Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сернокислый натрий железо, определение

    В зависимости от условий задачи для учебных целей можно взять раствор серной кислоты или сернокислого натрия.. Если определение сульфатов связывается с определением железа, то можно взять фильтрат после отделения гидроокиси железа. [c.165]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]


    Наиболее удовлетворительный метод определения больших и малых количеств ванадия заключается в восстановлении его сернистым ангидридом и титровании горячего раствора перманганатом после вытеснения избытка сернистого ангидрида двуокисью углерода. Восстановленное соединение ванадия вполне устойчиво в соляно- и сернокислых растворах Число элементов, мешающих определению, как, например, железо, мышьяк, сурьма, невелико и они обычно легко отделяются. Присутствие хрома нежелательно, так как в горячих растворах он частично окисляется перманганатом, вследствие чего приходится вводить поправку а в холодных растворах окисление ванадия протекает медленно и конечная точка титрования недостаточно резка. Платину следует отделять, так как в ее присутствии получаются повышенные результаты за счет образования соединений платины (II) и, кроме того, она препятствует полному удалению сернистого ангидрида. Если для осаждения платины или других металлов применяют сероводород, его необходимо затем полностью удалить кипячением и для разрушения политионовых соединений раствор обработать перманганатом до появления розовой окраски. Как указано в некоторых работах, сульфат натрия на определение не влияет. [c.513]

    Если количество ванадия неизвестно и нужна большая точность, осторожность требует, чтобы или определение общего количества железа было проведено в отдельной навеске после удаления ванадия или чтобы после осаждения аммиаком в сернокислом растворе железа, алюминия, титана, ванадия и т. д. было отделено железо от ванадия прокаливанием и сплавлением прокаленных окислов с карбонатом, натрия, выщелачиванием плава водой, фильтрованием, переведением нерастворимого остатка в сернокислый раствор и титрованием, как в случае отсутствия ванадия. Но если при этом не соблюдать определенных предосторожностей, то здесь может быть сделана ошибка ббльшая, чем та, которой старались избежать. [c.958]

    По механизму (б) мешают (в скобках указаны значения факторов специфичности Фс) тантал (10), рений (20), анион N0 (2000), в присутствии следов СГ или Вг" — ртуть (10—15) по механизму (В1) — вольфрам. Мешаюш,ее влияние тина (вз) уменьшается с увеличением концентрации фтор-иона некоторые количественные данные приведены в табл. 43. Присутствие в растворе 3—4 мг/мл сернокислого натрия понижает Кд бора на 5% (механизм Вд). Железо, кальций и барий при концентрациях до 1 мг/мл (250 мг окисла элемента в пробе) не влияют на результаты определения. [c.172]


    Огнетушитель ОП-5 представляет собой баллон емкостью 10 л, который заряжается стандартным зарядом. Кислотная часть заряда (смесь сернокислого окисного железа с серной кислотой, размещенная в кислотном стакане) и щелочная (смесь двууглекислого натрия с солодковым экстрактом) растворяются в определенных количествах воды. [c.500]

    Лучше всего адсорбент помещать в узкую стеклянную трубку, концы ее закрывать ватной пробкой и один конец трубки погружать в исследуемый раствор. После смачивания всего столба адсорбента получается капиллярная хроматограмма. Трубку вынимают из раствора, в оба ее конца вставляют угольные электроды и пропускают постоянный ток. Тогда разделяемые катионы, двигаясь от анода, не доходят до катода и занимают определенные места по длине трубки, между электродами. На слое сорбента, например окиси алюминия, образуется несколько ярко окрашенных полос на белом фоне. Методика применима к анализу сплавов. Адсорбент предварительно смачивают раствором, например, сернокислого натрия. Электрофоретические хроматограммы содержат резко очерченные полосы, и адсорбционный ряд совпадает с рядом, полученным ранее для фильтрационных хроматограмм. Каждый катион занимает в этом ряду определенное место. Осадочные хроматограммы можно получать, наполняя трубку ватой, а в катодную часть трубки наливая раствор осадителя, например кислого углекислого натрия (вату смачивают сернокислым натрием). Так, из смеси солей меди, кобальта и железа получается осадочная хроматограмма, содержащая три полосы розовую, голубую и желтую. [c.126]

    Анализ гидроокиси алюминия заключается в определении содержания нерастворимого остатка, окиси алюминия, железа, кремния и натрия, а также свободной серной кислоты. В лабораторных условиях перевод гидроокиси алюминия в сернокислый глинозем осуществляют растворением навески исходной гидроокиси алюминия в 50—60%-но1 1 серной кислоте при нагревании (кислоту берут в количестве 110—115% от необходимого по расчету). Влажность гидроокиси алюминия определяют высушиванием навеси при 110° С до постоянной массы. [c.153]

    Анализ глинозема. На катализаторные фабрики технический сернокислый глинозем транспортируют в виде квадратных плит размерами примерно 350 X 350 X 150 мм. При приеме отбирают пробу от каждой партии. Общее количество отобранной пробы должно составлять не менее 10 кг, из которых методом квартования составляют среднюю пробу примерно около 1 кг. Ее передают в лабораторию для определения содержания окислов алюминия, натрия, кремния и железа, а также количества нерастворимого остатка и свободной серной кислоты. [c.153]

    Присутствие в анализируемой воде ионов марганца, цинка, меди и железа завышает результаты определения жесткости. Кроме того, марганец, окисляясь в щелочной среде кислородом воздуха, мешает титрованию, создавая при концентрации 0.1 мг в пробе и выше сероватую окраску жидкости. Для устранения этой помехи вводят в титруемую жидкость несколько капель насыщенного раствора сернокислого гидразина или 5%-ного раствора солянокислого гидроксиламина, препятствующих окислению марганца. Влияние меди, цинка и железа устраняют введением нескольких капель 2%-ного раствора сульфида натрия. Растворы всех этих веществ прибавляют к анализируемой воде до аммиачной буферной смеси. [c.394]

    Экстракция трииодида мышьяка инертными растворителями из солянокислых и сернокислых растворов, содержаш,их иодид калия (натрия или аммония), используется при определении мышьяка в сталях [917, 1132], железе, меди и свинце [1133], уране [760], хроме и сурьме [198] и в некоторых других материалах [264, 265, 1094]. [c.127]

    При определении содержания ванадия, никеля, железа, цинка, хрома и меди в нефтяных и других жидких органических продуктах [46, 47] 1—10 г пробы смешивают с равным количеством концентрированной серной кислоты и нагревают до полного испарения кислоты. Кокс дожигают в муфельной печи при 500—600 °С, а полученную золу растворяют в нескольких каплях водного раствора серной кислоты (1 1 по объему). Раствор выпаривают досуха, сухой остаток растворяют в 1 жл водного раствора, содержащего 5 объемн. % серной кислоты, 0,5% хлористого натрия (буфер) и 0,005% кобальта (внутренний стандарт). Если в образце присутствует хром, то для его перевода в растворимое состояние золу сплавляют с 20—30 мг пиросернокислого калия. Эталоны готовят растворением в воде сернокислых солей соответствующих металлов. Ванадий и хром вводят в форме ванадата аммония и двухромовокислого калия. Все эталоны содержат по 5 объемн.% серной кислоты, 0,5% хлористого натрия и 0,005% кобальта. По три капли раствора наносят на плоский торец графитового электрода особой чистоты марки В-3 и жидкую часть испаряют при нагреве на электроплитке. [c.160]


    Платина, перешедшая в раствор при сплавлении или выпаривании в платиновых сосудах, создает затруднения при применении многих методов определения железа. Ее можно полностью удалить осаждением сероводородом, лучше всего из разбавленных сернокислых растворов, не содержащих аммонийных солей. Вполне удовлетворительное отделение железа от платины может быть достигнуто осаждением его аммиаком или едким натром. Если выделившийся при этом осадок велик, его надо нере-осадить. [c.439]

    Наилучшие варианты бензидинового метода сводятся к осаждению сульфат-ионов солянокислым бензидином в нейтральной или слабокислой среде (pH = 4). Отфильтрованный осадок сернокислого бензидина промывают 5 раз водой, порциями по 3 мл, и титруют при 50° С раствором едкого натра по фенолфталеину Метод применим в присутствии железа (П), меди, кобальта, цинка, никеля, марганца и алюминия. Железо (III) мешает определению. [c.804]

    Если в колонке пермутита или окиси алюминия разделяют смесь сернокислых хлористых солей марганца, железа, кобальта, никеля и меди, то все эти катионы будут задерживаться на колонке в определенной последовательности в виде отдельных окрашенных полос, а в фильтрат перейдет эквивалентное этим катионам количество катионов натрия и все количество сульфат- и хлорид-ионов. Таким путем можно отделить фосфат-ионы от катионов III аналитической группы перед началом систематического анализа и вообще любые другие ионы, мешающие по ходу качественного анализа. [c.154]

    Часто трудно определить, представляют ли собой перекиси, выделенные из реакционной смеси, перекись водорода или же они являются органическими перекисями до самого последнего времени было предпринято лишь немного попыток определить строение этих перекисей. Выводы относительно характера перекисей могут быть сделаны на основании следующих доказательств 1) состава газа и жидкости, образующихся при разложении перекиси (например, перекись водорода дает при этом кислород и воду гидроперекись оксиалкила при щелочном разложении дает водород и кислоту гидроперекись метила при разложении па платиновой черни [145] дает двуокись углерода) 2) разных цветных реакций, например реакции с применением титановой соли, которую считают весьма специфичной для перекиси водорода (см. гл. 10) 3) характеристики реакции с кислым раствором йодистого калия (гидроперекись метила, например, реагирует лишь в присутствии сернокислого закисного железа как катализатора, но не реагирует в присутствии молибдата аммония [146] кроме того, скорость окисления йодида до йода заметно зависит от характера перекиси [147, 148]) 4) образования нерастворимых неорганических перекисей, например перекиси кальция или пероксобората натрия, при введении соответствующих добавок к продукту, что доказывает наличие перекиси водорода или гидроперекисей оксиалкилов 5) сравнения спектров поглощения с этими спектрами для известных перекисей [149, 150] 6) определения коэффициентов распределения с эфиром [151] 7) методов хроматографического разделения [146, 152] 8) определения скорости термического разложения различных перекисей при температуре реакционной зоны и 9) методов полярографии [152—1541 (см. гл. 10). [c.76]

    Раствор азотнокислого железа (3) темнокоричневого цвета также поступает в продажу для красильных фабрик в качестве железной протравы. Концентрацию чистих растворов можно определить по их плотности. Обычно раствор содержит много сернокислой окиси железа. Содержание Fe и серной кислоты определяют по способу, указанному под рубрикой Сернокислое железо (3). Для определения содержания HNOg отвешенное небольшое количество протравы, сильно разбавив водой, можно прокипятить с избытком едкого натра выпарив фильтрат от осадка гидроокиси железа, азотную кислоту, находящуюся в этом растворе в виде соли, переводят по способу Devard a (т. II, ч. 1, вып. 2. стр. 103) в аммиак. [c.209]

    Для других богатых свинцом сплавов, как, например, для типографского металла, баббита, содержащей и не содержащей сурьмы дроби, ход анализа выбирается в зависимости от определяемого металла. Например, если наряду со свинцом присутствует лишь олово, его определяют следующим образом. 1 г измельченного сплава нагревают до полного разложения в 20 мл азотной кислоты (плотн. 1,2), затем выпаривают, добавляют небольшое количество разбавленной азотной кислоты и снова выпаривают до тех пор, пока остаток не станет совершенно сухим. Затем доводят до кипения со 100 мл воды, отфильтровывают оловянную кислоту, которая содержит немного свинца, прокаливают ее и взвешивают. Взвешенное содержимое тигля сплавляют с содой и серой, плав выщелачивают водой, отфильтровывают нерастворимый сернистый свинец, известным образом переводят его в сернокислый и определяют отдельно. Сернокислый свинец пересчитывают на окись свинца и вычитают последнюю из взвешенной нечистой оловянной кислоты. Определение сурьмы в сплаве, содержащем сурьму, можно производить методом, описанным при гартблее. Определение мышьяка в дроби, не содержащей сурьмы, производят следующим образом. 2 г зерен дроби растворяют в разба-18ленной азотной кислоте, выпаривают с серной кислотой до появления белых паров, остаток от выпаривания извлекают разбавленной соляной кислотой и, прибавив немного сернокислой закиси железа для разрушения азэтной кислоты, если таковая еще окажется, перегоняют с сернокислым гидразином и бромистым натрием. Затем мышьяк можно определить известным способом—либо посредством титрования иодом, либо в виде грехсернистого мышьяка. [c.321]

    Перекись водорода, кислота Каро и надсерная кислота при совместном присутствии могут быть определены методом, данным Wolffenstein и Макош ым. з Сначала титруют перекись водорода в сернокислом растворе перманганатом калия, затем этот раствор делают уксуснокислым прибавлением ацетата натрия и определяют кислоту Каро сульфитом. Наконец определяют надсерную кислоту, прибавив при нагревании установленного раствора сернокислого железа (закисного) и титруя избыток его перманганатом калия. Метод определения можно еще проконтролировать, определив кроме того общий активный кислород, прибавлением установленного при нагревании раствора сернокислой закиси железа и титрованием избытка его перманганатом калия. [c.93]

    Экстракция и очистка экстракта из щитовидной железы, надпочечников. Органы взвешивают, растирают с безводным сернокислым натрием, переносят в колбочки на 25 мл и за.аивают 5 мл ацетона. Туда же добавляют через 5 мин 5 мл бензола. 5 мл экстракта упаривают до 0,2—0,3 мл. Это количество экстракта наносят на пластинку. В дальнейшем ход анализа соответствует ходу анализа по определению корала в воде. [c.88]

    В тех случаях, когда чистое органическое вешество при прокаливании полностью улетучивается, о наличии неорганических примесей в испытуемом продукте можно судить по остатку после прокалияания. Этот Способ применим для определения неорганических примесей, стойких в условиях, создаваемых при прокаливании. Такие примеси, как окись свинца, окись цинка и т. п., которые при озолении восстанавливаются органическим веществом и могут улетучиться в виде паров, этим способом можно совсем не обнаружить или обнаружить лишь частично. Если вещество, содержащее не слишком много окислов железа и алюминия, кремневой и фосфорной кислот, прокаливают при умеренной температуре, то многие соли, например хлористый натрий, хлористый калий, сернокислый натрий, остаются в золе неизмененными. [c.21]

    Определение. 1—2 сыворотки смешивают с равным объемом воды, прибавляют 2 мл 0,2 н. КОН, 6 мл формалина и 6 мл 95%-НОГО спирта. После каждого прибавления тшательно встряхивают. Затем смесь 3 раза извлекают свободным от перекисей серным эфиром, каждый раз по 20 мл, взбалтывая несколько минут. После этого водный слой выливают, а соединенные эфирные извлечения в той же воронке промывают поочередно 8 мл 2%-ного КОН, 5 мл 1%-кой H2SO4. 1 dS04 к 8 мл 0,5%-нию N82804. Последнюю промывку провопят порциями, 2 раза, хорошо смешивая. Промытый эфир сушат над безводным сернокислым натрием не меньше часа. Берут аликвот эфирного извлечения, равный 0,5 мл сыворотки, и определяют в нем холестерин (так как при значительном его содерлсании в сыворотке он дает окрашивание с реактивом на двухвалентное железо, то нужно вносить поправку). Остальной эфир переводят в склянку Дрекселя и отгоняют на водяной бане при 20—25°, под конец при 35—45°, под током азота. Когда эфира уже мало, добавляют 3— [c.370]

    Восстановление проводится металлами (цинк, железо, олово) в кислой среде, хлористым оловом, гидросульфитом натрия. Восстановление азокрасителей хлористым оловом и сернокислым ванадием часто применяют для количественного их определения. Восстановление азокрасителей используется также для установления их строения. [c.111]

    Растворы цианистой меди в цианистом натрии не осаждаются щелочами или сероводородом — особенность, использованная в аналитической химии для отделения меди от кадмия. При соприкосновении с железом они не выделяют меди, и вследствие этого их применяют для электроотложения меди на железных поверхностях. Раствор двойной сернокислой соли аммония и меди становится бесцветным или бледно-желтым от прибавления Щелочного цианида . на этом факте основан способ Parke a для объемного определения меди. [c.44]

    И. В. Моисеев, Н. Н. Огнищева и Т. И. Гудкова (1951 г.) предложили для объемного определения плутония в присутствии железа и урана окислять плутоний до шестивалентного висмутатом натрия или двуокисью свинца. Окисление висмутатом натрия в азотнокислом растворе количественно происходит на холоду, а в сернокислом растворе только при назревании. Двуокись свинца окисляет плутоний в сфнокислом кипящем растворе. Полученный раствор плутония(VI) после фильтрования от избытка окислителя воостанавливали раствором двухвалентного железа, избыток которого титровали перманганатом или бихроматом калия. [c.200]

    Определение хрома при помощи железа (II) описано также в разделах Железо , Ванадий , Марганец , поскольку его можно определять из одной навески вместе с названными элементами. В последнее время предложено несколько видоизменений основного метода. Так, например, Хайэтт й Кобетц определяя ванадий и хром в силико-алюминиевых катализаторах крекинга, титруют сумму ванадия и хрома (оба элемента — в состоянии высшей валентности), а для определения ванадия восстанавливают хром (VI) до хрома (III) азидом натрия. А. И. Филенко пользуется методом с двумя электродами, применяя систему из одного неподвижного и одного вращающегося электрода, и определяет ванадий, хром и марганец из одной навески легированной стали. Эппль и Циттель заменяют платиновый индикаторный электрод графитовым (пиролитическим) и титруют при +1,0 в (Нас. КЭ) среда, как и в других случаях, — сернокислая, но авторы этой работы считают необходимым продувать раствор аргоном. По нашему мнению, это излишне, так как растворенный кислород при процессе анодного окисления железа (II) мешать не может, тем более на графитовом электроде. [c.341]

    Большинство других методов определения ванадия основано на титровании его перманганатом после восстановления различными способами. Из этих методов можно указать 1) метод, в котором ванадий восстанавливают до четырехвалептного выпариванием с соляной кислотой, лучше в присутствии железа (III) и серной кислоты. После этого к раствору прибавляют, если это нужно, серную кислоту, выпаривают до появления паров последней и титруют ванадий В сернокислом растворе 2) метод, основанный на восстановлении ванадия в редукторе Джонса до двухвалентного состояния и вливания этого раствора в раствор, содержащий избыточное количество сульфата железа (III) (стр. 137) 3) восстановление ванадия до четырехвалентного сероводородом, избыток которого удаляют кипячением, при непрерывном продувании через раствор тока двуокиси углерода 4) восстановление ванадия до четырехвалентного встряхиванием со ртутью солянокислого или сернокислого анализируемого раствора, содержащего достаточное количество хлорида натрия, чтобы связать образующуюся ртуть (I). Раствор затем фильтруют и титруют перманганатом 5) восстановление перекисью водорода в горячем сернокислом [c.518]

    Приготовление анализируемого раствора. Желательно, чтобы титан находился в виде сульфата в сернокислом растворе, свободном от влияющих на колориметрирование элементов, перечисленных в разделе Общие замечания (стр. 651). Для колориметрического определения можно использовать сконцентрированный раствор, сохраненный после определения железа в осадке от аммиака титрованием перманганатом (стр. 958), при условии, если в него не вводились другие кислоты, кроме серной. Присутствие марганца, введенного при титровании железа, не влияет на колориметрическое определение титана. Непосредственное использование этого раствора нежелательно, когда в нем содержатся ванадий и значительные количества фосфора. Из этих соображений, а также для отделения солей щелочных металлов, введенных при сплавлении осадка от аммиака (стр. 955), титан лучше сначала выделить из анализируемого раствора едким натром (стр. 110). Если в анализируемом растворе нахо-- дятря только соли щелочных металлов, удовлетворительные результаты получаются, когда в стандартный раствор вводят такое же количество [c.657]

    Купфероновый метод можно применять к любому раствору горной породы, не содержащему кремния, элементов группы сероводорода и больших количеств фосфора. Обычно этот метод служит для отделения титана вместе с цирконием, железом, ванадием и пр. (стр. 145) от алюминия, хрома, а также фосфора, за исключением тех случаев, когда последний присутствует в значительных количествах и сопровождается циркониелг, торием или титаном. Тогда сначала сплавляют пробу с карбонатом натрия, выщелачивают плав водой, остаток переводят в сернокислый раствор (иногда применяя для этого сплавление с пиросульфатом) и в этом растворе проводят осаждение купфероном. Тем же способом удаляют и ванадий. Металлы сероводородной группы могут быть удалены из сернокислого раствора обработкой сероводородом (стр. 83), после чего удаляют железо прибавлением винной кислоты и сульфида аммония (стр. 90). Эти методы отделения служат для удаления всех мешающих веществ, кроме циркония. Фильтрат после отделения сульфида железа подкисляют, осаждают титан и цирконий купфероном, осадок прокаливают и взвешивают сумму окислов обоих металлов. Содержание титана находят затем по разности после сплавления смеси окислов с пиросульфатом, растворения плава в серной кислоте и определения циркония в виде нирофосфата (стр. 640). [c.968]

    Богатые сурьмой, содержащие медь свинцовые руды можно легко перевести в растворимое состояние сплавлением с перекисью натриа в небольшом железном тигле. В железном тигле смешивают 2 г тонко измельченной руды с 5,0—10,0 г перекиси натрия, эту смесь покрывают слоем перекиси натрия, толщиной в 2—3 мм, для более быстрого сплавления добавляют кусок едкого натра, длиною ъ 2 см, н накрывают тигель крышкой из листового железа. Затем нагревают сперва маленьким пламенем до начала сплавления, а потом усиливают пламя, пока масса не будет спокойно плавиться. Покачиванием тигля хорошо обмывают его стенки и затем дают остыть. После полного охлаждения тигель кладут в накрытый стакан, емкостью в 400 мл, прибавляют 150 мл холодной воды и по окончании растворения вынимают тигель, тщательно споласкивают его вместе с крышкой водой и подкисляют раствор соляной кислотой. Прозрачный раствор декантируют в литровую эрленмейеровскую. колбу, а оставшиеся частицы железа растворяют в небольшом количестве горячей, концентрированной соляной кислоты. Растворы соединяют, образующиеся при подкиглении соединения хлора удаляют кипячением, раствор охлаждают, делают слабо аммиачным и затем подкисляют 30 мл концентрированной соляной кислоты. В этот кислый раствор пропускают сероводород до насыщения и затем разбавляют его насыщенной сероводородной водой до одного литра. Осадку дают осесть в теплом месте в течение нескольких часов и затем отфильтровывают его. Осадок отмывают слабо подкисленной сероводородной водой до удаления железа, смывают обратно в колбу и 1-—2 раза выщелачивают его раствором сернистого натрия. Нагретый до кипения раствор сернистого натрия пропускают через тот же фильтр и промывают осадок водой,, содержащей немного сернистого натрия. После разрушения полисульфидов фильтрат можно использовать для электролитического определения сурьмы (см. т. II, ч. 2, вьш. 1, стр. 98). Осадок вместе с фильтром кладут обратно в колбу для осаждения и растворяют в смеси азотной и серной кислот. Раствор выпаривают до паров серной кислоты, извлекают водой кипятят и охлаждают. Сернокислый свинец отфильтровывают, промывают и взвещивают, как таковой. Фильтрат можно использовать для электролитического определения меди либо из сернокислого раствора, либо после пересыщения аммиаком-—из азотнокислого раствора. Если руда содержит много кремнекислоты, то сернокислый свинец (лучше всего после прокаливания и взвешивания) необходимо проверить на чистоту, потому что> [c.303]

    Если в материале много свинца, то электролиза рекомендовать нельзя (см. стр. 301). В этом случае азотнокислый раствор целесообразнее выпарить с 20 мл серной кислоты (1 1) до появления белых паров, осторожно разбавить водой,, дать остыть, отфильтровать сернокислый свинец, очистить его уксуснокислым аммонием и определить любым способом. При анализе чистых штейнов фильтрат можно прямо использовать для электролитического определения меди, а при анализе менее чистых штейнов это определение производят после осаждения сероводородом, выщелачивания сернистым натрием и растворения осадка в азотной кислоТе. Для определения железа в свинцовом штейне 2 г растворяют в азотной кислоте и выпаривают с серной кислотой до появления белых паров. Прибавляют воды, нагревают до кипения, фильтруют, окисляют фильтрат азотной кислотой и осаждают железо аммиаком. Гидрат отфильтровывают, растворяют его в соляной кислоте и титруют железо известным способом — марганцовокислым калием. O тatoк проверяют на полноту удаления железа. Для этого его извлекают уксуснокислым аммонием, озоляют и выпаривают с плавиковой кислотой. Остаток обрабатывают в платиновом тигле концентрированной серной кислотой, окисляют раствор и осаждают его аммиаком. При этом можно обнаружить малейшие следы железа в виде красно-бурой гидроокиси железа и в случае необходимости — определить. [c.307]

    Осадок сернистых металлов промывают и, растворив в азотной кислоте (1 1), выпаривают с серной кислотой. Свинец обычным способом отфильтровывают и взвешивают в виде PbSO .Медь и кадмий осаждают вместе счастью цинка сероводородом в виде сернистых металлов. Их отфильтровывают, хорошо промывают, обливают на фильтре теплым раствором сернистого натрия, после чего оставшиеся на фильтре сульфиды обрабатывают разбавленной серной кислотой (1 10). При этом сернистые кадмий и цинк переходят в раствор [а сернистая медь остается на фильтре]. При не очень ответственных анализах фильтрат после обработки сернистым натрием можно употребить для определения сурьмы и олова. Лучше,, однако, воспользоваться для этого отдельной навеской, применяя приводимый ниже метод Blumentha Гя. Оставшийся на фильтре осадок растворяют вместе с фильтром в смеси азотной и серной кислот, после чего определяют в этом растворе медь либо колориметрически (см. т. П, ч. 2 вып. 1, стр. 371), либо, если содержание меди велико,—электролитически (см. там же, стр. 57). В сернокислом фильтрате, содержащем кадмий, этот последний отделяют от цинка двукратным осаждением на холоду из раствора,, содержащего 8% по объему серной кислоты определяется кадмий, как это описано при Кадмии (см. т. II, ч. 2, вып. 1, стр. 286), в виде сернокислого кадмия. Фильтрат от сероводородного осадка кипятят, для удаления сероводорода, окисляют бромом, охлаждают, пересыщают аммиаком и вновь нагревают до кипения. Выделившуюся гидроокись железа отфильтровывают, растворяют в соляной кислоте и, восстановив хлористым оловом, титруют марганцовокислым калием. Если железо хотят определить весовым путем в виде окиси, надо растворить Fe(OH)g в соляной кислоте, вторично осадить аммиаком, отфильтровать и прокалить осадок. Однако, если в материале присутствует алюминий, весовой метод неприменим, и железо, выделенное осаждением в виде гидроокиси, следу ет оттитровать [КМпО ]. [c.584]

    Ход определения. К умереннокислому раствору железа и алюминия прибавляют 3 капли индикатора. Раствор окрашивается в синий цвет вследствие образования лака индикатора с железом. Затем при кипячении восстанавливают железо твердым сернокислым гидразином до появления оранжево-красной окраски раствора. После этого медленно по каплям прибавляют 2 М раствор ацетата натрия до появления розовато-фиолетовой окраски образовавшегося лака индикатора с алюминием. [c.367]


Смотреть страницы где упоминается термин Сернокислый натрий железо, определение: [c.81]    [c.326]    [c.16]    [c.460]    [c.286]    [c.52]    [c.582]    [c.368]    [c.24]    [c.237]    [c.267]    [c.582]   
Химико-технические методы исследования Том 2 (0) -- [ c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Железо сернокислое

Натрий сернокислый

Натрия железа III



© 2025 chem21.info Реклама на сайте