Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное замещение SN электрофильности растворителя

    Следовательно, протонные растворители должны, как правило, ускорять реакции нуклеофильного замещения В частности, именно по этой причине 5к-реакции с участием галогеналканов и эфиров сульфокислот обычно проводят в средах, состоящих полностью или частично из воды, спиртов или карбоновых кислот. Энергия водородных связей в начальном и переходном состояниях часто превышает изменение энергии Гиббса в ходе активации, обусловленное электростатическими эффектами растворителей. С другой стороны, в 8к2-реакции (5.101) атакующий нуклеофильный реагент Y также может специфически сольватироваться протонными растворителями тогда его реакционная способность, а следовательно, и скорость 8к2-реакции будут снижаться. Примеры специфической (электрофильной) сольватации анионов-нуклеофилов и уходящих групп в З -реакциях можно найти в работах [264—269, 581—585] опубликованы также соответствующие обзоры [581, 582]., .... [c.299]


    Механизмы реакций электрофильного замещения в металлорганических соединениях изучались Несмеяновым, Реутовым, Ин-гольдом [397—408]. Наиболее существенными моментами, определяющими механизм и кинетику протекания такого рода реакций являются природа органических радикалов и других структурных единиц реагирующих молекул, физико-химические условия, при которых осуществляются реакции нуклеофильного и электрофиль-ного замещения (особенности растворителя, температура, концентрация реагирующих веществ и т. д.). [c.219]

    С момента выхода в свет первого Справочника химика накопилось огромное количество новых фундаментальных данных, касающихся теоретических и практических основ получения продуктов промышленности неорганических и органических веществ. Успехи в методах оценки свойств продуктов позволили более полно их охарактеризовать. Так, в области органических производств был достигнут значительный прогресс в исследовании механизма свободнорадикальных реакций в растворе, в изучении механизма электрофильного замещения у насыщенного атома углерода и нуклеофильного замещения в ароматическом ряду. В результате успешного изучения влияния растворителя на скорость реакций диполярные апротонные растворители стали широко применяться в производственной практике. [c.3]

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]


    При мономолекулярном нуклеофильном замещении только молекула субстрата изменяет состояние своих связей во время стадии, определяющей скорость реакции. Оттягивание электронов электрофильной группой X вызывает диссоциацию молекулы КХ на (сольватированные) ионы, чему способствуют растворитель и в некоторых случаях катализаторы. Эти ионы затем реагируют с другим веществом, участвующим в реакции, давая конечный продукт. [c.157]

    К первой группе относятся такие важные растворители, как вода, спирты, карбоновые кислоты, аммиак. Благодаря свободным электронным парам они могут нуклеофильно воздействовать на вещества с недостающими электронами и в такой же степени электрофильно воздействовать через водородные связи на вещества с избытком электронов. Эти свойства проявляются уже в том, что представители первой группы обычно ассоциированы. Поэтому в реакциях нуклеофильного замещения они могут сольватировать как катионы, так и анионы и способствуют таким образом мономолекуляр-ному протеканию реакций замещения (SnI). [c.161]

    Влияние растворителя и катализатора. Реакция электрофильного замещения протекает тем быстрее, чем более нуклеофильным яв- ляется растворитель. Наблюдается следующая [c.274]

    Естественно предполагать, что уменьшение разделения зарядов для реакций кремнийорганических соединений имеет наибольшее значение при уходящих группах, являющихся в анионной форме очень сильными основаниями и обладающих относительно низкой способностью существовать в виде анионов ( стабилизировать отрицательный заряд ) по сравнению с такими группами, как С1 и Вг. Такие группы (к ним относится и ОК ) могут быть названы трудно уходящими группами и определены как группы, которым отвечают сопряженные кислоты с р/С > 10. Эти группы, как правило, не уходят от насыщенного атома углерода в реакциях нуклеофильного замещения при действии оснований, за исключением особых случаев, например когда они входят в состав напряженного цикла эпоксисоединений. Вообще, реакции таких уходящих групп, связанных с атомом кремния, протекают со значительно меньшими скоростями, чем реакции легко уходящих групп , сопряженные кислоты которых имеют р/Сд<—6. В отсутствие полярного растворителя механизм 5л г-51 требует электрофильного содействия (т. е. оттягивания уходящей группы) и сведения к минимуму разделения зарядов, необходимого для удаления трудно уходящих групп. [c.61]

    В развитии представлений о механизме протекания реакций нуклеофильного замещения существенную роль сыграли предположения Свейна [84], выдвинувшего концепцию пуш-пуль-ного механизма. Эта концепция во многом напоминает высказанное ранее предположение Лоури [85] о том, что реакции, катализируемые кислотами и основаниями, принадлежат к одному типу каталитических процессов, в которых сочетается действие катализаторов обоих классов. Такие процессы должны быть три-молекулярными (т. е., согласно Лоури, V = кг [Кислота][Основание] [Субстрат]). В то же время, согласно концепции Свейна, нуклеофильная атака должна облегчаться электрофильной атакой растворителя, и скорость реакции не подчиняется кинетике третьего порядка [c.48]

    При реакциях, в основе которых лежат диполь-дипольные взаимодействия, электрофильные участники реакции играют роль кислот Льюиса, нуклеофильные — роль оснований Льюиса. Их реакционноспособность часто изменяется параллельно кислотности и основности по Льюису. В качестве характеристики нуклеофильной реакционной способности (нуклеофильности) реагентов используют константы скорости их реакций с определенным электрофильным субстратом. Аналогично для характеристики электрофильности служат константы скорости реакций электрофильных реагентов с определенным нуклеофилом. Таким образом, в основе определения нуклеофильности и электрофильности лежит кинетика в отличие от кислотности и основности. При этом речь идет об относительных величинах, зависящих от партнера и реакционной среды. Поэтому по отношению к разным электрофильным (нуклеофильным) партнерам, а также разным растворителям обычно устанавливаются различные ряды нуклеофильности (электрофильности) реагентов. Об этом см. также в разд. Г,2.2 (нуклеофильное замещение). [c.209]

    Рассмотренные выше механизмы реакций нуклеофильного замещения являются идеализированными крайними случаями из множества возможностей. На практике они обычно выращены не четко действительное переходное состояние реакции в границах 8 1 — 8 2 определяется влияниями субстрата, реагента, растворителя электрофильных катализаторов. [c.166]

    Из схемы (4.13) и вышесказанного следует, что с ростом силы водородной связи (либо вообще электрофильных влияний на X) возрастает тенденция к 8 1-реакции [69]. Образующийся карбкатион R стабилизуется нуклеофильным центром протонного растворителя. Таким образом, эти растворители благоприятствуют мономолекулярному нуклеофильному замещению, являясь достаточно кислыми (способствующими ионизации) и полярными (способствующими диссоциации). Нуклеофильное взаимодействие с протонным растворителем может принять характер [c.169]


    Примечательно, что одноэлектронный перенос в этом случае происходит именно в ДМФ — специфически сольватирующем растворителе, в котором особенно велика активность анионов в реакциях нуклеофильного замещения (см. [16]) и анионного катализа при электрофильном замещении (см. [3]). [c.23]

    Столь же значительно изменено содержание главы, посвященной замещению в алифатическом ряду. Эта глава, особенно первые два ее раздела, относящиеся к реакциям нуклеофильного и электрофильного замещения, интересны еще и тем, что существенный вклад в понимание природы указанных процессов внес сам автор. Поэтому обзор по механизмам замещения у насыщенного атома углерода читается с особым интересом. По сравнению с первым изданием значительно расширены разделы, посвященные сольволитическим реакциям и отличию между 8 1- и Зк2-сольволизом, на более высоком уровне обсунчдаются температурные зависимости при нуклеофильном замещении, энтропия и теплоемкость и их значение для идентификации моно-и бимолекулярных механизмов сольволиза. Выделены в самостоятельные разделы каталитические эффекты при нуклеофильном замещении (катализ растворителем, кислотный катализ, катализ солями металлов) и влияние [c.6]

    Следует отметить, что уравнение (101) применимо как для 5дг1-, так и для SJv2-peaкций. В нем п и е являются мерой нуклеофильности и электрофильности растворителя соответственно, а и Зе отражают чувствительность реакций замещения к нуклеофильному толчку и электрофильному оттягиванию растворителем. Так как уравнение (101) содержит 4 параметра, то 4 исходные точки должны быть выбраны произвольно. Для смеси этанол—вода (80 20) я и е приняты равными нулю для трет-бутил-хлорида 5 и 5е приняты равными 1. [c.123]

    В реакциях с участием биполярных активированных комплексов распределение зарядов в последних существенно отличается от распределения зарядов в начальном состоянии. Помимо рассмотренных в разд. 5.3.1 5м1-, 8м2-, Ер и Ег-реакций изучалось влияние растворителей и на другие реакции, протекающие через биполярные активированные комплексы, в том числе реакции ароматического нуклеофильного (ЗмАг) и элект-рофильного (ЗеАг) замещения, электрофильного алифатического замещения (8е1 и 5е2), алифатического электрофильного (Ае) и нуклеофильного (Ам) присоединения, циклоприсоединения, расщепления цикла, альдольной конденсации, а также реакции перегруппировки, процессы фрагментации и изомеризации. Ниже на ряде типичных и самых наглядных примеров, заимствованных из огромного количества литературных данных, будет продемонстрирована эффективность простых правил Хьюза — Ингольда, хотя они и носят только качественный характер. [c.218]

    В отличие от параметра У, в основе которого лежат кинетические характеристики реакции нуклеофильного замещения, Ги-лен и Насильски [51] предложили параметр полярности растворителей, исходя из константы скорости реакции алифатического электрофильного замещения, а именно реакции брома с тетраметилоловом [c.513]

    Участие компонентов среды в качестве реагентов в реакциях электрофильного или нуклеофильного замещения функциональных групп ионита, естественно, приведет к тому, что скорость этих процессов станет различной и будет зависеть от активности реагента в этих реакциях. Количественная оценка роли среды в процессах замещения функциональных групп возможна только в тех случаях, когда определены константы скорости реакций. Если в результате каталитических превращений самой среды при нагревании в присутствии ионита происходит изменение ее состава, то при оценке ее роли в процессе замещения функциональных групп необходимо учитывать истинный состав сорбированного раствора, а на его первоначальное состояние. Например, при нагревании сульфокатионитов в спиртах вследствие дегидратации спиртов в фазе ионнта фактически образуется водно-спиртово-эфирно-олефиновая смесь, и в этом случае нельзя говорить о стойкости катионита в спиртах, так как в реакциях электрофильного замещения сульфогрупп помимо молекул спирта принимают участие вода, простой эфир и олефин в соответствии с их реакционной способностью и мольной долей в составе сольватных оболочек противоионов. Поэтому при проведении опытов в статических условиях с ограниченным количеством органического растворителя трудно получить объективную информацию о влиянии природы среды на стойкость функциональных групп в реакциях электрофильного и нуклеофильного замещения. Для получения такой информации опыты необходимо проводить в динамических условиях (при каталитических превращениях самой среды) или в большом избытке внешнего растворителя (при минимальной степени превращения среды). Поэтому выводы о влиянии природы органической среды на стойкость сульфокатионитов, приведенные в работах [7, 12, 14, 180, 201—203, 205, 225, 226, 237], [c.182]

    Необходимо заметить, что протонные растворители проявляют электрофильный эффект по отношению к отщепляющимся анионам примерно так же, как ионы тяжелых металлов (А , Не " ), которые катализируют реакции нуклеофильного замещения с згчастием галогеналкилов. [c.144]

    Соотношение между различными и часто, по-видимому, противоположными факторами, определяющими направление раскрытия напряженных циклов, может быть объяснено с точки зрения пуш-пульного (push-pull) механизма таких реакций [93]. Основными факторами в этих процессах являются приближение нуклеофильного реагента (N), разрыв связи С—X и влияние электрофильного реагента (Е — растворитель при нуклеофильном замещении или протон в электрофильных реакциях). [c.33]

    В настоящее время представляется вероятным, что классические S i и Sj 2 механизмы Хьюза и Ингольда являются крайними случаями. Уинстейн я Свен с сотрудниками [12, 50—52] постулировали, что должны существовать промежуточные механизмы между Sjfi и 5jy2, в которых электрофильная сольватация отщепляющейся группы и нуклеофильное взаимодействие растворителя с замещенным углеродным атомом способствуют протеканию реакции. Стрейтвизер [53] анализировал доказательства существования промежуточных механизмов нуклеофильного замещения. Один из веских аргументов в пользу существования промежуточных механизмов базируется на влиянии ионизирующей способности растворителя на скорость реакций. Если в сольволитической реакции конкурируют и Sj 2 механизмы, то график зависимости логарифма скорости сольволиза от ионизирующей способности растворителя имел бы определенный изгиб или даже разрыв в области перехода от одного механизма к другому [50, 51]. Действительно, получены очень четкие прямые линии с промежуточным наклоном между тем, который получен для S l и Sj 2 реакций [54]. Это доказывает, что реакции проходят по одному механизму, промежуточному между  [c.419]

    Если нуклеофильное действие молекулы растворителя несколько слабее, а электрофильная сольватация отщепляющейся группы несколько сильнее, то такая структура может представлять как высокоактивную промежуточную ионную пару, так и переходное состояние. Судьба промежуточной ионной пары, представленной формулой 4, будет зависеть от ее устойчивости. Она может образовать ковалентную связь с нуклеофилом до того, как молекулы растворителя должным образом сориентируются для сольватации положительного заряда на а-углеродном атоме, что приведет к образованию продукта нормального замещения. Еспи время жизни переходного состояния 4 достаточно продолжительно, то произойдет перегруппировка в более устойчивую oлJ)вaтиpoвaннyю внутреннюю ионную пару 5 [c.423]

    Таким образом, реакция электрофильного замещения бромной ртути с симметричными а-меркурированными ментиловыми эфирами фенилуксусной кислоты протекает с обращением конфигурации у асимметрического атома углерода, а реакция симметризации ментиловых эфиров а-броммер-курфенилуксусной кислоты, представляющая собой также реакцию электрофильного замещения, протекает с сохранением конфигурации [39, 44]. Э о обстоятельство можно понять, если предположить, что механизм электрофильного замещения у насыщенного углеродного атома может изменяться в зависимости от углеводородного радикала, замещаемого атома (или группы атомов), и характера растворителя, как это имеет место при нуклеофильном замещении. В таком случае реакции электрофильного замещения, идущие с сохранением конфигурации, должны соответствовать реакциям нуклеофильного замещения, протекающим по механизму SnI (точнее, по карбониевому механизму ), а реакции электрофильного замещения, идущие с обращением конфигурации, должны соответствовать реакциям нуклеофильного замещения, протекающим по механизму Sn2 (точнее, по механизму прямого замещения ). [c.108]

    Наконец, следует подчеркнуть, что реакции, рассмотренные в этой главе, предполагались ионными с присоединением электрофильной ионной пары, имеющей очень высокое сродство к электрону, или с присоединением нуклеофильной ионной пары, имеющей очень высокий потенциал ионизации. Однако можно также рассматривать вызванные растворителем псевдоионные ароматические замещения. Например, ситуация последнего типа может возникнуть в случае реакций нуклеофильного замещения в ароматическом ряду, включающих нуклеофилы — амины. Читателю следует самому убедиться, что те же самые тенденции реакционной способности будут наблюдаться, если ароматическое замещение инициируется ионным присоединением. [c.215]

    По мнению Свзна, для протекания любой реакции нуклеофильного замещения необходимы одновременно атака атома углерода с обратной стороны нуклеофильным реагентом Z ( толчок ) и атака уходящей группы X электрофильным реагентом, например молекулой растворителя 5 ( оттягивание )  [c.153]

    При превращении исходных веществ в активированный комплекс реакции бимолекулярного нуклеофильного замещения (Г.2.7) лроисходит частичное образование связи С—V. При этом необходима энергия, чтобы десольватировать нуклеофил и частично удалить электрон из валентной оболочки в то же время при частичном образовании связи С—Y энергия выигрывается. Сумма этих трех факторов определяет реакционную способность нуклеофильных реагентов. Различные растворители и разные партнеры реакции по-разному влияют на эти три фактора, поэтому ряды нуклеофильности разных реагентов не во всех реакциях одинаковы это зависит от природы электрофильного партнера и растворителя. Мерой нуклеофильности служат относительные скорости реакции с определенным субстратом. [c.261]

    В каждом конкретном случае трудно предсказать, будет ли в нем преобладать /-или Т-влияние. Однако если мы хотим найти такой случай, где вероятнее всего ожидать проявления последовательности (II), то для этого, по Инголду, надо взять реакцию, в которой один из реагентов проявляет ярко выраженную потребность в электронах, как, например, реакции люномолекулярного нуклеофильного замещения . Гидролиз хлористого л-алкилбензгидрила протекает по механизму Зд 1. Скорость этой реакции определяется скоростью стадии электрофильного воздействия растворителя на галоидопроизводное, вызывающее его ионизацию. Влияние заместителей на скорость этой реакции отвечает последовательности II. [c.193]

    Эта книга адресована прежде всего студенту-органику. В ней сделана попытка возможно доступнее изложить современную теорию органических реакций. При этом автор не стремился подробно рассмотреть все множество органических реакций этот материал — неотъемлемая часть современных курсов органической химии, знание которых является предпосылкой для работы с данной книгой. Автор считает целесообразным главное внимание уделить влияниям и взаимодействиям, которые обусловливают существование определенных механизмов, всесторонне обсудить роль субстрата, реагента, растворителя. Именно понимание упомянутых влияний и взаимодействий позволяет правильно выбрать условия реакции и разумно планировать эксперимент. Для учащегося важно также, чтобы теория позволяла обобщить материал, представить его в единой удобообозримой форме. По этой причине в данной книге совместно представлены реакции карбонильных соединений (альдегиды, кетоны, карбоновые кислоты и их производные) и таких веществ, как азометины, нитрилы, нитро- и нитро-зосоединения. С опорой на принцип винилогии в это рассмотрение включено также присоединение по Михаэлю и нуклеофильное замещение в активированных ароматических соединениях. С общей точки зрения обсуждены также электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре. [c.6]

    Схема (4.15, б) представляет собой обобщение случаев нуклеофильного замещения, идущего при содействии электрофильного растворителя. Схема очень упрощена, мон ет быть, даже недопустимо упрощена, поскольку электрофильный растворитель влияет, конечно, на все электроноизбыточные частицы, в том числе и на нуклеофил такое взаимодействие снижает сродство к К—X (пук-леофильность) на величину взаимодействия в схеме (4.15, в). Подробнее об этом будет речь в разд. 4.9.1. Взаимодействия и могут проявляться с разной силой. Для оценки этих отношений многообещающей представляется концепция жестких и мягких кислот и оснований. [c.176]

    Такое влияние атома азота на свойства пиридинового ядра объ--ясняется тем, что азот, являясь элементом более электроотрицательным, чем углерод, оттягивает на себя электронную плотность ядра. Как и всегда при проявлении мезомерного эффекта в ароматических системах, влияние передается главным образом в орго-и лара-положения, т. е. к атомам 2, 4, 6 они оказываются обедненными электронами (подобно орто- и геара-положениям в нитробензоле). Несколько больше электронная плотность у атомов 3, 5, поэтому туда и направляются реакции электрофильного замещения. В то же времй, поскольку атомы 2, 4, 6 (а-, и у-положения) обеднены электронами, у них появляется способность вступать в реакции нуклеофильного замещения. Одним из таких превращений яв--ляется прямое аминирование пиридина (реакция Чичибабина), осуществляемое амидом натрия или калия при нагревании в инертном углеводородном растворителе (керосин, ксилол)  [c.406]

    Прп изучении кинетики реакций электрофильного и нуклеофильного замещения функциональных групп ионитов с участием в качестве одного из реагентов сорбированного растворителя диффузия молекул растворителя к фиксированным ионам не может лимитировать процесс, так как система всегда находится в состоянии равновесия (предельного набухания) и фиксированные группы окружены молекулами реагента в соль-ватационных слоях. Если же растворенное вещество (электролит или неэлектролит) является одним из компонентов реакции, необходимо оценивать его диффузию и равновесное содержание в фазе ионообменника. [c.125]

    Выше нами было показано, что при нагревании во в e объеме ионитов протекают реакции электрофильного и нуклеофильного замещения функциональных групп с участием молекул растворителя и растворенных веществ в фазе ионита. Если реагентом является сорбированный растворитель, образующий практически гомогенный раствор сольватированных противоионов в осмотическом растворителе, то, как показано выше на примере диффузии воды и серной кислоты, диффузией растворителя и продуктов реакции на кинетику химической реакции можно пренебречь. В строгом смысле набухший ионит нельзя считать замкнутой системой, так как продукты реакции выходят из зоны реакции во внешний раствор и распределяются между сорбированным и внешним раствором (в статических условиях) или целиком удаляются (в проточной системе). В то же время относительно исходных реагентов — функциональных групп и сорбированного растворителя — набухший ионит является псевдозамкнутой системой, включающей полимерную матрицу, функциональные группы и сорбированный растворитель, [c.133]

    Необходимо рассмотреть применимость уравнения Гаммета для корреляции - со структурой соединений скоростей таких реакций, при которых в зависимости от типа заместителя или природы растворителя происходит частичное или полное изменение механизма. Классическим примером реакций, протекающих с изменением механизма при замене заместителя в пределах одной реакционной серии, являются реакции нуклеофильного замещения атома галогена в арилг алогенидах. Для этих реакций известны случаи экстремальной зависимости g k ko) от а [71, 72]. Однако для обсуждаемой нами проблемы влияния среды на корреляционные параметры наибольщий интерес представляют случаи, при которых изменение механизма реакции происходит при переходе от одного растворителя к другому, что отражается на форме зависимости lg(A/Ao) от а. Типичным примером таких реакций является реакция сольволиза хлорангидридов карбоновых кислот, которая в зависимости от полярности среды и ее ионизующей силы или способности среды к специфической электрофильной сольватации может протекать по механизму 5jvl или [73, 74]. [c.306]


Смотреть страницы где упоминается термин Нуклеофильное замещение SN электрофильности растворителя: [c.15]    [c.1683]    [c.32]    [c.79]    [c.150]    [c.94]    [c.75]    [c.117]    [c.281]    [c.168]    [c.7]    [c.24]    [c.747]    [c.384]   
Курс теоретических основ органической химии (1959) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Замещение электрофильное

Растворители нуклеофильные

Электрофильное и нуклеофильное замещение

Электрофильность



© 2025 chem21.info Реклама на сайте