Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроотрицательность и реакции

    Влияние заместителей при сульфировании аналогично другим реакциям электрофильного замещения в ароматическое ядро, причем для сульфирования характерна средняя селективность в отношении ориентации в разные положения молекулы и относительной реакционной способности. Так, толуол сульфируется в 5 раз быстрее бензола, причем получается 75% пара-, 20% орто-и 5% лета-толуол сульфокислот. Электроотрицательные группы значительно дезактивируют ароматическое ядро, вследствие чего не удается ввести вторую сульфогруппу при действии серной кислотой. В отношении состава изомеров сульфирование имеет некоторые особенности, зависящие от обратимости реакций. При мягких условиях состав изомеров определяется относительной реакционной способностью различных положений ядра, при нагревании или при большой продолжительности реакции он зависит от термодинамической стабильности изомеров. Так, нафталин в первом случае дает главным образом 1-сульфокислоту, а во втором 2-изомер. [c.329]


    Такое направление реакции — следствие четвертого правила, устанавливающего, что электроположительные лиганды находятся предпочтительно в экваториальном положении, ближе к атому фосфора, а электроотрицательные лиганды предпочитают занимать аксиальное положение, подальше от атома фосфора. Фосфор проявляет свойства неметалла, он обладает слабо выраженными электроноакцепторными свойствами и предпочитает находиться на удалении от других подобных атомов. Поэтому [c.125]

    В присутствии галоидов или подобных им электроотрицательных заместителей в кольце становится возможной вся область реакций нуклеофильного замещения, которые не идут с самими исходными углеводородами. Эти реакции замещения распадаются, естественно, на два различных класса 1) класс, включающий замещение неактивированных , и 2) класс реакций, в которых замещению подвергается активированный заместитель. [c.470]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Замена в молекулах углеводородов атомов водорода гетеро атомами и перевод их в неуглеводородные молекулы сопровож даются, по данным Багдасарьяна [15], изменением их свойств Такие гетероатомы, как кислород, сера, азот, галоиды и др., бо лее электроотрицательны, чем атомы водорода и углерода. Это отражается на поляризуемости молекул и изменяет энергию активации реакций. [c.41]

    В предыдущих главах было показано, что энергии ионизации, сродство к электрону и электроотрицательности атомов всех элементов удается объяснить на основе рассмотрения орбитальной электронной структуры атомов. Теперь попытаемся связать электронное строение атомов с химическими свойствами элементов и их соединений. Начнем с обсуждения (и составления уравнений) реакций, в которых одни реагенты теряют, а другие приобретают электроны (окислительно-восстановительные реакции). За- [c.415]

    Галогенангидриды - самые активные из всех производных кислот, включая сами карбоновые кислоты Хлорангидриды активны настолько, что обычно их реакции протекают без катализа горов. Объясняется это вьюокой электроотрицательностью атома хлора, в сочетании с действием карбонильного кислорода. В связи с этим другие производные кислот чаще всего получают из хлорангидридов. [c.121]

    Как известно, степень окисления принято характеризовать числом электронов, смещенных от менее электроотрицательного атома элемента к более электроотрицательному. Реакции, в процессе которых изменяются степень окисления атомов элементов, называются реакциями окисления — восстановления. Высшая степень окисления совпадает, как правило, с номером группы элемента в периодической системе Д. И. Менделеева. [c.143]

    Эта теория считает, что многие элементарные реакции, включая и реакции, составляющие катионную полимеризацию, протекают с образованием переходного циклического соединения с одновременным смещением группы электронов с одинаковыми спинами внутрь замкнутого контура, содержащего четное число атомных ядер. В этом смысле можно считать, что циклическое переходное соединение обладает ароматическими свойствами, а электронные состояния как продуктов, так и реагентов можно рассматривать как вклады в энергию резонанса ароматического переходного состояния. Таким образом, ясно, что циклическое переходное состояние подходящего вида может обладать достаточным ароматическим характером, который приведет к такому снижению энергии активации, что циклический путь оказывается значительно более выгодным, чем все другие пути реакции. Полагают, что эта теория применима не только к катионным (где алкильная группа электроположительна) и анионным (где алкильная группа электроотрицательна) реакциям, но также и к большому числу других реакций, которым обычно приписывают неионный характер. Эта теория недавно была расширена и применена к специфической анионной системе — анионной полимеризации пропилена с каталитическими системами Циглера — Натта [71 ]  [c.201]

    Сочетание занятой а -орбитали Н и свободной a -орбитали 2 приводит к нулевому перекрыванию. Следовательно, такая комбинация орбиталей к акту химического взаимодействия не приводит. Сочетание свободной а5 " -орбитали Нд и занятой ir -орби-тали 2 энергетически невыгодно (иод электроотрицательнее водорода). Таким образом, в молекулах Hj и I2 нет орбиталей, которые могли бы привести к реакции непосредственно между молекулами. [c.199]

    Таким образом, существует целый ряд видов связи от неполярной до полностью ионной. Направление и величина полярности двухэлектронной связи имеют очень большое значение. При химических реакциях связи часто разрываются таким образом, что электронная пара остается у того атома, к которому она была ближе, т. е. первоначальная полярность усиливается в промежуточном реакционном комплексе до ионного состояния. С помощью шкалы электроотрицательности атомов (Полинг, Мулликен) можно определить направление и приблизительно оценить величину полярности (дипольный момент) связи. Чем больше разность электроотрицательности двух связанных атомов, тем больше дипольный момент связи, но зависимость между этими величинами не является линейной. Атом с меньшей электроотрицательностью образует положительный конец диполя. Ниже приводятся электроотрицательности некоторых атомов, наиболее важных для органической химии  [c.52]

    Скорости гидрогенолиза неопентана в присутствии нанесенных КН-, Ки-, Рс1-, Оз-, 1г-, Р1-, Си- и Аи-катализаторов при 250 °С, отнесенные к единице поверхности металла, сильно отличаются друг от Друга, в ряде случаев в 100 раз наиболее активным является Ки-катализатор, наименее активным — Аи. При этом порядок активности коррелируется со степенью заполнения -уровня металла. Среди исследованных металлов У1П группы, а также Си и Аи, лишь 1г, Pt и Аи активны в реакции изомеризации неопентана в изопентан, что, по мнению авторов [34], обусловлено высокой электроотрицательностью этих металлов. [c.94]


    Получение хрома из растворов трехвалентных солей подобно процессу электроэкстракции марганца. Катодные реакции протекают при значительных электроотрицательных потенциалах  [c.285]

    Примерно одинаковая величина AS для различных реакций типа (XVI) при сравнительно невысоких температурах приводит к тому, что последовательность расположения линий ДО == [ Т) примерно совпадает с последовательностью значений ДЯ для этих веществ, а в первом приближении— и с последовательностью значений электроотрицательности соответствующих элементов (сравните также рис. И и 20). [c.276]

    По этой причине реакция всегда протекает по а-атому углерода смежному с электроотрицательной группировкой. Образовавшийся апион является сильным нуклеофилом и непосредственно взаимодействует с карбонильным углеродным атомом карбонильной компоненты, после чего промежуточный анион с отрицательным зарядом на атоме кислорода превращается в альдоль  [c.573]

    Кадмий — более дефицитный металл, он дороже цинка, поэтому реже применяется для защиты железа от коррозии. В качестве электроотрицательного электрода его используют в кадмий-нике-левых щелочных аккумуляторах. Определенные количества его потребляются в атомных реакторах в качестве замедлителя реакции. В технике применяются также сплавы кадмия с медью, оловом и свинцом. [c.266]

    Видно, что эта реакция легко проходит только при стабилизации отрицательного заряда. Этим и вызвана необходимость присутствия нитрогруппы. Соединение, содержащее фтор, более реак-ционноспособно, чем соответствующий хлорированный аналог, что может показаться удивительным, поскольку хлор считается лучшей уходящей группой. Однако отщепление уходящей группы не скоростьлимитирующая стадия. Кроме того, благодаря более сильному индуктивному эффекту более электроотрицательный атом фтора обусловливает больщую стабилизацию промежуточного аниона, тем самым повышая электрофильность атома углерода, по которому идет нуклеофильная атака. [c.50]

    Большая часть радикалов, образовавшихся в результате распада перекиси бензоила, успевает за время своего существования вступить в реакции роста полимерной цепи. Молекулу перекиси бензои.1а можно рассматривать как два диполя, соединенные друг с другом электроотрицательными полюсами  [c.101]

    В более ранних работах этинилирование ацетона осуществлялось под влиянием калиевой щелочи, применявшейся в виде суспензии в эфирном растворе, что сопряжено с целым рядом технологических неудобств. Позже было найдено, что аналогичный эффект может быть достигнут и в случае употребления гомогенных растворов щелочи в спиртах, например в бутаноле. Однако в настоящее время наиболее перспективным считается проведение реакции в жидком аммиаке. В растворе аммиака реакцию этинилирования катализируют все щелочные и щелочноземельные металлы, эффективность которых возрастает с уменьшением их электроотрицательности. Характерным примером рассматриваемого варианта является проведение этинилирования ацетона в аммиачном растворе натрия. При непосредственном растворении металлического натрия в жидком аммиаке при температуре ниже О °С образуется амид натрия (так называемый содамид)  [c.380]

    Исключительная химическая активность фтора обусловлена, с одной стороны, большой прочностью образуемых им связей, так, энергия связи (Н—Р) == 566, (51—Р)= 582 кДж/моль, с другой стороны, низкой энергией связи в молекуле Ра [ (Р—Р) = 151 кДж/моль, ср. для СЬ = 238 кДж/моль]. Большая энергия связей Э-—Р является следствием значительной электроотрицательности фтора и малого размера его атома. Низкое значение энергии связи в молекуле Ра, по-видимому, объясняется сильным отталкиванием электронных пар,, находящихся на л-орбиталях, обусловленным малой длиной связи Р—Р. Благодаря малой энергии связи молекулы фтора легко диссоциируют на атомы и энергия активации реакций с элементным фтором обычно невелика, поэтому процессы с участием Ра протекают очень быстро. Известно много прочных фторндных комплексов ([Вр4] , [81Рб] ", [А1Рб] и др.). Большое значение АО/ обусловливает малую реакционную способность координационно насыщенных соединений фтора (5Рб, Ср4, перфторалканы и др.). [c.469]

    А. Т. Ваграмян с сотр. [42] показал, что образующаяся на катоде в процессе электролиза пленка, наоборот, способствует восстановлению хромат-ионов до металла. По данным авторов, в чистом растворе хромовой кислоты электроды из хрома, железа, никеля, кобальта или других металлов покрываются прочной окисной пленкой, которая препятствует восстановлению ионов хрома даже при поляризации катода до высокого электроотрицательного потенциала. В этих условиях выделяется только водород, причем при повышенном перенапряжении. Восстановление хромат-иона на этих электродах возможно только в присутствии небольшого количества указанных выше анионов, которые служат как бы катализаторами процесса. При этом в зависимости от потенциала изменяется как характер, так и скорость электрохимических реакций. Последнее иллюстрируется поляризационными кривыми, полученными потенциостатическим методом в растворе [c.415]

    Что же касается галогенов, то скорость реакции присоединения тем выше, чем электроотрицательнее галоген и чем более поляризована исходная молекула галогена. Относительные скорости реакции различных галогенирующих агентов при проведении реакции в уксусной кислоте приведены ниже  [c.18]

    Взаимодействие с солями тяжелых металлов. При взаимодействии алкенов например, с солями ртути, электроотрицательность которой равна 1,9 и которая имеет незаполненный внешний электронный уровень, можно предположить, что реакция протекает следующим образом  [c.29]

    На первой стадии реакции натрий отдает электрон наиболее электроотрицательному элеме. ту — атому кислорода, генерируя атомарный водород, а образовавшийся радикал Н- может атаковать как атом С-1, так и атом С-2 диена, вызывая гомолиз я-связи  [c.67]

    В случае самого силантиола эта реакция, приводящая к образованию дисилтиана, самопроизвольно протекает уже при —78° С, а выше —30° С идет с большой скоростью [296]. Однако если у атома кремния, связанного с сульпфгидрильной группой, имеются заместители, создающие пространственные препятствия или обладающие высокой электроотрицательностью, реакция межмолекулярного выделения Нз8 затрудняется. Переход от таких достаточно устойчивых [c.144]

    Электрические методы защиты основаны на изменении электрохимических свойств металла иод действием поляризующего тока. Наибольшее распространение получила защита металлов при наложении на них катодной поляризации. При смещении потенциала металла в сторону более электроотрицательных значений (по сравнению с величиной стационарного потенциала коррозии) скорость катодной реакции увеличивается, а скорость анодной падает (см. рис. 24.8). Если при стационарном потенциале Гкор соблюдалось равенство /а = /к, то при более отрицательном значении это [c.503]

    Реакции изомеризации, катализируемые едкой щелочью. Ненредель-мые углеводороды, которые изомеризуются едкой щелочью, содержат подвижной водород или СНа-групну между двумя электроотрицательными группами, И водород группы =СН2 может замещаться на щелочной металл. В некоторых случаях изомеризация состоит просто в перемещении двойной связи, в других же случаях изомеризация приводит к обратимому равновесию между углеводородами алленового и ацетиленового типов. [c.109]

    СНз—СО—NHj, и HjS. а-молекула тиоацетамида. Все четыре тяжелых атома находятся в одной плоскости, причем S, С и N расположены в вершинах треугольника, в центре которого находится атом С. Центральный атом С имеет sp -гибри-дизацию и образует простые а-связи с атомами С и N и двойную ст, жвязь с атомом S. Молекулярные орбитали и орбитали неподеленных пар показаны в цвете. Орбитали двойной связи деформированы в сторону атома S, чтобы указать его большую электроотрицательность. Орбитали, не прини-маюише участия в реакции (т.е. орбитали связей С—Н, N—Н, неподеленной пары на атоме N), на рисунке не показаны  [c.353]

    Реакционная способность карбонильных и ароматических соединений изменяется в данных процессах в обычном порядке. 1 алогенбензолы еще способны к зтпм превращениям, но ароматические вещества с более электроотрицательными группами в реакцию не вступают. Наоборот, фенол взаимодействует с реакционно-способными альдегидами (особенно с формальдегидом) не только нри кислотном катализе, но и при щелочном, что обусловлено пе-ре Содом фенола в более активную форму фенолята, способного прямо взаимодействовать с альдегидом  [c.550]

    Роль основания как катализатора этих реакций состоит в том, что ( Ц0 переводит метиленовую компоненту в очень реакционно-спосс бный анион по типичной схеме кислотно-основного равно-веси5. Достаточная стабильность аниона достигается благодаря сопряжению с электроотрицательной группой, имеющейся в метиленовой компоненте  [c.573]

    TO каждый член его при комбинации с предшествующим становится заряженным отрицательно. На этом основании М. Е. Ададуров сделал вывод, что на поверхности угля при нанесении на него меди создается электроотрицательное поле, а это индуцирует изменение свойств и самой меди. Последняя в чистом виде имеет положительную валентность, но на угле образуется нестойкий карбид, в котором атомы меди становятся электроотрицательными, чем объясняется различное протекание реакции. [c.84]

    При реакциях, протекающих по механизму 5л 1, аксиальные электроотрицательные заместителн отщепляются быстрее, чем экваториальные. Стадией, определяющей скорость таких реакций, является ионизация, при которой атом углерода переходит из тетрагонального состояния в тригональное. При ионизации аксиальной группы происходит большее уменьшение напряжения, что и приводит к ускорению реакции. [c.807]

    Таким образом, ртуть в потенциалопределяющей реакции не участвует. Она является как бы инертной средой. Потенциал амальгамного электрода зависит только от активности ионов соответствующего металла в растворе и от активности его в амальгаме. По достижении амальгамой насыщенного состояния потенциал ее уже не зависит от дальнейшего увеличения концентрации металла. Это свойство амальгам сохранять потенциал более электроотрицательного металла, сплавленного с ртутью, используется в амальгамной гидроэлектрометаллургии для проведения реакций фазового обмена (цементации) между электроотрицательным металлом амальгамы и ионом более электроположительного металла в растворе  [c.251]

    Превалирующими катодной и анодной реакциями при рафинировании серебра являются Ag е Ag+. Из-за малого перенапряжения при не слишком высоких плотностях тока эти реакции протекают при потенциалах, близких к равновесному. В соответствии с этим возможные примеси — золото, платиноиды, медь, сурьма, висмут, олово, селен, теллур, а также незначительные количества цинка, кадмия, никеля, железа — ведут себя в растворах рафинирования серебра в соответствии с их потенциалами и химическими свойствами. В шламе концентрируются золото и платиноиды, сурьма, висмут и олово в виде гидроокисей и метаоловян-ной кислоты, сера, селен и теллур в виде сульфидов, селенидов и теллуридов металлов. В растворе накапливается медь, которой в рафинируемом металле может быть довольно много (в сплаве д оре до 2—3%), а также все более электроотрицательные металлы. Контролирующей примесью является медь, допустимое содержание которой 30—40 г/л. При превышении этого количества часть электролита отбирают и заменяют свежим серебро из отработанного раствора извлекают методом цементации медьЕо. [c.316]

    С позиций рассматриваемого механизма можно объяснить и тот факт, что при присоединении С1—1 к пропилену образуется 1-иод-2-хлорпропан. Вследствие различия в электроотрицательности хлора (3,0) и иода (2,5) молекула С1—I имеет дипольный момент л = 0,54 Д, причем положительным концом диполя является атом иода. Поэтому можно утверждать, что реакция начинается с элсктрофильной атаки алкена атомом иода  [c.21]

    Для объяснения причин предпочтительного образования к этой реакции транс-алкена и его большей термодинамической устойчивости целесообразно рассмотреть некоторые соображения общего порядка. В соответстнии со шкалой Полинга (табл, 2.2), электроотрицательность углерода составляет 2,5, водорода 2,1. Поэтому электронное облако ковалентной связи С—Н распола -ается не строго симметрично между ядрами атомов углерода и иодорода, а в небольшой степени деформировано в сторону более электроотрицательного атома углерода. Вследствие этого в метильной группе на атоме углерода сосредоточивается некоторая избыточная электронная плотность, обусловливающая появление -f/-эффeктa метильной группы. Напротив, атомы водорода, что важно для рассматриваемого вопроса, приобретают небольшой частичный положительный заряд. [c.110]

    Известны две причины сравнительной инертности спиртов в реакциях нуклеофильного замещения. Во-первых, атом кислорода в спиртах, будучи двухковалентным, одновременно связан не только с атомом углерода алкильной группы, но и с менее электроотрицательным, чем углерод, атомом водорода. Поэтому дефицит электронной плотности в молекуле спирта имеется не в одном, а в двух местах, причем в большей степени на атоме водорода  [c.139]


Смотреть страницы где упоминается термин Электроотрицательность и реакции: [c.425]    [c.475]    [c.93]    [c.159]    [c.200]    [c.200]    [c.313]    [c.29]    [c.160]    [c.769]    [c.19]    [c.253]    [c.417]    [c.55]   
Электронные представления в органической химии (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2025 chem21.info Реклама на сайте