Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фриделя Крафтса реакция ароматические механизм

    Гавриил Гавриилович Густавсон (1842—1908)—выдающийся русский химик. Первые работы Г. Г. Густавсона были проведены под руководством Д. И. Менделеева и относились к реакциям обмена безводных солей металлов. Им было открыто каталитическое действие галоидных солем алюминия иа некоторые реакции ароматических соединений. Это открытие было позднее применено Фриделем и Крафтсом во Франции к известной реакции алкилирования ароматических соединений. Механизм этой реакции подробно изучил Густавсон. Он же открыл общую реакцик> синтеза циклопропановых углеводородов отщеплением цинком двух атомов брома от дибромидов  [c.424]


    В большинстве случаев жега-ориентирующие группы делают ароматическое кольцо слишком инертным для алкилирования. Нитробензол не вступает в реакцию алкилирования, и имеется лишь незначительное число сообщений об успешном проведении алкилирования по Фриделю—Крафтсу субстратов, содержащих электроноакцепторные группы [210]. Причина заключается не в том, что атакующая частица отличается недостаточной электрофильностью в разд. 11,9 уже указывалось, то алкил-катионы принадлежат к числу наиболее сильных электрофилов. Сложность в том, что в случае неактивных субстратов, прежде чем произойдет атака кольца, успевает произойти разложение и полимеризация электрофила. Однако алкилирование по Фриделю— Крафтсу все же возможно, если молекула субстрата содержит одновременно и активирующую и дезактивирующую группы [211]. Метилирование ароматических нитросоединений проводят по реакции, идущей по нуклеофильному механизму (т. 3, реакция 13-17). [c.351]

    Механизм реакции аналогичен механизму ацилирования по Фриделю — Крафтсу, за исключением того, что реакционной частицей является формильный карбениевый ион или его эквивалент [схема (21)]. Формилирующий агент можно получить только в присутствии значительных количеств моноксида углерода. Это достигается проведением реакции под давлением или же использованием промотора, такого как хлорид меди(1), который в присутствии хлорида алюминия поглощает большое количество моноксида углерода. Ароматические альдегиды образуют комплексы с любой присутствующей кислотой Льюиса, и это является важной движущей силой реакции. [c.705]

    Эта реакция более подходит для синтеза полиядерных углеводородов [72], но небольшие выходы продуктов могут быть получены из любого ароматического углеводорода. По механизму она аналогична реакции фриделя — Крафтса, за исключением того, что электрофильным реагентом является о-комплекс [c.58]

    Автором настоящей книги выдвинута следующая трактовка механизма реакции нитрования ароматических соединений неорганическими нитратами в присутствии АЮЬ, сближающая эту реакцию с реакцией Фриделя — Крафтса. Принимая представление Ганча о структуре азотной кислоты, можно предположить существование равновесия между псевдоформой и истинной формой соли азотной кислоты, причем равновесие сдвинуто в сторону истинной формы, т. е. последняя находится в преобладающем количестве [c.456]


    Механизм зтой реакции включает последовательное алкилирование ароматических систем по Фриделю—Крафтсу. Реакционноспособные соединения (как полнены, так и ароматические соединения) дают окрашенные в различные цвета растворы или осадки предельные углеводороды в эту реакцию обычно не вступают. [c.294]

    Ацилирование ароматических углеводородов. При действии на бензол или его гомологи хлорангидридами карбоновых кислот в присутствии хлорида алюминия в бензольное кольцо вводится соответствующий ацильный остаток. Реакция протекает по механизму электрофильного замещения (см. 3.2.5). Ацилирование по Фриделю — Крафтсу является общим способом синтеза ароматических и смешанных кетонов. [c.231]

    Это было доказано выделением алкилгалогенидов из реакционной смеси, а также тем, что Вг , h и 1 дают различные соотношения выходов орто- и лара-продуктов. Последний результат указывает на участие галогена в этой реакции [373], Кроме того, выделенные алкилгалогениды имели неперегруппирован-ную структуру (чего и следует ожидать, если они образуются по механизму Sn2) даже в тех случаях, когда алкильные группы, соединенные с ароматическим ядром, претерпевали перегруппировку. Как только алкилгалогенид образовался, он взаимодействует с субстратом по обычной реакции алкилирования по Фриделю—Крафтсу (реакция 11-13), что и объясняет перегруппировку алкильной группы, входящей в продукт. В случае вторичных и третичных R карбокатионы могут получаться непосредственно из субстрата, поэтому реакция не идет через алкилгалогениды [374]. [c.380]

    Механизм реакции алкилирования Фриделя-Крафтса позволил объяснить многие явления, до сих пор считавшиеся аномальными. Механизм других электрофильных реакций, таких, как галоидирование, нитрование и сульфирование, в настоящее время также стал понятным. По-видимому, развитие истинно количественной теории, охватывающей всю область электрофильного замещения в ароматических соединениях, находится на цравильном пути к своему разрешению. [c.481]

    Реакции Фриделя—Крафтса протекают по механизму электрофильного замещения в ароматических соединениях. Подобно галогенам, галогеналкилы снособны при действии AI I3 поляризоваться в такой степени, что оказываются способными к электрофильному замещению в ароматическом ядре. Хлористый алюминий образует с галогеналкилом молекулярный комплекс  [c.157]

    Реакция Фриделя — Крафтса. Обработка ароматического соединения алкилирующим агентом, приводящая к замещению, называется алкилирова-нием по Фриделю — Крафтсу. Наиболее употребительными алкилирующими агентами являются смеси галоидных алкилов, например бромистого метила, с кислотами Льюиса типа бромистого алюминия. Реакцию можно рассматривать как нуклеофильное замещение в бромистом метиле при действии ароматического соединения, для которого возможны два механизма. Или бромистый алюминий сначала отрывает бромид-ион и образовавшийся метильный катион атакует кольцо, или же происходит SN2-зaмe-щение при метильной группе с одновременным удалением бромид-иона. [c.172]

    Это отщепление является реакцией, обратной алкилированию ароматических углеводородов олефинами. Последняя — хорошо и шестная низкотемпературная реакция над кислыми катализаторами, интерес к которой в последнее время вновь возрос в связи с ее механизмом, особенно над катализаторами Фриделя-Крафтса [6]. Действительно, общая теория замещенпя ароматических углеводородов в кислой среде связана с механизмом каталитического крекинга ароматических углеводородов. [c.129]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    Наконец, становится ясным, что полное понимание механизма реакции Фриделя — Крафтса невозможно без детального представления о характере взаимодействия между различными компонентами типичной реакционной смеси. Такая смесь включает галоидный металл МХ , галоидо-водород НХ, галоидный алкил RX, ароматический углеводород АгН и один или несколько алкилированных продуктов ArR или ArRj. В настоящее время известно, что многие из этих индивидуальных компонентов реагируют между собой с образованием продуктов присоединения или комплексов, а получающиеся при этом продукты должны рассматриваться как важные составные части реакционной смеси. Поэтому следует рассмотреть данные, относящиеся к этим взаимодействиям, прежде чем перейти к детальному обсуждению механизма реакции Фриделя — Крафтса. [c.430]


    На этой основе реакция Фриделя—Крафтса между галоидалкилами и ароматическими углеводородами идет вполне аналогично другим реакг циям замещения галоидных алкилов [163], Уже давно известно, что реакции замещения третичных галоидалкилов протекает преимущественно через механизм мономолекулярной ионизации, соответствующие же реакции первичных галоидалкилов преимущественно идут по пути бимолекулярного замещения. [c.435]

    Учитывая эти факты, подтверждающие карбоний-ионный механизм для третичных алкилпроизводных, а также более раннее рассмотренио механизма электрофильного замещения в ароматическом ядре (XLHI), был предложен следующий детализированный механизм для реакции ароматических соединений с третичными галоидалкилами в условиях реакции Фриделя-Крафтса (LXXX)  [c.437]

    Отсюда следует, что эти данные не подтверждают карбоыий-иоиный механизм дл/f реакции Фриделя-Крафтса применительно к этим первичным галоидалкилам. Зато они хорошо согласуются с механизмом, основанным на скорости реакции, контролируемой нуклеофильной атакой ароматического компонента па поляризованный комплекс хлористого бензила с хлористым алюминием. [c.440]

    Реакции оптически активных в го/ -бутилпроизводных с ароматическим кольцом были критически изучены Борвелом и сотрудниками [72]. Получаемый 2-фенилбутан был сильно рацемизовап — около 99%. Этот результат заставляет предположить, что реакция должна пдти через карбоний-ионный механизму, причем ароматическое соединение принимает лишь незначительное участие, если вообще принимает участие в стадии разрыва связи. Так как условия благоприятствуют механизму замещения, если он возможен, то представляется вероятным, что с вторичными алкил-производными предпочтительно будет идти реакция по карбоний-ионному механизму. В заключение можно сказать, что в реакции Фриделя-Крафтса механизм замещения, по-видимому, будет предпочтителен энергетически только для первичных галоидалкилов н родственных им производных, в то время как ионизационный механизм предпочтителен для вторичных и третичных алкилпроизводных. [c.441]

    Для ацилирования ароматических соединений используются гало-генангидриды и ангидриды кислот, реже—сами карбоновые кислоты и их эфиры. Обычно эти реакции проводятся с катализаторами Фриделя — Крафтса, чаще всего с хлоридом алюминия, и этим напоминают уже рассмотренные (см. 6.1) реакции алкилирования. Однако активность галогенангидридов растет при переходе от фтор- к иодпроизводным, в то время как алкилгалогениды образуют обратный ряд. Это свидетельствует о том, что активация галогенангидридов хлоридом алюминия осуществляется по иному механизму. Вероятно он состоит в присоединении хлоридз алюминия к карбонильному кислороду с образованием биполяр-ного аддукта, который далее образует ионную пару  [c.130]

    Прямое введение альдегидной группы в ароматическое ядро — наиболее широко используемая и важная реакция эта реакция подробно обсуждена в недавно опубликованной работе [1]. Классическими методами являются методы Гаттермана (разд. В.1) и Гаттер-мана — Коха (разд. В.2), однако бо-лее современные способы, такие, как применение смесн хлорокиси фосфора и диметилформамида (разд. В.6) и дихлорметилового эфира (разд. В.4), проще и, по-ви-димому, лучн1е старых методов. Более того, показано, что система фтористый формил — трехфтористый бор также может успешно применяться в качестве формилирующего агента (разд. В.З). В этом разделе принято относить к реакциям типа Фриделя — Крафтса не только замещение в ароматическом ряду, но и любые реакции, в которых положительный электроноакцепторный реагент атакует ненасыщенный центр, образуя производное альдегида. Таким образом, здесь рассматривается ацилирование или замещение олефинов илн виниловых эфиров. Арилирование через соли диазония также включено, хотя механизм этой реакции не вполне ясен (разд. В. 11). [c.49]

    Сульфонирование проходит по типу реакции Фриделя — Крафтса при взаимодействии арена с сульфонилхлоридом в присутствии кислоты Льюиса, такой как хлорид алюминия. По механизму сульфонирование напоминает реакции Фриделя — Крафтса в том смысле, что кинетика реакций с бензолом и другими менее нуклеофильными ароматическими соединениями подчиняется третьему порядку, например, скорость реакции хлорбензола с фенилсульфо-хлоридом описывается уравнением (133). [c.374]

    До самого последнего времени считали, что реакция получения кетоноз по Фридель и Крафтсу ограничена ароматическими углеводородами или олефинами и циклоолефинами, и что реакция эта неприменима к парафинам и циклопарафинам. Однако, начиная с 1931 г., поя-. вился ряд работ, показавших, что реакция Фридель и Крафтса распространяется также и на эти последние классы углеводородов. Так, при взаимодействии ацетилхлорида с и-пентаном или Циклогексаном в присутствии хлористого алюминия выделены соответствующие кетоны. Указанные исследования в известной мере противоречат взглядам Виланда на механизм синтеза Фридель и Крафтса, как реакции присоединения с последующим отщеплени м, ибо в случае ).Г рных углеводородов нет двойных связей, по месту которых может итти присоединение. [c.32]

    Механизм реакции бензола с хлором и получающиеся продукты зависят от условий ее проведения. В присутствии галогенидов железа в качестве катализатора хлор действует как заместитель и образуется хлорбензол, при использовании другого катализатора или при УФ-облучении протекает реакция присоединения и образуется смесь стереоизомерных гексахлорциклогек-санов. С помощью реакции Фриделя — Крафтса бензол можно перевести в другие арены или в ароматические кетоны. При каталитическом окислении бензола воздухом происходит разрыв циклической системы с образованием малеинового ангидрида (катализатор УаОз, 420 °С)  [c.520]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]

    Знание механизмов реакций является очень важным, так как оно позволяет предусматривать условия, необходимые для проведения процесса, и дает возможность направлять процессы в желаемую сторону. Для иллюстрации первого положения достаточно указать на различную скорость течения реакции Густавсона—Фриделя—Крафтса между хлористым ацетилом и бензолом, его гомологами и хлорбензолом. Так как при этой реакции происходит атака ароматического углеводорода положительно заряженным атомом углерода С=0-группы хлористого ацетила, следует ожидать, что реакция с наибольшей скоростью будет протекать в том случае, когда заместители в бензольном ядре подают электроны в зону реакции при наличии групп, имеющих к-электроны, особенно способных проявлять - -эс кт, процесс будет протекать легче, чем с бензолом,—с большей скоростью и более энергично наоборот, если в ароматическом ядре имеются группы, обладающие отрицательными эффектами, можно предполагать, что реакция будет протекать медленно и потребует для своего осуществления более жестких условий. И действительно, с толуолом (СНд-группа проявляет + -эффект и +/-эффект) реакция идет очень легйо (требуется охлаждение) и заканчивается в несколько часов напротив, с хлорбензолом, в котором вследствие большой электроотрицательности хлора электроны оттянуты от бензольного ядра, реакция протекает медленно и для ее завершения требуется нагревание в течение нескольких дней. [c.286]

    Обычно реакции электрофильного замещения протекают при действии достаточно энергичных электрофильных реагентов к реакциям такого типа в ароматическом ряду относятся хорошо изученные процессы электрофильного замещения водорода реакции нитрования и сульфирования, реакция Фриделя—Крафтса, а также галогенирование в присутствии катализаторов—Al lg и т. п. В противоположность реакциям ароматических веществ реакции нитрования и галогенирования предельных соединений алифатического и алициклического ряда протекают по радикальному механизму (стр. 870 и 876). [c.327]

    Полагают, что озон атакует ароматическое кольцо по электрофильному механизму. Эта гипотеза подтверждается тем, что озонирование ускоряется катализаторами реакции Фриделя — Крафтса, например трехфтористьш бором и хлористым алюминием. Однако при озонировании шиффовых оснований и нитронов озон ведет себя, по-видимому, как нуклеофильный реагент [40]. [c.211]

    Эти же авторы [1072] изучили реакцию ионного хлорирования полистирола в темноте в присутствии Jз и РеС1з. В этих условиях протекает только реакция замещения, как в ароматических ядрах, так и в главной цепи, ускоряющаяся с повышением концентрации катализатора. Установлено, что при хлорировании заместитель вступает преимущественно в п-, затем в о-положение. При дальнейшем хлорировании образуется 3,4-, 2,5- и в меньшей степени 2,4-дихлорзамещенные фенильные группы, причем степень полимеризации полистирола при хлорировании уменьшается, особенно в случае применения в качестве катализатора РеС1з. Авторы предполагают, что деполимеризация идет через образование промежуточного карбониевого иона по механизму диспропорционирования изопарафинов в присутствии катализатора Фриделя — Крафтса. [c.225]

    Нуклеофильное замещение у атома серы является наиболее характерной реакцией ангидридов сульфоновых кислот. При гидролизе их водой образуются две молекулы сульфоновой кислоты изучен механизм этого превращения [136]. При действии спиртов на ангидриды образуются эфиры [2, 128] (уравнение 68). При взаимодействии спиртов с метансульфонилхлоридом вместо эфиров получаются хлориды. При сравнении этих двух реакций видна предпочтительность использования ненуклеофильного сульфо-нат-анирна пЬ сравнению с хлорид-ионом, который, по-видимому, реагирует с первоначально образующимся эфиром, в результате чего и образуются хлориды [137]. Ароматические соединения также выступают в качестве нуклеофилов при взаимодействии с ангидридами сульфоновых кислот по типу.реакции Фриделя— Крафтса, при этом образуются сульфоны [128, 138]. В таких реакциях особенно реакционноспособны смешанные ангидриды трифторметансульфокислоты с алкан- или аренсульфокислотами [134,135]. [c.536]

    Катализ нуклеофильного замещения апротонными кислотами. В реакциях ацилирования и алкилирования ароматических соединений по Фриделю—Крафтсу имеет место увеличение электрофильности ацил- и алкилгалогенидов, вызванное комплексообразованием с безводным хлористым алюминием в качестве апротонной кислоты. Механизм такого катализа уже был рассмотрен выше. В случае алкилирования алкилгалогенидами каталитический э( х зект вызван резким увеличением активности электроотрицательной уходящей группы вследствие присоединения к ней молекулы апротонной кислоты. Это — частный случай катализа апротонными кислотами нуклеофильного замещения. Например, мягкий центр общей основности у первого атома электроотрицательной уходящей группы способен к взаимодействию с катионами металлов, склонными к комплексообразованию  [c.374]

    Альтернативный вариант атаки арена комплексом реагент — катализатор менее вероятен, поскольку распределение образующихся изомеров в этом случае такое же, как при бензилировании толуола в присутствии других катализаторов. Если бы катализатор входил в состав атакующей частицы, это не могло бы не сказаться на ее активности и, следовательно, на селективности. Полагают, что при действии реагентов, способных генерировать относительно стабильный карбокатион, алкилирование протекает в результате его атаки. При действии первичных алкилгалогенидов электрофильной атакующей частицей является, вероятно, комплекс с катализатором. На это указывает разное распределение изомеров при метилировании толуола метилбромидом и метилиодидом, первый порядок некоторых реакций по субстрату, по реагенту и по катализатору. Поскольку атака карбокатионов на ароматический субстрат осуществляется быстро, примеры, когда реакция имеет первый порядок по субстрату, расцениваются как свидетельство отсутствия карбокатионов. Алкилгалогенид не реагирует по синхронному механизму 5ы2, требующему обращения конфигурации в хиральном реакционном центре алкильной группы. Исследованием стереохимии алкилирования по Фриделю — Крафтсу показано, что при этом обычно происходит полная или почти полная рацемизация [618]. Совокупность полученных данных свидетельствует в пользу механизма алкилирования через катионный а-комплекс, который может образовываться как на быстрой, так и на лимитирующей стадиях. Последующее отщепление протона от а-комплекса происходит быстро, что доказывается отсутствие кинетического изотопного эффекта водорода. [c.239]

    Электрофильное замещение в молекуле фенола протекает с большей легкостью, чем в бензоле. Сам фенол нитруется разбавленной азотной кислотой, нитрозируется азотистой кислотой, трибромируется бромом и сочетается с солями диазония (во всех случаях достаточно быстро при температурах, не превышающих комнатной). Скорости замещения фенолов оказались неожиданно высокими [161] по сравнению с фениловыми эфирами (например, для бромирования анизол/ фенол — 92). Этот факт обьясняют влиянием индуктомерного эффекта (электроны связи О—Н) на сопряжение в переходном состоянии важное значение имеет и образование водородных связей с растворителем. В большей части обзоров ароматическое замещение рассматривается с точки зрения механизма и реагентов (не отделяя химии фенолов), однако и в этих общих обзорах можно найти весьма полезную информацию [162]. Имеется сводка литературы по электрофильному замещению самого фенола [163]. Нитрование фенола в органических растворителях проходит необратимо, причем для раз-л-ичных растворителей характерно постоянное значение соотношения орго/лара-замещения. Галогенирование также протекает необратимо, однако с меньшим соотношением орго/пара-продуктов, чем при нитровании, тогда как сульфонирование и алкилирование по Фриделю — Крафтсу обратимы. При сульфонировании при низких температурах получают главным образом орто-продукты, при более высоких температурах — мара-продукты. При длительных реакциях накапливаются значительные количества жета-сульфо-новой кислоты, так как десульфонированне жета-сульфоновой кислоты является самым медленным из всех обратных процессов. При алкилировании по Фриделю — Крафтсу также наблюдаются различия в соотношении орто/пара-продуктов при кинетическом и термодинамическом контроле. При бромировании 3,5-диалкил-фенолов выделено диеноновое промежуточное производное (135). [c.236]

    Изучав химические реакции, которые могут протекать между повторяющимися звеньями, можно получить информацию о неоднородности определенных сополимеров. Для протекания таких реакций требуется, чтобы соответствующие звенья цепи были смежными. Если повторяющиеся звенья образуют длинные сегменты одного типа, реакция протекает только на границах между сегментами. Таким образом, изучение соответствующих реакций позволяет отличить статистические сополимеры от привитых или блоксополи- еров и чередующиеся, или однородные сополимеры, от неоднородных по составу сополимеров. Статистические сополимеры стирола с метилметакрилатом или метилакрилатом циклизуются в полифос-форной кислоте при нагревании до 85—130° С. При конденсации сложного эфира с ароматическим циклом, протекающей по механизму Фриделя — Крафтса, образуются сс-тетралоновые звенья. Циклизация изучалась методом ИК-спектроскопии. Интенсивность полос, характерных для полистирола (14,30 и акриловых полимеров (5,78 мк), уменьшается, и появляются новые полосы при 5,95 6,25 и 13,24 мк, что указывает на образование а-тетралона. [c.461]


Смотреть страницы где упоминается термин Фриделя Крафтса реакция ароматические механизм: [c.333]    [c.164]    [c.52]    [c.354]    [c.357]    [c.354]    [c.293]    [c.1101]    [c.233]    [c.237]    [c.477]    [c.707]    [c.707]   
Методы эксперимента в органической химии Часть 2 (1950) -- [ c.427 , c.646 ]




ПОИСК





Смотрите так же термины и статьи:

Фридель

Фриделя Крафтса

Фриделя Крафтса реакция



© 2025 chem21.info Реклама на сайте