Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин специфичность

    Оказалось, что между защитными веществами (желатин, казеинат натрия, альбумины и пр.) существуют качественные различия. Например, золотое число гемоглобина в 6 раз больше, чем у желатина, а рубиновое число, наоборот, меньше в три раза. Таким образом, ни золотое, ни рубиновое, ни другое число не может служить полной характеристикой стабилизатора, так как защитное действие последнего на тот или иной золь специфично. Защитное действие белков, полисахаридов и некоторых других веществ используется при изготовлении и применении высокодисперсных препаратов на основе лекарственных веществ, нерастворимых в воде. Золи в неполярных средах можно защищать от коагуляции, добавляя к дисперсионной среде мыла поливалентных металлов (нафтенат алюминия, стеарат кальция [c.115]


    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Белки являются специфическими антигенами антитела, образующиеся при впрыскивании чужеродного белка, дают осадки только с этим белком. Так, например, гемоглобин человека производит в сыворотке кролика антитело, осаждающееся гемоглобином человека, но не осаждающееся гемоглобином быка. Только в случае родственных животных родов антитела не дифференцируются белки сыворотки лошади производят в сыворотке кролика антитело, осаждающееся также белками сыворотки осла. С другой стороны, миоглобин быка обусловливает образование антитела, не осаждающегося гемоглобином того же животного ввиду того что оба вещества содержат гем, разумеется, что специфичность обусловлена не последним, а белковым участком молекулы. Белки теряют антигенные свойства в результате денатурации или частичного гидролиза протеолитическими ферментами. Желатина не обладает антигенными свойствами, потому что ее молекулы сильно расщеплены, а у инсулина, по-видимому, отсутствие антигенных свойств обусловлено слишком малым размером его молекул. [c.448]


    Белковые компоненты обусловливают видовую специфичность гемоглобинов, но гем у различных позвоночных животных один и тот же. [c.182]

    Тканевая специфичность. Белковые вещества тканей у одного и того же животного тоже различаются между собой. Например, из табл. 11 видно, что три различных белка лошади — фибриноген, гемоглобин и казеин — имеют различный аминокислотный состав. [c.219]

    Выяснение стереохимии и электронной структуры гем-кислородного комплекса в оксигенированной форме гемоглобина и миоглобина остается важной нерешенной проблемой химии гемопротеинов. Хотя наличие гидрофобного окружения гема, создаваемого главным образом боковыми цепями алифатических аминокислот гемового окружения [185], несомненно, существенно, как впервые предположил Ванг [184], необходимы количественные данные для объяснения экзотермичности образования кислородного комплекса гема и эндотермичности окисления его Ре(И)-катиона молекулярным кислородом [1861. Таким образом, значительная термодинамическая устойчивость оксигенированного комплекса [186] не получила объяснения на основе структурных данных. Поскольку в физиологических условиях оксигенированные производные участвуют в транспорте кислорода и запасании его в тканях и поскольку биологическая специфичность взаимодействия гем—кислород может определяться стереохимическими свойствами гем-кис-лородного комплекса, требуются дополнительные исследования для выяснения стереохимии лиганда и электронной структуры связи железо—кислород в гемоглобине и миоглобине. [c.75]

    Все реакции типа (ХХ.З) протекают в цитоплазме. Ранее мы приводили соображения, из которых следует, что синтез белка должен осуществляться в рибосомах при участии активированных аминокислот и молекул-адаптеров. Подобной молекулой-адаптером, в состав которой входит активированная аминокислота, служит аминоацил-РНК. Необходимым этапом синтеза является перенос этого комплекса в рибосому и сборка белковой молекулы на РНК-матрице. Этот процесс катализируется особым ферментом переноса, который, по-видимому, обладает малой специфичностью. Фермент переноса, выделенный из бактерий, катализирует перенос аминоацил-РНК, полученной из любого источника, в рибосому бактерии (но не в рибосому животного). Аналогично фермент из кролика катализирует перенос аминоацил-РНК бактерии в рибосомы кролика. Таким путем можно, в частности, осуществить синтез гемоглобина в рибосомах, выделенных из ретикулоцитов кролика. Складывается впечатление, что ферменты переноса до некоторой степени специфичны по отношению к типу рибосом, но значительно менее специфичны к промежуточным комплексам. [c.373]

    В отличие от карбоксипептидазы большая часть природных белков не содержит ионов металла в активном центре. Ионы металлов часто образуют с белками обратимые комплексы. Бычий сывороточный альбумин (БСА) связывает до 20 ионов переходных металлов на молекулу. В соответствии с данными фиг. 78 можно ожидать, что при физиологических pH происходит связывание с имидазолом или карбоксильными группами, расположенными благоприятно для образования комплексов, что, по-видимому, и имеет место в данном случае. Однако из фиг. 78 следует также, что единственная сульфгидрильная группа в БСА должна быть местом преимущественного связывания металла. Так, каждый третий ион меди, приходящийся на молекулу БСА, по-видимому, связывается с сульфгидрильной группой. На высокую специфичность связывания с ионами металлов указывает также возможность получения для целей рентгеноструктурного-анализа производных гемоглобина и миоглобина, содержащих тяжелые атомы. [c.414]

    Выше уже указывалось, что гемоглобины различных животных обладают видовой специфичностью. Трудно, однако, утверждать, что они представляют собой однородные соединения. Так, например, электрофоретические и спектрометрические исследования гемоглобинов быка и лошади показали, что эти гемоглобины состоят из нескольких различных соединений. [c.254]

    Клетки многоклеточных организмов имеют строгую специализацию и специфичность. Эта специализация проявляется в строении самих клеток и в их функциях. Специфические различия между клетками обусловливаются присутствием различных веществ или относительными количествами, в которых эти вещества находятся в клетках, скоростью их взаимодействия и структурой клетки. Строгая специализация клеток необходима для выполнения многочисленных функций живого организма. Красные кровяные клетки человека содержат гемоглобин, который передает кислород другим клеткам. Внешние клетки кожи содержат механически прочные, эластичные, нерастворимые белки, которые обеспечивают защиту от ударов и от проникновения химических веществ. Нервные клетки приспособлены для передачи быстрых импульсов. Мышечные клетки содержат соединения, способные изменять линейные размеры и тем самым вызывать сокращения волокон мышцы. [c.239]

    Обычно в состав простетических групп в растительных и животных системах входят порфириновые ядра, представляющие собой хелатные структуры с включением ионов металлов (Ре , Со ", и т. д.). Так, гемоглобин животных содержит такую группу с Ре " , присоединенную к белковой половине (глобин). Эта группа аналогична по структуре простетической группе, содержащей в хлорофилле растений и одноклеточных животных. Молекулярный вес белков обычно лежит в пределах от 30 ООО до 80 ООО. Однако молекулярный вес может быть и меньше и значительно больше этих величин. Ферменты являются очень специфичными катализаторами. Зачастую их активность может проявляться только в какой-либо одной реакции. Так, например, фумараза катализирует только обратимую реакцию превращения малеиновой кислоты в фумаровую [98]  [c.561]


    Проведенное исследование позволяет предположить достаточно удобный, хорошо воспроизводимый и специфичный метод определения гемоглобина Ale, который может быть использован в исследовательской и клинической практике. Предложенная тест-система не требует специального оборудования, достаточно обычного набора приборов для клинической лаборатории. Она основана на извлечении из гемолизата эритроцитов гликобелка специальным сорбентом с заданными свойствами. [c.67]

    Протеазы. Яды гремучих змей и гадюк в отличие от элапид и морских змей характеризуются высоким содержанием термолабильных кислых протеаз (Jimenez-Porras, 1970). Протеазы змеиных ядов активно расщепляют как природные (казеин, гемоглобин, желатин), так и синтетические (ТАМЕ и ВАЕЕ) белковые субстраты (Д. Н. Сахибов с соавт., 1972). Следует отметить, что использование синтетических субстратов позволило Tu et al. (1965, 1966) показать, что яды гадюковых и гремучих змей гидролизовали специфичные для трипсина субстраты (ТАМЕ и ВАЕЕ), но на последний действовали активнее трипсина. Почти все указанные яды не действовали на субстраты, специфичные для химотрипсина. [c.86]

    Может возникнуть вопрос, каким образом открытие и закрытие канала синхронизируется с изменениями числа и специфичности участков связывания ионов. Напомним, однако, о тех структурных изменениях, которые происходят при оксигенации гемоглобина (рис. 4-19). Хотя поворот субъединиц друг относительно друга вызывает лишь незначительные изменения в геометрическом расположении групп, выступающих в центральный канал, это обусловливает весьма существенные изменения в связычании 2,3-дифосфоглицерата. Аналогичным образом в нашем случае благодаря незначительным перемещениям могут стать недоступными участки связывания ионов Ма+ и сформироваться новые участки связывания для более крупных ионов К+ при этом могут использоваться те же самые группы, способные к образованию хелатных комплексов, что и в случае с На+. [c.365]

    Специфичность ферментов связана с комплементарностью структуры их активного центра со структурой субстратов. Активный центр, как правило, располагается в полости макромолекулы фермента и формируется из различных участков цепи белковой глобулы. Согласно теории Кошланда, эта комплемен-тарность является индуцированной субстрат в момент взаимодействия с активным центром вызывает такое изменение геометрии фермента, которое соответствует оптимальной для данной реакции ориентации групп, непосредственно участвующих в химическом превращении субстрата (каталитических групп). В случае объемных субстратов происходит многоцентровая сорбция в активном центре за счет дисперсионных, гидрофобных и электростатических взаимодействий и водородных связей. Малые молекулы, такие как О2, N2 и Н2О, вступают в непосредственное взаимодействие с атомами переходных металлов. Однако и в этом случае связывание обычно носит много-центровый характер, например в биядерных комплексах или с участием безметальных групп. Так, в случае комплексования молекулы О2 в гемоглобине с ионом Fe " " происходит образование водородной связи с протонированным гистидиновым остатком в районе активного центра. [c.550]

    Безошибочность свертывания цепи in vitro [94] проверяют путем сопоставления свойств нативного и ренатурированного белков в отношении биологической активности и специфичности [441]. Например, денатурированный различными способами переносчик кислорода — гемоглобин может быть вновь переведен в нативный белок, который а) имеет ту же растворимость, что и исходный белок, б) способен кристаллизоваться, в) имеет спектр поглощения, харак- [c.182]

    Трансферрины (сидерофилины) — группа сложных белков, полученных из разных источников и характеризующихся способностью специфично, прочно и обратимо связывать ионы железа Fe (III) и других переходных металлов. Наиболее подробно из этой группы белков изучен трансферрин сыворотки крови. Функция трансферрина заключается в транспорте ионов железа в ретикулоциты, в которых осуществляется биосинтез гемоглобина. Система трансферрин—ретикулоцит считается весьма перспективной для изучения взаимодействия металла с белком и белковой молекулы с клеткой. [c.85]

    Очень высокой специфичностью действия характеризуются ферменты—белковые вещества, являющиеся катализаторами биохимических процессов. Ферменты занимают промежуточное положение между гомогенными и гетерогенными катализаторами, поскольку представляют собой макромолекулы. Так, фермент нитрогеназа, ответственный за фиксацию атмосферного азота клубеньковыми бактериями, имеет молекулярную массу около 350 ООО а.е.м. (примерно в пять раз большую, чем гемоглобин). В организме человека действует несколько десятков тысяч ферментов, катализирующих специфические реакции. 3 современной биотехнологии внедряется широкое использовакт е иммобилизованных, закрепленных на полимерном носпгеле, ферментов. Это позволяет проводить реакции по хорошо отоа-ботанной в про, Ы1[[ленности технологии гетерогенного катализа. [c.53]

    В ряде случаев белки проявляют свою активность при наличии в их составе определенных компонентов, связанных с белковой молекулой. Это можно продемонстрировать на примере уже упоминавшегося тема. Известно большое число комплексов белков с гемом и некоторыми его структурными аналогами, которые объединяются под общим названием гемопротеиды. Центральный атом железа в геме способен образовывать шесть связей. Четыре из них расположены в плоскости гема и соединяют атом железа с четырьмя атомами азота плоской структуры порфиринового кольца, а пятая и шестая находятся перпен.. икулярно по обе стороны плоскости порфиринового цикла и могут давать дополнительные связи с определенными лигандами. Атом железа в геме может менять степень окисления и быть либо в ферроформе Ге , либо в ферриформе и таким образом играть роль переносчика электронов и участвовать в окислительно-восстановительных процессах. Атом кислорода, принимая участие в процессе окисления, может изменить степень окисления железа до Ге (IV) или Ге(У). Если гем связан в комплекс со специфичным белком, это приводит к резкому усилению одной из выполняемых гемом функции. Например, образование комплекса с белком глобином (ге-моглобин) усиливает координирующую способность гема, в особенности способность координировать молекулу О2. Гемоглобин обратимо связывает кислород, который выступает в качестве одного из лигандов, и таким образом служит переносчиком кислорода в многоклеточных организмах. У высших позвоночных гемоглобин находится в специальных красных кровяных клетках (эритроцитах), которые сорбируют кислород в легких и доставляют его ко всем органам и тканям с током крови. [c.16]

    Так или иначе, биологов интересует вопрос, образуют ли белки соединения включения и, если это так, в какой степени и какой тип соединения включения образуется. Еще не известно, можно ли такие соединения, как красятцие комплексы альбумина сыворотки [48, 120, 142, 143], хромопротеины, подобные ово-вердииу [149], и, возможно, гемоглобины [152, 192, 193] отнести к соединениям включения тем не менее такая возможность не исключена [58]. Крамер видит причины как за , так и против их принадлежности к соединениям включения [59]. По мнению Крамера, специфичность их реакций указывает на включение, а обычное солеобразование его опровергает. Решить этот вопрос можно лишь в ходе дальнейших исследований в этой области. [c.146]

    При катализе гемином также обнаруживается зависящая от структуры относительная специфичность. Так, гемоглобин является сильной пероксидазой, но очень слабой оксидазой (стр. 74, 75). Особый интерес представляют специфичные имидазолпарагематины (стр. 70, табл. 11). 4(5)-Фенилимидазол-/г-сульфоновая кислота не усиливает каталазную реакцию гемина, а пероксидазную реакцию усиливает весьма значительно. [c.111]

    Гемоглобин состоит из белка глобина и пигментной части — гема. Видовая специфичность гемоглобина человека и различных животных обусловлена особенностями в структуре глобинов. Строение гема одинаково во всех сложных белках геминовой природы. По химической природе гем представляет собой соединение протопорфирина с двухвалентным  [c.51]

    Некоторые считают, что данная реакция неспецифична для крови, так как красную флуоресценцию имеют и другие вещества. Однако такое соображение неправильно оно. не учитывает хода флуоресцентной реакции в самом деле, флуоресценция вначале отсутствует и оран кево-красное свечение появляется только после добавлешая определенного реактива (серной кислоты) такая реакция строго специфична. У вещества, обладающего способностью светиться красным светом, люминесценция наблюдается без каких-либо дополнительных реакций. Синтетические красители при воздействии концентрированной серной кислотмг разрушаются. Соединения, родственные гемоглобину,— дыхательные ферменты, очень сильно распылены в растениях и не дают подобной реакции. Хлорофилл и его производные светятся в ультрафиолетовых лучах карминово-красным цветом, отличающимся от цвета свечения гематопорфирина. [c.328]

    Гемоглобин состоит из белка—г л о б и и а и простетической группы — г е м а. Видовая специфичность гемоглобина человека и различных животных обусловлена не гемом (гем имеет одинаковое строение во всех гемоглобинах), а белковой частью — глобином. На это указывает, в частности, различное содержание некоторых аминокислот в гемоглобинах млекопитающих, что видно из табл. 6. [c.62]

    В гл. 1П указывалось, что первичная структура некоторых полипептид-ных гормонов (в частности, вазопрессина и меланоцитстимулирующего гормона) у разных биологических видов не вполне одинакова. Такая же видовая специфичность наблюдается и у белков. Сэнгер и его сотрудники, работая с препаратами инсулина, выделенными от разных видов млекопитающих, во всех случаях обнаружили те или иные вариации либо в А-цепи (на участке, ограниченном дисульфидным мостиком), либо в В-цепи (на ее карбоксильном конце). В препаратах цитохрома с, выделенных от разных видов, также были обнаружены индивидуальные различия, определяющиеся природой аминокислот в ключевом пептидном сегменте. Помимо этих вариаций, обусловленных видовой специфичностью, встречаются также и различия в белках одного и того же вида, возникшие в результате мутаций. Большинство сведений о влиянии мутаций на структуру белка почерпнуто нами из прекрасных работ Ингрэма. Ингрэм и его сотрудники показали, что нормальный гемоглобин взрослого человека и гемоглобин больных таким наследственным заболеванием, как серповидноклеточная анемия, отличаются только тем, что в определенном положении р-цепи остаток глутаминовой кислоты в аномальном гемоглобине заменен валином. (Напомним, что молекула гемоглобина состоит из двух пар идентичных цепей а- и Р-цепей в гемоглобине взрослого человека или а- и у-цепей в гемоглобине плода.) [c.96]

    Нам встречались примеры резкого возрастания скорости реакции, ее замедления или малого изменения при переходе от небелковых комплексов к ферментам. Например, в случае реакций Ре -каталазы и Ре -пероксидазы с перекисью водорода при pH 7 скорость возрастает в 10 —10 раз, а в случае Ре -каталазы с перекисью водорода — в 10 раз (разд. 8.6). В 10 раз замедлены реакции между Ре -каталазой и гваяколом, а также реакции дальнейших превращений Ре Юг-гемоглобинов, приводящие к автоокислению (разд. 7.7). Почти не меняется скорость реакции Ре -перок-сидазы с восстановителями (разд. 8.6). Некоторые реакции становятся чрезвычайно специфичными (например, взаимодействие Ре -каталаэы с восстановителями, разд. 8.6), другие остаются практически неспецифичными (например, взаимодействие Ре - и Ре -пероксидазы с восстановителями, разд. 8.6). [c.241]

    Биологические переносчики кислорода (в силу их крайне резко выраженной специфичности) едва ли могут быть использованы для интересующих нас технических целей. Известен, однако, целый ряд синтетических веществ, способных, подобно гемоглобину, к процессам оксигенации и деоксигенации их практическая применимость в качестве переносчиков кислорода заслуживает изучения [2—4]. Большинство этих соединений относится к типу так называемых хелатных (клешневидных) соединений. Центральное положение в их молекуле может занимать атом одного из следующих переходных металлов железа, кобальта, никеля, марганца структура сферы, окружающей центральный атом, во всех случаях довольно близко напоминает структуру порфиринового кольца в геме. Для примера ниже изображены структурные формулы двух синтетических переносчиков кислорода  [c.163]

    Комплексные соединения с макроциклическими лигандами привлекают многих исследователей еще и по той причине, что онп составляют основу важнейших природных макроциклических систем — гемоглобина, хлорофилла, витамина В12. Применение координирующего действия иона металла (матричный эффект) [35, 36] дало возможность синтезировать большое число моделирующих эти системы комплексных соединений с макроциклическими лигандами, которые создают новый подход к пониманию свойств важнейших природных систем [4, 37]. Особенно яркой демонстрацией плодотворности избранного пути явился синтез коррина [38], а затем и витамина В12 [39]. Эти выдающиеся исследования Вудворда, Эшенмозера и их сотрудников показали, что координирующая способность иона металла позволяет расширить и обогатить возможности органического синтеза. Конечно, применение координирующего эффекта — это лишь частный случай предварительной ориентации реакционных центров, которая должна приводить к высокой структурной и стереохимической специфичности протекания внутримолекулярных процессов. [c.325]

    В результате ферментативного воздействия, определяли последовательно после каждого отщепления Ы-концевого остатка по методу Эдмана (см. гл. 6). При изучении гемоглобина (Брауницер был удачно применен последовательный гидролиз белка разными про-теолитическими ферментами. В этом случае на белок действовали трипсином, а затем полученные пептиды гидролизовали пепсином, специфичность которого значительно повышали, ограничивая время реакции. Методические трудности, связанные с фракционированием сложных гидролизатов и определением полной структурной формулы белка, были преодолены в результате упорного труда нескольких групп ученых. Мы теперь знаем полную аминокислотную последовательность инсулина, глюкагона, рибонуклеазы, гемоглобина, белка вируса табачной мозаики, а также кортикотропина и других пептидных гормонов приближаются к завершению работы по установлению строения папаина, лизоцима, химотрипсиногена, трипсииогена, цитохрома с успешно продвигается изучение некоторых других белков. Изучение последовательности аминокислот проводилось на частичных кислотных гидролизатах или на гидролизатах, полученных при действии различных протеолитических ферментов. Чисто химические методы избирательного расщепления пептидных цепей не имели до сих пор значительного успеха, и эта область остается еще нерешенной задачей пептидно химии. [c.117]

    Весьма характерно, что молекулы антител, содержащихся в антисыворотках, не отличаются абсолютным подобием. Они различны по силе реакции с данным гаптеном и по специфичности. Это легко показать в нашем случае, если вначале добавлять к ан-тиметаниловой сыворотке белок, к которому присоединен один из перекрестно реагирующих гаптенов, до тех пор, пока не прекратится реа1 ,ия, а затем прибавить к обработанной сыворотке гомологичный или другой родственный гаптен. Для того чтобы в смеси не осталось растворимых комплексов антиген — антитело, сыворотку можно обработать гаптенами, присоединенными к нерастворимым структурам (строме), остающимся после лизиса эритроцитов и удаления гемоглобина. Сыворотка, обработанная с целью удаления всех антител, способных реагировать с данным антигеном, называется адсорбированной (истощенной). Вот результаты таких опытов [23] (схема IV)  [c.22]

    Гемоглобины различных животных обладают видовой специфичностью. Специфичность отдельных гемоглобинов может быть установлена не только иммунологически [178] (как устанавливается специфичность многих белков), но и по различиям в форме их кристаллов [179, 180], в растворимости и аминокислотном составе (табл. 14) [181 —183]. Концевые группы пептид- [c.250]

    Решающее влияние белкового компонента на специфичность каталитического действия хорошо иллюстрируется на примере сравнения каталитических свойств гемоглобина, цитохрома с, каталазы и пероксидазы. Все четыре соединения содержат в качестве простетической группы один и тот же протогем, который связан с белковым компонентом у всех четырех соединений через атом железа. Связывающая группа белкового компонента еще точно не установлена по мнению некоторых авторов, атом железа связан или с имидазольными или с карбоксильными группами белкового компонента (см. стр. 244). В пероксидазе белок связан также с кислотными боковыми цепями гема, а в цитохроме — с винильными группами гема. Эти различия в строении белкового компонента и в характере связей между белком и гемом обусловливают те большие различия в свойствах, которые наблюдаются у гемоглобина, цитохрома с, каталазы и пероксидазы. Так, например, гемоглобин и гемин имеют слабо выраженную каталазную и более ясную пероксидазную активность (примерно 0,1% активности каталазы или пероксидазы) [98, 132]. Влияние белкового компонента на каталитическую активность указанных соединений видно также из данных, приводимых в табл. 17. [c.300]

    Любой из природных белков обладает антигенной специфичностью. Антитела, возникшие в ответ на введение определенного белка, образуют преципитаты только с этим белком, но не с другими белками. Перекрестная реакция наблюдается только в тех случаях, когда исследуемый антиген очень близок к антигену, применявшемуся для иммунизации. Так, например, антитела, образующиеся при инъекции сывороточных белков лошади, преци-питируют также и сывороточные белки осла яичный альбумин утиных яиц преципитируется антителами, образовавшимися при иммунизации яичным альбумином куриного яйца [4]. С другой стороны, серологические свойства миоглобина резко отличаются от свойств гемоглобина, хотя оба вещества содержат один и тот же гемин [5]. Очевидно, в данном случае специфичность обусловливается белковым компонентом, а не гемином. Гемоглобин человека серологически отличается от гемоглобина быка. Однако при помощи реакции задержки комплемента можно установить наличие некоторого родства между этими двумя веществами [6]. [c.330]

    Белки обладают не только видовой, но также и органной специфичностью. Так, например, белки сыворотки отличаются серо-логически от гемоглобина или от мышечных белков того же самого животного. Впрочем, некоторые фракции глобулинов, выделенные дробным осаждением сернокислым аммонием, очень сходны между собой, и при помонш реакции преципитации их удается различить лишь с большим трудом [7]. Ферритин (см. гл. XI) видоспецифичен, но не обладает органной специфичностью [8]. [c.330]

    Изучены хироптические свойства, обусловленные активными дисульфидными хромофорами (разд. 2.21), а также КД некоторых специфичных белков, таких, как миоглобин, гемоглобин, инсулин, рибонуклеаза, сывороточный альбумин и лизоцим [433, 563, 587, 593, 594]. Кроме того, хироптические методы использованы для того, чтобы получить данные о структуре нуклеогисто-нов, о стабилизации рибонуклеиновых кислот природными или синтетическими полиоснованиями, а также о действии мочевины и додецилсульфата натрия на структуру яичного альбумина. Недавние исследования показывают, что в глобулярных белках эффекты Коттона часто имеют значительную величину и наблюдаются вблизи УФ-полос поглощения тирозина и триптофана. Исследование оптической активности триптофана, тирозина и производных фенилаланина, в частности, в связи с изучением рибонуклеазы показало наличие значительного эффекта Коттона, обусловленного полосой поглощения шести тирозиновых остатков. Сделана попытка систематического анализа этих эффектов [595]. Ряд простых производных, исследованных в растворителях, замерзающих при температуре жидкого азота, обнаруживают тонкую структуру как УФ-, так и КД-полос, что делает возможным анализ их колебательной структуры. Фенольный хромофор имеет два перехода в близкой ультрафиолетовой области. Исследованы соответствующие колебательные прогрессии, одна сильная и одна слабая. Их положение очень чувствительно к природе растворителя, и поэтому следовало ожидать, что в рибонуклеазе, которая имеет три защищенных и три незащищенных тп-розиновых звена, будут прогрессии, возникающие из обоих типов звеньев, если оба они обладают повышен- [c.94]


Смотреть страницы где упоминается термин Гемоглобин специфичность: [c.86]    [c.218]    [c.45]    [c.22]    [c.488]    [c.157]    [c.177]    [c.186]    [c.68]    [c.243]    [c.188]    [c.444]   
Химия и биология белков (1953) -- [ c.155 , c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин



© 2025 chem21.info Реклама на сайте