Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо в ингибированных растворах

    Таким образом, для более высоких анодных потенциалов наблюдается меньшая ингибирующая эффективность БД, о чем говорит снижение отрицательного значения 1пн при переходе от первого ко второму тафелевскому участку. Более высокое значение р, которое приходится принимать при больших анодных потенциалах, т. е. в области второго тафелевского участка, соответствует уменьшению величины адсорбции промежуточного продукта, в который входит ингибитор, по сравнению с другим промежуточным продуктом, в состав которого входит анион хлорида. Следует отметить, что уменьшение адсорбции ацетиленовых спиртов на железе из растворов соляной кислоты с ростом анодной поляризации неоднократно отмечалось ранее. [c.70]


    Защитную способность ингибитора ИКБ-4 для стали повышают легкие фракции прямой перегонки нефти. Хорошее диспергирование ингибитора и углеводорода благоприятствует защите, с чем связаны высокие ингибирующие свойства ИКБ-4 при интенсивном движении минерализованного водного раствора. Так, при скорости потока 1 -м/с скорость коррозии армко-железа снижается на 95,7 % при содержании ингибитора в среде 75 мг/л. [c.171]

    Эти ингибиторы рекомендуется применять при травлении черных металлов в растворах соляной и серной кислот при температурах до 100° С, при 80° С наблюдается максимум ингибирующего действия. Ингибиторы нечувствительны к солям железа. Рекомендуемые концентрации—0,03—0,3%, защитное действие — 90—99%. Для перевозки и хранения соляной кислоты в стальных емкостях рекомендуется концентрация 0,7—1 %. Кроме того, ингибиторы применя-ются для химической очистки теплосилового оборудования от минеральных отложений растворами соляной кислоты (концентрация 0,03—0,3%), для защиты оборудования нефтяных и газовых скважин при солянокислых обработках (концентрация 0,7—1 %). [c.68]

    Развитые представления позволяют объяснить не только стимулирующее, ко и ингибирующее действие некоторы анионов, например, добавок галоидных ионов на процесс анодного растворения железа и никеля в кислых растворах. [c.112]

    Ингибирующее воздействие некоторых добавок может быть связано с адсорбционным вытеснением с поверхности металла анионов, способствующих протеканию процесса ионизации металла. Таким путем, например, может быть объяснено тормозящее воздействие галоидных ионов на коррозию железа и никеля в кислых сульфатных растворах. [c.158]

    На основе теоретических разработок осуществлен синтез новых эффективных ингибиторов серии КПИ и ряда ингибирующих композиций. Эти ингибиторы обеспечивают надежную защиту железа от кислотной и сероводородной коррозий и коррозии в нейтральных средах, цинка от кислотной коррозии, алюминия от коррозии в растворах щелочей (ингибиторы серии ИКА) и т. д. Защитное действие разработан- [c.138]

    Содержание водорода в титане, железе и других металлах при катодной поляризации зависит от ряда факторов и, в частности, от металла катода, длительности поляризации, плотности тока, температуры, при которой проводится процесс электролиза, состава электролита, присутствующих в электролите добавок, ингибирующих процесс наводороживания катодного материала. Так, содержание водорода в титане и железе при электролизе щелочных растворов ниже, чем при электролизе кислых в аналогичных усло- [c.250]


    При оценке роли компонентов среды в процессе растворения металла необходимо принимать во внимание, что его поверхность обычно энергетически неоднородна, т.е. адсорбция даже одной и той же частицы на одних участках поверхности может быть стимулирующей, а на других — ингибирующей. То же относится и к частицам разной природы при их совместном нахождении в растворе. Существенно при этом, что прочность связи адсорбированной частицы с металлом, а, следовательно, и производимый ею эффект, зависит от потенциала. Это, в частности, может приводить к отклонению кривой Е — lgг, характеризующей электрохимическое поведение металла, от обычной прямолинейной зависимости, что наблюдается, например, при растворении железа в солянокислых растворах. Стимулирующая адсорбция — процесс очень быстрый по сравнению с адсорбцией ингибирующей. [c.97]

    Известны разные способы обновления поверхности твердых электродов внутри раствора, являющиеся вариантами механической очистки поверхности. Эти методики особенно интересны при изучении явлений пассивации [286, 517, 518] а также адсорбции кислорода и водорода [594, 161]. Томашов и Вершинина [567] исследовали кинетику различных электродных процессов (например, разряд водорода, восстановление кислорода, анодное растворение металла) на электродах с непрерывно обновляемой поверхностью и на таких металлах, как железо, никель и палладий, и наблюдали значительные уменьшения перенапряжений. Кроме того, на некоторых из этих металлов при достаточно быстрой очистке их поверхности исчезало ингибирующее влияние адсорбированных ионов галогенов и катионов тетрабутиламмония на водородное перенапряжение. По-видимому, в этих условиях повторная адсорбция ионов не успевала происходить. [c.170]

    Пулярд указал здесь, что механическое упрочнение, вызванное царапинами, не повышает чувствительности к коррозии при механических напряжениях. Я думаю, что это можно объяснить тем, что в данном случае мы имеем сжимающие напряжения, в то время как вредными являются только растягивающие напряжения. Что касается ингибирующего действия ионов окисного железа, то в области коррозии при механических напряжениях мы не имеем здесь личного опыта. То, что добавка небольших количеств хлорного железа к растворам хлористого магния ускоряет коррозию, возможно, объясняется подкисле-нием раствора. [c.184]

    При титровании в среде H I ионы железа могут индуцировать окисление хлорида перманганатом до СЬ или Н0С1. Ионы Мп ингибируют эту реакцию. Образование окрашенного в желтый цвет хлорида железа(III) маскирует конечную точку титрования. Хлорид железа (III) можно замаскировать введением орто-фосфорной кислоты, образующей бесцветный фосфатный комплекс железа (III). Раствор, содержащий марганец(II) и фосфат, называемый реагентом Циммерманна — Райнхарта, применяют при титровании перманганата. [c.158]

    Присутствие хлорида, фторида и сульфата аммония тормозит образование осадка, такое же действие оказывают НС1, HF и H2SO4. Мышьяк, селен, кремний, теллур, вольфрам, ванадий, титан и цирконий мешают определению, их мешающее влияние можно устранить, если осаждение проводить в более концентрированных растворах HNO3. Изучали [64] влияние мышьяка и ионов переходных металлов на осаждение, результаты исследований показали, что фосфат можно количественно осадить при 50—70 °С 3,5-кратным по сравнению со стехиометрическим избытком молибдата аммония даже в присутствии эквивалентных количеств мышьяка. С помощью радиоактивных изотопов было показано, что количество осаждающегося As зависит от избытка молибдата аммония и температуры, при которой проводят осаждение. В этой же работе было найдено, что нитрат железа ингибирует осаждение фосфата (так же, как и арсената), нитраты хрома (III), никеля (II) и марганца (II) оказывают меньше влияния на скорость образования осадка. [c.445]

    НОГО Процесса, но и становится возможной нежелательная кристаллизация бензола. Установлено, что железо ингибирует процесс и катализирует реакции замещения. Желательно приме- нять растворитель или останавливать реакцию, не доводя до образования концентрированных растворов гексахлорциклогексана. В противном случае гексахлорциклогексан превращается дальше в гепта- и октахлорциклогексан  [c.146]

    С. С. Nathan. Изучение ингибирующего действия аминов на коррозию железа в растворах с высокой кислотностью, orrosion, 9, № 6, 199—202 [c.226]

    По данным других исследователей , толщина пленки (измеренная методом атодного восстановления), образовавшейся на воздухе на поверхности железа или стали до и после погружения образцов в ингибирующие растворы, увеличивается на 30—120% (в зависимости от чистоты и состояния металлической поверхности и природы ингибитора). Кроме того, при определении электронографическим методом состава пленки, образованной ингибиторами, во всех случаях установлено, что он не отличался от состава окисной пленки, образовавшейся на воздухе . Таким образом, процесс ингибирования нельзя объяснить только адсорбцией ингибирующих ионов. [c.470]


    Образование нерастворимых продуктов анодной реакции. Согласно этой, наиболее старой и часто используемой теории, ингибирование объясняется следуя -щим образом. Если катионы металла, помещенного в раствор, образуют с анионами раствора нерастворимое соединение, то образовавшаяся на воздухе пленка залечивается в слабых участках и коррозия таким образом предотвращается. Эту теорию в разное время применяли в отношении железа, алюминия, свинца, олова, никеля н цинка. Полагают , что для л<елеза, погруженного в 0.1 . раствор едкого натра, описанный механизм может быть эффективным, так ка.ч при pH 12,6 гидроокись двухвалентного железа почти иерастворима и кислород превращает ее в безводную окись кубической структуры, сходную по составу с пленкой, образующейся на воздухе . Одпако пленка, полученная в растворах карбоната и бората натрия, почти полностью состоит тоже нз бе вод-иого окисла кубической структуры, но заметно растворима в воде кроме ги <. растворы ацетата и бензоата натрия оказывают ингибирующее действие п - pH 7—8, а в этих условиях ацетат и бензоат двухвалентного железа заметно раствори.мы в воде. [c.471]

    Фосфор- и мышьяксодержащие соединения. Фосфорорганические соединения, в частности, четырехзамещенные соли фосфония, известны как ингибиторы кислотной коррозии различных металлов [31, 34, 35]. Тио-фосфорная кислота, а также ее эфиры, проявляют удовлетворительные свойства ингибиторов коррозии железа в растворах соляной кислоты [143]. Ингибирующие свойства фосфорорганпческих соединений различного строения изучены в ряде работ, выполненных в Днепропетровском металлургическом институту [144, 145]. [c.109]

    Бензоат натрия [6, 7, 8], натриевая соль коричной кислоты [9] и полифосфаты натрия [10, 11] (рис. 84) также могут служить примерами неокислительных соединений, которые облегчают пассивацию железа в растворах в области pH, близкой к нейтральной, очевидно, облегчая адсорбцию растворенного Ог. Бензоат натрия уже в концентрации 10" -м. (0,0014%) эффективно ингибирует сталь в аэрированной дистиллированной воде. В деаэрированной воде ингибирования не наблюдается. Установившаяся скорость коррозии железа в аэрированном 0,01-м. (0,14%-ном) растворе бензоата натрия при pH = 6,8 равна всего 0,01 мг1дм -сутки, а в деаэрированном растворе возрастает до 0,73 мг/дм -сутки. Замедление происходит только в растворах с pH до 5,5. [c.215]

    Исследована взаимосвязь структурных особенностей и ингибирующего действия некоторых аминосодержащих алкил-и алке-нилалкоксиметилциклогексанов в сероводородсодержащих системах электролит (3% Na l) + октан и 0,04% СН3СООН + октан [66]. Установлено, что скорость коррозии стали в отсутствие ингибитора в среде с ацетат-ионом в 2-3 раза больще в зависимости от концентрации сероводорода, чем в среде с хлорид-ионом. В обеих средах увеличение концентрации сероводорода до 100 мг/л приводит к некоторому уменьщению скорости коррозии, а дальнейщее увеличение концентрации сероводорода - к ее увеличению. Это объяснено тем, что в отсутствие ингибитора при малых концентрациях сероводорода монослой хемосорбированных ионов HS на железе препятствует выходу железа в раствор  [c.33]

    Имеются данные, показывающие, что в слабокислых растворах кислород оказывает не ингибирующее, а стимулирующее действие на растворение железа 113а, 13Ь, 13с]. — Примеч. ред. [c.110]

    Показано, что для пассивации железа молибдатами и воль-фраматами, которые проявляют ингибирующие свойства в растворах, близких к нейтральным, также требуется наличие растворенного кислорода [12, в отличие от случая хроматов и нитритов. Растворенный кислород способствует созданию катодных участков в количестве, достаточном для пассивации ограниченного числа остающихся анодных участков, на которых с повышенной скоростью протекает восстановление М0О4 или WO4". В отсутствие кислорода /крит на этих участках не достигается. [c.264]

    Ингибирующее действие полифосфата натрия может быть отчасти связано со способностью полифосфатов препятствовать восстановлению кислорода на поверхности железа, облегчая тем самым адсорбцию растворенного кислорода, которая приводит к пассивации металла. Определенную роль играют и другие факторы. Так, имеются данные, что на катодных участках образуются защитные пленки [22, 23], создающие диффузионный барьер. Возникновением таких пленок, по-видимому, объясняется ингибирующий эффект, наблюдаемый даже на стали, погруженной в 2,5 % раствор Na l, который содержит несколько сотен миллиграммов полифосфата кальция на литр раствора [24]. При низких концентрациях растворенного кислорода полифосфат натрия усиливает коррозию, ввиду его способности образовывать комплексы с ионами металла (см. рис. 16.2). Полифосфаты кальция, железа и цинка являются лучшими ингибиторами, чем поли- [c.265]

    Действие большинства ингибиторов травления связано с образованием на поверхности металла адсорбционных слоеб, по-видимому, не толще одного монослоя. Они существенно препятствуют разряду ионов Н+ и переходу в раствор ионов металла. В частности, иодиды и хинолин именно таким образом ингибируют коррозию железа в соляной кислоте [31 ]. Некоторые ингибиторы затрудняют в большей степени протекание катодной реакции (увеличивают водородное перенапряжение), чем анодной, другие— наоборот, однако в обоих случаях адсорбция происходит, вероятно, по всей поверхности, а не на отдельных анодных или катодных участках, и в какой-то степени тормозятся обе реакции. Следовательно, при введении ингибитора в кислоту не происходит значительного изменения коррозионного потенциала стали (<0,1 В), в же время скорость коррозии может существенно уменьшаться (рис. 16.3). [c.269]

    Причини, по которым данное соединение является хорошим ингибитором для железа и плохим для цинка или наоборот, могут быть связаны также со специфическим электронным взаимодействием полярных групп с металлом (хемосорбцией). Последний фактор в определенных случаях более важен, чем стерический, определяющий возможности для плотнейшей упаковки адсорбированных молекул. Это можно проиллюстрировать очень значительным ингибирующим действием оксида углерода СО, растворенного в соляной кислоте, на коррозию в ней нержавеющей стали [36] (степень защиты 99,8%, в 6,3 М растворе НС1 при 25 °С). Об этом же свидетельствует защита железа, обеспечиваемая малым количеством иодида в разбавленных растворах Н2504 [35, 37, 38]. Как СО, так и иодид хемосорбируются на поверхности металла, препятствуя в основном протеканию анодной реакции [39]. Кеше [40] показал, что 10" т К1 значительно лучше ингибирует железо в 0,5 т растворе N32804 с pH = 1 (степень защиты 89 %), чем в растворе с pH = 2,5 (степень защиты 17 %). Это показывает, что адсорбция иодида в этом интервале pH зависит от значения pH [c.270]

    Прокопчик [42] изучал действие многих добавок на активность катализаторов. Гидроокись железа теряет свои каталитические свойства в присутствии избытка твердой (нера-створенной) гидроокиси кальция в растворе. Интенсивное ингибирующее действие оказывает двуокись кремния. Действие катализаторов подавляется также присутствием солей хрома, мышьяка, свинца. [c.13]

    Потенциодинамическими исследованиями было показано, что за счет азота в гетероцикле хинолина, входящего в состав эпоксидно-ка-менноугольной композиции, обеспечивается в присутствии толуола хемосорбционная связь. По мере увеличения степени заполнения электрода хинолином из раствора толуола ток растворения железа значительно снижается, и при Е = 0,04 В ток коррозии железа в буферном барат-ном растворе составляет 0,12 мА, а при предельном заполнении уменьшается на три порядка (рис. 36). Известно, что высокий ингибирующий эффект проявляют вещества, если их адгезионная связь с металлом выше, чем взаимодействие этого вещества с компонентами раствора. Изучалась адгезионная связь с железом в воде для пленкообраэующих на основе эпоксидно-каменноугольных смол с хинолином по методике, основанной на определении комплексного ШУ-показателя (рис. 37). [c.134]

    Ингибипующее и стимулиоуюшее действие тиомочевины и ее производных, а также ряда других серусодержащих соединений при коррозии металлов в кислотах объясняют присутствием в растворе и на поверхности металла ионов Н5 . Полагают, что эти соединения в процессе коррозии железа или стали в той или иной степени восстанавливаются и разлагаются с образованием сульфидов и ионов Н57 Поэтому их адсорбцию и ингибирующее действие и в данном случае можно связать с предварительной адсорбцией ионов Н5 на поверхности металла. Даже очень малая степень восстановления, происходящая непосредственно на поверхности металла, способна обеспечить слой адсорбированных ионов Н5", на которых происходит адсорбция катионов исходного соединения [103,104,109,121], [c.73]

    Фосфаты, силикаты и бензоаты щелочных металлов являются анодными пассиваторами. Так, ЫазР04 образует на анодных участках железа фосфат железа, который ингибирует коррозию железа, погруженного в водный раствор хлорида натрия. [c.50]

    При pH > 7,5 происходит интенсивное выпадение из раствора хлопьев гидроксида железа и снижение ингибирующего эффекта. Для определения условий формирования тонких железооксидных пленок, не ухудшающих теплопередачу конденсаторных трубок, можно применить формулу теоретического расчета обез-железивания воды. По ней можно определить скорость окисления оксида железа (П) в оксид железа (П1) с учетом времени пребывания охлаждающей воды в конденсаторе  [c.204]

    Реагент БА-6 (ТУ 6-02-7-6—73) — продукт конденсации бензиламина с уротропином, представляет собой вязкую жидкость светло-коричневого цвета со слабым аминным запахом и плотностью 1,058 г/см , вязкостью при 20 °С около 65 мПа-с, с молекулярной массой 250—260. Хорошо растворим в неорганических кислотах (соляной, серной, фосфорной) и в органических растворителях (эфире, ацетоне, этиловом спирте, этилаце-тате и диоксане). Нерастворим в воде. Степень ингибирующего действия 4NH 1 при концентрации ингибитора 1 г/л при температуре 100°С составляет около 98%. Стабилен во времени и не коагулирует в присутствии солей трехвалентного железа. Нетоксичен. [c.24]

    Выше отмечалось, что ряд фактов указывает на существование эффекта первичной рекомбинации при распаде динитрила азоизомасляной кислоты, хотя возможно, что некоторая часть молекул динитрила распадается без образования свободных радикалов [63,74, 75]. Во всяком случае, эффективность инициирования динитрилом азоизомасляной кислоты, определенная методом радиоактивных инициаторов, заметно меньше единицы по-видимому, для всех мономеров эффективность инициирования равна 0,5—0,7 [3, 4]. Эффективность инициирования стирола в растворе матилэтилкетона, определенная по индукционному периоду, вызванному ингибирующим действием хлорного железа, совпадает с приведенными величинами [16]. [c.51]

    Полисиликаты лития в основном используются как противокоррозионные покрытия, содержащие тонкодисперсный цинк, в которых кремнезем играет роль неорганического связующего вещества [109, 110]. Добавление органосиликоната улучшает водостойкость покрытия [111]. Сообщается, что подобный состав годится как связующее вещество для тормозных накладок [112]. Возможное добавление в этот состав небольшого количества эмульсии стирол-акрилового сополимера ведет к улучшению адгезии к стали [ИЗ]. Другой добавкой, способной улучшить стойкость полисиликатов к морской воде, является небольшое количество гидроксида бария [114]. Согласно Дюпре и Бумену [115], силикат бария более растворим, чем соль кальция или стронция, поэтому в растворе будет достаточное количество силикат-ионов, способных ингибировать коррозию алюминия под действием щелочи. Адгезия и способность к связыванию грунтовых лаков, обогащенных цинком, соединенных с полисиликатом лития, были улучшены замещением некоторого количества дифосфида железа или кадмия на цинк [116]. [c.205]

    Коллоидный кремнезем вместе с щавелевой кислотой наносился и сжигался на поверхности железа и стали перед формированием химического покрытия из оксалата или фосфата. Этот исходный продукт, состоящий из оксалата и реакционноспособного кремнезема, вероятно, подвергался пиролизу с образованием участков прочно связанного кремнезема и силиката железа, которые затем закрепляли химическое покрытие [603]. С целью обеспечения повышенной адгезии к органическим полимерам кремнеземное покрытие на металлической подложке готовится путем смешивания коллоидного кремнезема с разбавленным растаором аммониевой соли карбоксильного полимера при pH 6,5 II последующим наложением смеси в виде пленки на поверхность черного металла. После высушивания благодаря органическому полимеру сводится к минимуму образование сетки волосных трещин на таком кремнеземном покрытии. Может быть применена альгиновая кислота [604]. Хромовая кислота используется для формирования ингибирующей противокоррозионной пленки на поверхности цинка или оцинкованного железа. Пленка с улучшенными свойствами для более надежной защиты от коррозии с хорошей адгезией красочных покрытий получается при смешивании коллоидного кремнезема с раствором Н2СГО4 [605]. По-видимому, хромовая [c.594]

    Приготовление водной фазы. Водную фазу готовят но периодической схеме (рис. 15.2) в аппаратах из нержавеющей стали или гуммированных, снабженных перемешивающим устройством и змеевиком для обогрева. В аппараты подается умягченная вода, прошедшая специальную очистку на ионообменных смолах от солей железа и других примесей. Обычно умягченную воду подвергают деаэрации для удаления растворенного в ней кислорода, способного ингибировать полимеризацию. В аппарат 7 для приготовления водной фазы последовательно при перемешивании подаются растворы канифольного и жирнокислотного эмульгаторов, лейканола, ронгалита и три-натрийфосфата. После загрузки все компоненты перемешивают в течение 2 ч. [c.220]

    Из приведенных данных следует, что величина энергии активации реакции окисления Ре -ионов как в хлористых, так и в сернокислых электролитах сравнительно незначительна. Это свидетельствует о том, чтс процесс окисления исследуемых растворов происходит с довольно большой скоростью. Наблюдаемая меньшая окисляемость сернокислого электролита объясняется меньшей активностью ионов железа в исследуемых электролитах и, возможно, некоторым ингибирующим влиянием ионов зо .Так, например, сравнение окисляемости хлористого и сернокислого электролитов, содержащих 101 г/л Ре -ионов, показывает,чтс скорости накопления в них ионов трехвалентного железа отличаются незначительно. Следует также обратить внимание на тот факт, вытекающий иа уравнения (1.4) и подтвержденный проведенными оиьггами, что константа скорости, а следовательно, и скорость реакции окисления сильнее изменшюя о температурой в тех реакциях, в которых энергия активации больше, В самом деле, в то время как изменение температуры от 20 до 60°С вызывает увеличение константы скоре(сти окисления хлористого электролита а 3,6 раза, в сернокислых электролитах такое же изменение температуры приводит к увеличению скорости окисления в 4,2 раза (см. табл. 1.2). О том же свидетельствуют и найденные приближенные температурные коэффициенты. [c.21]

    Помимо серной и соляной кислот при травлении труб, проката, метизов используют их смеси [161], в количественном соотношении H2S04 H 1= 1 3, Смешанные травильные растворы в какой-то степени свободны от недостатков, присущих травлению в каждой из этих кислот. В металлургической, трубной, машиностроительной промышленности широко используются травильные сернокислотные растворы с добавкой Na l (20—200 г/л), В этих растворах хлор-ионы, ингибируя процесс растворения стали, активируют растворение оксидов железа. Составы некоторых травильных растворов приведены в табл, 44, [c.100]

    Ленч [9101 усовершенствовал метод определения фосфора в железе и сталях любой марки. Ингибирующее действие железа на осаждение оксихинолинфосфоромолибдата устраняют добавлением большого избытка осадителя или выдерживанием анализируемого раствора с осадком (после введения осадителя) при нагревании. Аз предварительно удаляют отгонкой из раствора, содержащего НВг. Осаждение хинолинниобо- и хинолинатантало-молибдатов предотвращают добавлением винной кислоты. Винная кислота предотвращает также осаждение вольфрамовой кислоты, с которой соосаждается фосфор. [c.33]

    Фосфаты, силикаты и бензоаты щелочных металлов являются анодными пассиваторами. Так, КазР04 образует на анодных участках стали фосфат железа, который ингибирует коррозию стали, погруженной в водный раствор хлорида натрия. Катионы пассиватора могут образовывать нерастворимый гидроксид на катодных участках корродирующего металла. Если погрузить стальную пластину в морскую воду, содержащую хлорид магния, то на катодных участках поверхности образуется пленка Mg(0H)2, т. е. хлорид магния служит катодным ингибитором коррозии стали в растворе хлорида натрия. Некоторые вещества обладают одновременно анодным и катодным действием. К ним относятся атмосферные пассиваторы, например Са(НСОз)2. Ион НСОз образует карбонат железа(П) на анодных участках, а ион Са — пленку Са(ОН)2 на катодных участках. [c.134]

    Следы некоторых солей и ряда органических соединений могут оказывать сильное влияние на характер коррозии титана в растворах серной кислоты. Ингибирующее действие оказывает двухвалентная медь, трехвалентные ионы железа, четырехвалентные ионы платины, палладия и золота, а также сернистый газ, сероводород, хлор и ряд органических соединений. Например, введение 0,002 моль/л ионов Си " или 0,005 моль/л ионов Fe " снижают растворение титана в 10 %-ной кипящей H2SO4 до < 0,1 мм/год (рис. 4.7). При добавлении ионов благородных металлов ингибирующее действие их наблюдается уже при концентрациях от 10" до 10 моль/л. [c.189]

    Эти железные катализаторы начали успешно применять только после того, как стало ясным, насколько важно полностью восстановить поверхность железа даже в промотированных катализаторах. Любое количество кислорода, оставшегося на поверхности железа, будет отравлять реакцию. Промотированные железные катализаторы обычно готовят плавлением в атмосфере кислорода смесей магнетита (Рез04) и промотирующих окислов, например окисей алюминия и калия с последующим восстановлением водородом в тех же условиях, в каких проводится синтез. Другие методы сводятся к совместному осаждению гидроокисей или окисей из водных растворов, их прокаливанию и восстановлению либо введению промоторов пропиткой. Нильсен [55] утверждает, что при отношении закиси железа к окиси, равном 0,5 до восстановления, получаются катализаторы с максимальной активностью. Присутствие следов воды или кислорода в водороде, применяемом для восстановления или синтеза, может привести к образованию поверхностных окислов железа, что нарушает активность катализатора. Уже 0,016% водяного пара оказывает определенное действие, а 0,32% — сильно ингибирует синтез. Это иллюстрируется рис. 66 по Эммету и Бру-науэру [57а]. Влияние кислорода, оставшегося на поверхности, показано ниже [57в] 5 мг кислорода на 13 г железа соответствует 1 атому кислорода почти на 800 атомов железа. [c.293]

    Бэмфорд, Дженкинс и Джонстон [95] исследовали полимеризацию акрилонитрила, метакрилонитрила и стирола в растворе К,К-диметилформамида в присутствии хлорного железа. Во всех случаях хлорное железо оказывает ингибирующее действие, особенно сильное при полимеризации стирола. Полиакрилонитрил, пол5П1енный в этих условиях, не содержит хлора, откуда следует, что из двух возможных механизмов ингибирования  [c.173]

    Очень специфический случай ингибирования солями закисного железа уже упомршался на стр. 275. Соли окисного железа (действующие по общему механизму) также замедляют или ингибируют полимеризацию виниловых мономеров как в водных [111], так и в неводных [37, ИЗ] растворах. Наблюдаемый тип кинетического поведения зависит от сродства к электрону заместителей в мономере. Например, при полимеризации стирола и винилацетата в растворе N, N-диметилформа-мида соли окисного железа являются ингибиторами, в то время как для акрилонитрила, метакрилонитрила, метилакрилата и метилметакрилата они служат только замедлителями [37, 114]. Подробное рассмотрение кинетики таких реакций дано ниже их применение для измерения скоростей инициирования рассмотрено в гл. 2 (стр. 72). [c.282]

    Уголь из сахара, приготовленный при 400° и проактивированный при 1000° под давлением меньше 2 мм нагревание в атмосфере азота не показывает влияния на каталитическую активность, в то время как нагревание в атмосфере кислорода иногда увеличивает ее значительно азотнокислый натрий, хлористый калий, хлористый барий не влияют на каталитические свойства угля из сахара окись железа и золь платины ингибируют эти свойства желатина (0,1% раствора) действует таким же образом [c.81]


Смотреть страницы где упоминается термин Железо в ингибированных растворах: [c.64]    [c.264]    [c.31]    [c.66]    [c.241]    [c.117]    [c.579]    [c.42]   
Ингибиторы кислотной коррозии металлов (1986) -- [ c.67 ]




ПОИСК







© 2024 chem21.info Реклама на сайте