионообменников содержащих группы -ЗОзН [12]
    Доза облучения, приводящая к структурным измененияхм в полимере, зависит от его химического строения. Наличие ароматических колец или двойных связей в макромолекуле увеличивает стойкость ее к облучению. В частности, такие полимеры, как диеновые каучуки и полистирол, требуют большей дозы облучения для сшивания, чем парафиновые углеводороды. Этот принцип используется для защиты полимеров (см. ниже). [c.640]

    В настоящее время не установлено, действует ли кислород главным образом путем ускорения реакции разрыва или путем замедления сшивания. Из изложенного выше ясно, что он не ускоряет разрыва цепей таких полимеров, как нолиизобутилен и полиметилметакрилат, где деструкция протекает быстро и является единственной реакцией. Однако он может ускорять деструкцию других полимеров, например за счет проникновения в клетки Франка — Рабиновича и блокирования полимерных радикалов, возникающих при разрыве цепей. Получены [24] некоторые доказательства, что в отношении полистирола и полиэтилена действие кислорода проявляется главным образом в ускорении деструкции, причем скорость сшивания не изменяется. [c.70]

    Полистирол — [— СНаСНССбНй) — ] — сшивается под действием ионизирующих излучений [4, 32, 189, 190] пс составляет примерно 855 эв [191]. Такое высокое значение Е с обусловлено, по-видимому, высокой способностью ароматических ядер к поглощению энергии. В отсутствие кислорода деструкция основных цепей незначительна /a 0,2 [4]. Изменения механических свойств в процессе облучения подтверждают преимущественное протекание процессов сшивания, однако эти изменения в застеклованном полимере становятся заметными лишь при очень больших дозах облучения. Данные о растворимости и степени набухания радиационно-сшитого полистирола представляют интерес для проверки этих методов исследования и оценки распределения по молекулярным весам [4, 190, 195]. [c.183]

    Мы уже видели в перечне, приведенном на стр. 64, что в полистироле, подвергающемся действию облучения электронами с энергией 800 кэв в отсутствие кислорода, происходит в основном сшивание, а предыдущее обсуждение показало, что эффективность сшивания невелика вследствие защитного действия бензольных колец. Зисман и Бопп [18] нашли, что полистирол является наиболее устойчивым из всех пластиков по отношению к действию излучения атомного реактора. Оказалось, что после воздействия 13-10 нейтрон/см (что эквивалентно 5850 мегафэр) получается только небольшое увеличение модуля упругости и только небольшое уменьшение прочности на разрыв и удлинения. Наблюдалось некоторое потемненир. ио даже [c.134]

    По-видимому, именно существенной неоднородностью системы можно объяснить данные, полученные Фольмертом и Штутцем [56]. Аналогичные результаты были получены при радиационном сшивании полистирола [42]. Известно, что концентрированные полимерные системы обладают более или менее развитой надмолекулярной структурой. Результаты многочисленных экспериментальных работ, выполненных различными методами и на различных полимерах, показывают, что как в стеклообразном, так и в высокоэластическом состоянии в аморфных полимерах имеются неоднородности плотности сегментов различной организации и в разном количестве [57—76]. Аналогичные неоднородности наблюдаются и в растворах умеренной концентрации [77]. Если распределение сшивающего агента зависит от концентрации сегментов, т. е. неравномерно в неоднородной системе, то это должно приводить к образованию существенно неоднородной топологической [c.113]

    При повышенных температурах, близких к температуре стеклования, оказывается возможным четко выявить эффект ориентации цепей в ходе вынужденно-эластического деформирования, который проявляется в образовании шейки в деформируемом образце, явно выраженном плато на диаграмме а — 8 и последующем увеличении напряжения при дальнейшем деформировании. При низких температурах этот эффект маскируется интенсивным разрушением большого количества перенапряженных цепей и как следствие преждевременным разрывом полимера, и наблюдается диаграмма типа о — е, приведенного на рис. 28. Незначительное сшивание жестких линейных полимеров, например таких, как полистирол, приводит к некоторому росту предела вынужденной эластичности, однако высокая концентрация узлов сетки вызывает сильное падение прочности при растяжении, и полимер становится очень хрупким. Так, прочность при растяжении сополимера стирола с 4% дивинилбензола повышается до 525 кгс/см по сравнению с 475 кгс1см для чистого полистирола и падает до 70 кгс/сж для сополимера стирола с 25% дивинилбензола [113]. Резкий рост прочностных свойств, равно как и статического модуля упругости и предельной деформации при разрыве, наблюдается при образовании сетчатого полимера в процессе поликонденсации после точки гелеобразования, однако еще задолго до окончания процесса (85—90%) рост этих свойств прекращается [76, 118] [c.229]

    Одно из первых исследований по действию озона на неэластомеры было выполнено Штаудингером и др. [5691, которые проводили озонирование полистирола в среде четыреххлористого углерода. При этом было обнаружено, что вязкость растворов при озонировании сначала снижается, а затем увеличивается и процесс приводит к образованию геля. Подобные превращения можно было бы объяснить тем, что в этом случае имеет место первоначальное расщепление полимерных цепей с образованием полимерных перекисей, да.льнейшие превращения которых приводят к сшиванию. Позднее Камерон и Грасси [570 [ применили метод озонирования для установления природы слабых связей в молекуле полистирола, имеющихся в этом полимере в количестве, соответствующем приблизительно 0,1% от [c.150]

    При облучении у-лучами растворов полистирола в хлороформе в присутст]ши в качестве добавок соединений, содержащих подвижный атом водорода (фенолы, р-нафтол, некоторые амины), а также призводных тиомочевины, тиурама и дитиокарбаматов, снижение вязкости происходит в меньшей степени [200]. Производные мочевины, тиурама и дитиокарбаматов ингибируют и наблюдающуюся обычно после прекращения облучения деструкцию. Сообщалось о кажущемся равновесии между процессами полимеризации и деструкции при облучении раствора стирола и и полистирола в хлороформе у-лучами [201]. Этот факт требует критической оценки, так как деструкция под действием радиации и присоединение мономера к цепи не являются прямой и обратной реакциями одного и того же равновесного процесса. Процессы сшивания преобладают при облучении полистирола у-лучами в растворах этилацетата и диоксана, процессы деструкции — в растворах хлороформа и бензола эти процессы взаимно компенсируются в растворах в бутаноне и толуоле [202, 203]. Увеличение концентрации полимера способствует процессам сшивания, при этом становится возможной желатинизация растворов. При облучении полистирола у-лучами в растворе бензола наблюдается как образование разветвленных макромолекул, так и их деструкция [204]. Исследования с использованием меченых атомов свидетельствуют о наличии процессов рекомбинации полимерных радикалов даже в разбавленных растворах. [c.184]

    СН2С(СвН5) — может приводить к образованию поперечных связей. Свободные радикалы этого типа склонны к превращению в карбонильные группы, что и наблюдается при облучении полистирола ультрафиолетовыми лучами [207 ] и при последующем самоокислении облучавшегося полимера [208]. Непредельные связи, образующиеся при облучении [209], также могут подвергаться окислению после облучения. При облучении полистирола в отсутствие кислорода (в вакууме) практически имеет место лишь процесс сшивания присутствие кислорода увеличивает соотношение р/а и при медленном облучении на воздухе преимущественно протекают процессы деструкции [4, 97, 191, 199]. Роль кислорода в деструктивных процессах под действием радиации особенно велика при облучении полистирола в растворах [210—213]. Гидроперекисные, перекисные радикалы и группы, образовавшиеся при окислении в процессе облучения, способны к последующим превращениям. Если учесть, что свободный [c.184]

    Привитые сополимеры полистирола и полиметилметакрилата с натуральным каучуком можно легко перерабатывать в слегка окрашенные изделия, обладающие высоким сопротивлением разрыву. Привитой сополимер каучук-полиметилметакрилат характеризуется пониженными гисте-резисными потерями и очень высокой устойчивостью к образованию трещин при многократном изгибе и к утомляемости. При использовании эфиров метакриловой кислоты с высшими спиртами достигается меньший эффект усиления каучука, поскольку возрастает величина эфирных групп. При полимеризации акрилатов в присутствии натурального каучука, так же как и при полимеризации метакрилата, были получены с высокими выходами привитые сополимеры. Однако они существенно отличались от рассмотренных выше сополимеров тем, что представляли собой нерастворимые материалы, обладавшие, по-видимому, очень высокой степенью поперечного сшивания. [c.277]

    Прививкой нри облучении было осуществлено соединение (холодная сварка) различных поверхностей. Первоначальной обработкой соединяемых новерхносте1г производными лития или бора, плотным прессованием их вместе и облучением нейтронами можно достигнуть прочности связи более 120 кг/см . Хотя литий и бор обусловливают относительно низкую прочность связи, жх изотопы имеют очень короткие периоды полураспада (0,89 и 0,03 сек соответственно). Продукты разложения образуют много а-частиц, ограничивая образование радикалов около соединяющихся поверхностей. Таким методом осуществляется сшивание политетрафторэтилена и полиэтилена с полистиролом и полиметилметакрилатом, а также полистирола с полиметилметакрилатом [83]. [c.437]

    Графт-полимеры. Мы будем применять термин графт-поли-меры к продуктам, образовавшимся из исходного, в основном линейного полимера, реактивированного в определенных участках цепи. Ветви обычно состоят.из мономерных звеньев, отличных по строению от звеньев исходного линейного полимера. В случае полистирола вдоль цепи могут образоваться перекисные группы, что вызывает описанные выше эффекты [191]. Однако некоторые исследователи [192, 193] почти не достигли успеха в этом направлении. Другой методикой [192] является алкилирование стирола в кольце изопропильными группами и окисление алкилировапной части полимера. В этом случае может образоваться несколько гидроперекисных групп на 100 звеньев мономера, и такой окисленный полимер вызывает полимеризацию другого мономера с образованием графт-полимера. Применяется также частичное бромирование полистирола [193 с последующим фотолизом бромировапного полимера в присутствии другого мономера во избежание сшивания ветвей с другими цепями (в результате которого образуются гели) полезно вводить в реакционную смесь небольшие количества четыреххлористого углерода (передатчика цепи). [c.241]


Смотреть страницы где упоминается термин Полистирол сшивание: [c.342]    [c.214]    [c.252]    [c.234]    [c.190]    [c.199]    [c.63]    [c.65]    [c.124]    [c.189]    [c.211]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.134 , c.138 ]

Введение в радиационную химию (1963) -- [ c.273 , c.278 ]

Стабилизация синтетических полимеров (1963) -- [ c.118 , c.119 ]

Основы химии высокомолекулярных соединений (1961) -- [ c.280 ]




ПОИСК





Смотрите так же термины и статьи:

Сшивание



© 2025 chem21.info Реклама на сайте