Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия, связь с константами равновесия

    Связь константы равновесия с энтальпией и энтропией процесса (3.27) выражается так  [c.46]

    Для двух температур, при которых известно равновесное давление пара, можно записать связь константы равновесия с энтальпией и энтропией процесса  [c.34]

    Константа равновесия К может быть связана обычными термодинамическими зависимостями с энтальпией и энтропией образования активного комплекса  [c.220]


    Константа равновесия К° связана со стандартным изменением энтальпии и энтропии в химической реакции широко применяемым уравнением [c.40]

    Уравнение материального баланса в равновесной теории. Абсолютная и относительная скорости перемещения вещества вдоль слоя адсорбента или растворителя в хроматографической колонке связь этих скоростей с константой и с изотермой распределения адсорбции или растворимости. Идеальная равновесная хроматография. Влияние формы изотермы адсорбции или растворимости на форму задней и передней границ хроматографической полосы в рамках равновесной теории. Время удерживания и удерживаемый объем, их связь с константой равновесия, зависимость от температуры колонки, связь с теплотой и энтропией адсорбции или растворения. Приведение удерживаемого объема к нулевому перепаду давления в колонке и к малой величине пробы. [c.296]

    Основным фактором, влияющим на константу равновесия, является природа реагирующих веществ. Под природой реагирующих веществ прежде всего понимают прочность химических связей в соединениях, так как в результате реакции происходит разрыв одних и образование других связей, что и определяет изменения энтальпии и энтропии данной реакции. [c.27]

    Какое влияние на условия равновесия химической реакции оказывают разрыв связей и повышение неупорядоченности системы Если бы единственным заслуживающим внимания фактором была только энергия связей, какой была бы константа равновесия для диссоциации молекул водорода на атомы Если бы единственным важным фактором была только энтропия, какой была бы константа равновесия для диссоциации водорода Используя свои ответы на эти вопросы и соотношение между С, Я и 5, объясните, почему диссоциация газообразного водорода сильнее выражена при высоких температурах. [c.114]

    ДСаэв и ДЯ298 значения энтропий, приводимые в таблицах, являются не относительными, а абсолютными, обсуждение чего выходит за рамки нашего учебника. Из (1,42) видно, что между изменением стандартной свободной энергии и константой равновесия имеется непосредственная связь. [c.28]

    Соотношение между изменениями значений АН°, AS° и ig/f. Для оценки влияния погрешности в значениях АН° и AS° на значения константы равновесия К следует учесть, что это влияние определяется не относительной (в процентах), а абсолютной величиной погрешности, так как определенной разности в значениях АН° или AS° соответствует определенная величина отношения констант равновесия (и определенная разность их логарифмов). Два значения изменения энтропии AS° и AS°, а также два значения теплового эффекта АН° и АН° связаны с соответствующими им значениями константы равновесия К и К равенствами  [c.69]


    Уравнение изобары реакции может быть использовано для расчета константы равновесия при заданной температуре для определения температурного режима процесса, идущего с заданным выходом продукта реакции для определения теплового эффекта реакции и т. д. Однако, пользуясь (11.90) и (11.90а), следует учитывать, что при их выводе было допущено постоянство теплового эффекта реакции и изменения энтропии системы в рассматриваемом температурном интервале. В связи с этим указанные уравнения справедливы лишь в узком температурном интервале (от 25 до 2000 °С), в котором изменення указанных величин 144 [c.144]

    Таким же путем может быть рассчитана стандартная энергия Гиббса образования СаС (к), его энтропия и т. п. Широко используются термодинамические свойства ионов и при проведении других термодинамических расчетов (констант равновесия, тепловых эффектов реакций и т. п.). Стандартные термодинамические свойства ионов, как и любых индивидуальных веществ, связаны соотношением [c.447]

    Энтропия (37, 38)—термодинамическая координата состояния, отвечающая теплообмену. Неизмеряемая функция состояния системы, определяемая вторым началом термодинамики. Мате.матичсский аппарат термодинамики фактически построен на использовании свойсти внутренней энергии и энтропии. Особое значение в химии имеет в связи с вычислением химических потенциалов и констант равновесия химических реакций. Вычисление (62) идеального газа (75, 83) газа Ван-дер-Ваальса (77) статистические расчеты (207, 220, 221). Возрастание энтропии при необратимых процессах связано с дополнительным источником теплоты — некомпенсированной теплоты Клаузиуса (284) — переходом в теплоту потерянной части работы. Важным разделом линейной термодинамики необратимых процессов является вычисление скорости возрастания энтропии (источник энтропии). [c.317]

    В рассматриваемом случае константа равновесия имеет вид Kl =( aS) (FeO)/[S] ( aO). Конечно, отдельно существующих и двигающихся таких химических соединений, как СаО, РеО или aS, в расплаве быть не может. Речь идет о том, что при расчете энтропии в рамках приближения теории совершенных растворов в качестве групп, обмен которых мало изменяет энергию, целесообразнее принять нейтральные пары ионов, чем отдельные ионы. Очевидно, что участие гомеополярной связи стабилизирует пару (или группу) ионов и увеличивает основание включить ее в обменные группы. Однако возникает вопрос о том, как раС пределяются анионы меладу катионами в таких группах. Такое распределение может быть записано как внутреннее равновесие, т. е. (FeS) + (СаО) = (РеО) -f ( aS). [c.258]

    При стационарном скорость анодного процесса равна скорости катодного, что соответствует равенству анодного и катодного тока /а = /к- Стандартное изменение энергии Гиббса связано с константой равновесия (84), а также со стандартными значениями энтальпии АЯ и энтропии А5 (85) во взаимодействующей системе Ме + Кр. [c.109]

    Константу равновесия К между реагентами и активированным комплексом оказывается возможным вычислить из молекулярных свойств с использованием статистической механики. Мы не будем даже пытаться провести здесь такие вычисления, а вместо этого обратимся к термодинамической интерпретации приведенного вьпце выражения для константы скорости. Константа равновесия связана со стандартной свободной энергией образования активированного комплекса из реагентов, которая в свою очередь выражается через стандартные энтальпию и энтропию образования активированного комплекса  [c.377]

    При описании всех ввдов химических равновесий ключевое значение имеет понимание ряда термодинамических понятий. Эти параметры чрезвычайно полезны при описании не только модельных равновесий, но и равновесий, устанавливающихся в реальных системах. Константа равновесия связана с такими термодинамическими параметрами системы, как свободная энергия, энтальпия тепловое содержание) н энтропия  [c.121]

    От таких упрощенных моделей состояния адсорбированных молекул свободно представление об адсорбированном веществе как о реальном газе, находящемся в потенциальном поле межмолекулярных сил, создаваемом адсорбентом [10, 14, 16, 127]. В этом случае при небольших заполнениях поверхности выражения для изотермы адсорбции и для зависимостей от заполнения изменения энтропии и внутренней энергии адсорбции и теплоемкости адсорбированного вещества можно представить в вириальной форме, т. е. в виде степенного ряда. Константы первых членов этих вириальных разложений представляют соответственно константу равновесия Генри, изменение внутренней анергии при адсорбции, а также изменение теплоемкости адсорбированного вещества при адсорбции при предельно малом (нулевом) заполнении, т. е. эти константы связаны только с межмолекулярным взаимодействием адсорбат — адсорбент. Второй и последующие члены этих вириальных разложений содержат константы, учитывающие парные, тройные и т. д. взаимодействия молекул адсорбата друг с другом при одновременном их взаимодействии с адсорбентом. Молекулярная статистика дает формулы для вычисления этих констант в вириальных разложениях на основе соответствующих потенциальных функций межмолекулярного взаимодействия адсорбат — адсорбент и адсорбат — адсорбат (подробно это рассмотрено в гл. VI и VII). [c.33]


    Валентные и деформационные колебания. Новые валентные и деформационные колебания имеют крайне низкую частоту (как полагают, 20—200 лг ). Так как эти колебания вносят главный вклад в энтропию Н-связи, они весьма ва>йны при расчете константы равновесия. Вследствие экспериментальных трудностей, существующих при работе в далекой ИК-области, надежных данных здесь мало (разд. 3.4.3). [c.68]

    Связь между константой равновесия и изменением энтропии реакции, протекающей при постоянном давлении, нетрудно определить, дифференцируя соотношение АС° = —ЯТ 1п Кр  [c.132]

    Теория химической связи и строения молекул излагается на основе теории Шрёдингера. Расчеты абсолютных энтропий и констант равновесия ведутся на основе постулата Планка и т. п. Если данная закономерность может быть выведена несколькими способами, то в книге выбирается наиболее строгий и общий путь. Так, например, в химической термодинамике мы отказались от метода циклов и все выводы даем при помощи метода функций. [c.3]

    После того как идентифицированы и отнесены к определенным нормальным колебаниям все основные частоты, возможны два пути их применения. Во-первых, в принципе можно найти силовые постоянные молекулы. Это постоянные пропорциональности, определяющие частоты совершенно так же, как постоянная закона Гука определяет частоту колебания струны. На основании этих силовых постоянных можно сделать ряд выводов относительно электронного распределения и прочности различных связей. Во-вторых, можно вычислить величину, известную под названием функции распределения. Она показывает, как накапливается энергия молекулами данного соединения, и позволяет вычислять такие макроскопические величины, как свободная энергия, теплоемкость, энтропия и константы равновесия (см. стр. 186). [c.333]

    Таким образом, обшая схема зависимости рассматриваемых величин, по-видимому, следующая. Если пытаться применить правило Беджера ко всем типам ассоциаций ОН- - -О, то обнарухки-ваются значительные расхождения, но в пределах какого-либо ряда весьма сходных комплексов и особенно в тех случаях, когда донор протонов остается постоянным, имеется плавная, если не линейная, зависимость между этими величинами. Важно знать величины Ау и 1о К для ряда родственных соединений. Тогда можно рассматривать такие вопросы, как влияние пространственных затруднений на образование водородной связи и влияние изменений энтальпии и энтропии на константу равновесия. [c.269]

    Максимальная скорость реакции наблюдается при аг.л = 0. При-пи. гая во впилшпие связь константы равновесия с изменением энтальпии и энтропии для определения оптимальной температуры реакции, получаем выражение (5) [c.314]

    Константа равновесия в таких реакциях прогрессивно увеличивается с ростом длины цепи олигомера. Взаимодействие п малых молекул с полимерной цепью может дать выигрыш энергии пАНзв, где АНзв — энтальпия образования одной связи, и проигрыш энтропии пАЗав- Если цепь олигомера из п звеньев взаимодействует с полимерной молекулой, то выигрыш анергии в первом приближении оказывается таким же, пАНзв, а проигрыш энтропии меньше, так как звенья уже связаны в цепь. Это и приводит к смещению равновесия в сторону образования поликомплекса. [c.126]

    Чаше всего стандартные изменения свободной энергии и энтропии вычисляют при 298 К. Их относят к 1 моль образующегося вещества из простых веществ. Для любого простого вещества в стандартном состоянии АС° = 0 (см. табл. 1). В отличие от АСгэа и АЯг эз значения энтропий, приводимые в таблицах, являются не относительными, а абсолютными. Из (Е40) видно, что между изменением стандартной свободной энергии и константой равновесия имеется непосредственная связь. [c.32]

    Димерные комплексы пероксида водорода исследованы на уровне Q ISD(T)/6-311G(2i/,y9)//MP2/6-311 + G d,p) [12]. На поверхности потенциальной энергии найдено два минимума, строение которых показано на рис. 2.2. Симметричный комплекс А характеризуется большей энергией димеризации (-29.3 кДж/моль против -24.7 кДж/мольдля комплекса Б), однако энтропия равновесия [-124 Дж/моль К (А) и -111 Дж/моль К (Б)] нивелирует предпочтительность комплекса А так, что расчетные значения константы равновесия в интервале 298—373 К для обоих комплексов практически совпадают. Высокий дипольный момент структуры Б (2.7 D) может служить дополнительным фактором стабилизации этого комплекса в полярных растворах. Инверсия комплексов А и Б протекает через переходные состояния, также стабилизированные водородными связями, [c.78]

    Характеризуя количественно межмолекулярные взаимодействия, биохимики говорят обычно о вандерваальсовых силах, электростатических взаимодействиях, водородных связях и гидрофобных силах. Количественными характеристиками суммарного действия всех сил являются константа равновесия н изменение энтальпии и энтропии рассматриваемой системы. [c.243]

    Специфика бимолекулярного акта в жидкости, как уже отмечалось, заключается в том, что частицы-реагенты сначала встречаются в одной клетке, а затем при достаточной активации реагируют в окружении молекул растворителя. Образование пары А. В сопровождается в общем случае изменением энтропии Д5дв и энтальпии AJ/ b системы константа равновесия АХв связана с ними известным соотношением  [c.209]

    Теоретические основы. Известны термодинамические данные о циклопентанах с 5, 6 и 7-ю углеродными атомами, но еще существуют, например, 9 изомерных циклопентановых углеводородов с 8-ю углеродными атомами, для которых рекомендуются приближенные термодинамические расчеты. Миграция заместителей в кольце может протекать как с небольшим поглощением, так и с небольшим выделением тепла. Наиболее технически важные реакции изомеризации цикланов связаны с сужением-расширением цикла. Сужение цикла идет с поглощением тепла и со значительным увеличением энтропии, что обусловливает существенную зависимость константы равновесия от температуры. Для изомеризации циклогексанон в циклопентаны, идущей с поглощением тепла, термодинамически выгодны более высокие температуры. Например, при увеличении температуры с 27 °С до 427 °С равновесная концентрация циклогексана снижается с 86 % до 10 % за счет увеличения доли метилциклопентана. Чем выше молекулярная масса исходного углеводорода, тем ниже константа равновесия перехода aJжилциклoгeк aнa в алкил-циклопентан. [c.892]

    Одной из задач молекулярной теории адсорбции является вычисление физико-химических характеристик (констант адсорбционного равновесия, теплот и энтропий адсорбции, теплоемкости адсорбата) на основании свойств молекулы адсорбата и свойств адсорбента. Эта задача может быть решена методами молекулярной статистики с помош,ью теории молекулярного взаимодействия лишь в простейших случаях (литературу см. в [1, 2]). Отклонения от предельного закона Генри связаны либо с притя жением адсорбат—адсорбат, либо с отталкиванием адсорбированных моле кул друг от друга или с неоднородностью поверхности адсорбента. Влияние этих факторов пока не охарактеризовано количественно с помощью молекулярной теории. Поэтому представляют теоретический интерес и практическую ценность нонытки расчета этих термодинамических функций с помощью приближенных уравнений адсорбционного равновесия [3—12], содержащих константы равновесия для различных вкладов взаимодействий в адсорбционных системах, в частности, для взаимодействия адсорбат адсорбат. [c.367]

    Исследование теплоёмкостей и энтропий углеводородов, а также,сопоставление констант равновесия реакций гидрирования непредельных углеводородов до алканов (парафинов), вычисленных по спектроскопическим данным, с найденными экспериментально, показали, что в молекулах углеводородов наблюдается ещё один вид движений, так называемое заторможенное вращение групп вокруг С — С связи (см. [25], [26], [16], [17], [30]). Обсуждению этого явления, кроме указанных, было посвящено большое число работ, например [3], [17], [2], [4], [24]. В результате было установлено, что механизм внутримолекулярного вращения заключается в следующем. В молекуле имеется силовое поле, которое стремится ориентировать ту или иную группу в определённых положениях относительно других групп в молекуле. Поэтому вращение вокруг С — С связи получившей толчёк группы происходит не так, как если бы она была свободна, а так, как будто она тормозится. Тормозящий потенциал принимают зависящим от угла поворота согласно следующему уравнению  [c.129]

    Функции состояния системы—свободная энергия, эитропия, а в связи с этим и константы равновесия не могут быть определены абсолютно, например, энтропия [c.69]

    Т. возникла в 18 в. На необходимость измерения тепловых. эффектов р-цнй и теплоемкостей указывал еще М. В. Ломоносов. Первые термохим, измерения провели А, Лавуазье, П. Лаплас, Развитие Т. в 19 в. тесно связано с.именами Г. И. Гесса, М. Бертло, X. Ю. Томсена. Гесса закон, открвггый в 1840, дает возможность определять тепловые эффекты хим. р-ций расчетным путем, в частности по теплотан образована исходных в-в и продуктов. Томсен и Бертло высказали идею, что хим. р-ции самопроизвольно протекают в направлении выделения теплоты (принцип Бертло), и разработали осн. эксперим. методики Т. Ими и их учениками бы.1и измерены тепловые эффекты мн. р-ций. Хотя в общем виде принцип Бертло оказался неверен, за Т. сохранилась ведущая роль в исследовании возможности самопроизвольного протекания р-ции в заданных условиях. Так, по ур-нию ДН — ГДЗ = —ЛПагСр, являющемуся обобщением первого и второго начал термодинамики (Н — энтальпия, S — энтропия, Г — т-ра, R — газовая постоянная), можно рассчитать константу равновесия Кр любой р-ции через тепловые величины. [c.569]

    Г. И. Голодец и В. А. Ройтер [1226] обсуждают возможность расчетов термодинамических функций актив1ированных комплексов из кинетических данных. Авторы предлагают простые методы приближенной оценки величин констант равновесия образования активированного комплекса из экспериментальных значений констант скорости. В случае сложных кинетических зависимостей предполагается наличие некоторого эффективного равновесия образования активированных комплексов, константа этого равновесия также связана с константой скорости. Отсюда авторы вычисляют энтропию активированных комплексов некоторых реакций. При этом фактически предполагается, что в выражение константы скорости входят только множители, характеризующие скорость лимитирующей стадии. [c.282]

    Для того чтобы процесс был спонтанным, т. е. чтобы соответствующая константа равновесия была велика (отвечая почти завершению реакции) или составляла около единицы (так чтобы получить удовлетворительный выход продуктов), AG должна иметь либо отрицательное, либо небольшое положительное значение. Для многих реакций при комнатной температуре TAS мало по сравнению с АН, и возможность или невозможность спонтанной реакции определяется величиной изменения теплосодержания. Именно поэтому, например, теплоты образования окислов металлов являются довольно падежной мерой их стабильности. Но большое увеличение энтропии при реакции (положительное Д5) может превышать большое увеличение теплосодержания (положительное АН — эндотермическая реакция) и приводить к отрицательному AG и, следовательно, вызывать спонтанный процесс. Более того, роль второго члена возрастает при повышении температуры. Так, при достаточно высокой температуре все химические соединения разлагаются на составляющие их элементы, несмотря на то что такие процессы обычно эндотермичны. Основная причина этого заключается в том, что такой процесс означает переход от более упорядоченного к менее упорядоченному состоянию AS положительно, и при достаточно высокой температуре TAS становится численно больше, чем АН. Дальнейшими примерами спонтанных процессов, которые являются эндотермическими, но связаны с увеличением неупорядоченности, оказываются также разложение твердого вещества на газообразные продукты, плавление твердого вещества и испарение жидкости. 3 качестве последнего примера можно указать на спонтанное эндотермическое растворение хлористого аммония в воде при растворении сильно упорядоченногс [c.186]

    КОН степени смещен в область сильного поля, что оба сигнала перекрываются. Спектры ЯМР и диаграммы температур застывания системы пиррол — ацетилацетон [80] указывают на образование слабого комплекса за счет водородных связей пиррола с карбонильным кислородом кетоформы ацетилаиетона. Возможно образование как 1 1, так и 1 2 комплексов. Использование метода двойного резонанса [46] позволило изучить влияние растворителей как на водород НН-, так и на водороды СН-групп. Разбавление пиррола циклогексаном смещает все сигналы в сторону слабого поля, причем наибольший сдвиг претерпевает сигнал от водорода НН-группы, а наименьший — сигналы от р-водородов. Этого нельзя ожидать в случае разрыва связи ЫН Ы, однако оно вполне совместимо с уменьшением я-взаимодействия между НН-группой пиррола и я-электронной системой второй молекулы [81]. Это взаимодействие изменяет химические сдвиги сс- и р-протонов. Из сопоставления длин связей видно, что р-протоны расположены так далеко от донорного пиррольного кольца, что его влияние невелико. Из двух возможных циклических димеров, из которых один содержит два пиррольпых кольца, являющихся я-донорами, а другой состоит из одной свободной и одной ассоциированной НН-группы,— первый лучше согласуется с результатами ЯМР. При добавлении пиридина к циклогексановому раствору пиррола сигнал от НН-группы смещается в область более слабого поля. Этот сдвиг приписывают ассоциации НН Н, включающей неподеленную пару электронов атома азота пиридина. Константы равновесия этой ассоциации были определены из температурной зависимости величина ЛН равна — 4,3 ккал/моль, а изменение стандартной энтропии Д5° = —8,0 кал/моль, что согласуется со значениями, полученными из калориметрических измерений и данных ИК-спектров. [c.437]


Смотреть страницы где упоминается термин Энтропия, связь с константами равновесия: [c.208]    [c.173]    [c.184]    [c.569]    [c.112]    [c.118]    [c.196]    [c.229]    [c.64]    [c.25]   
Комплексообразование в растворах (1964) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Константа равновесия

Константа энтропии

Равновесие константу, Константа равновесия

связи, Энтропия связи, Константа



© 2025 chem21.info Реклама на сайте