Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорбция, скорость с взаимодействием

    Следовательно, общая скорость реакции лимитируется диффузией, адсорбцией, десорбцией или взаимодействием между поверхностными комплексами в простой реакции или через некоторые промежуточные стадии в сложном процессе. [c.15]

    Приведенные в главе III уравнения скорости адсорбции и десорбции при взаимодействии адсорбированных частии вытекают из общего уравнения скорости реакций на поверхностях, полученного М. И. Темкиным [c.251]


    Если принять, что обш,ая скорость адсорбции реагирующего вещества и общая скорость десорбции продукта велики по сравнению со скоростью взаимодействия частиц, адсорбированных на поверхпости, то тогда, действуя как прежде, можно подставить равновесные поверхностные концентрации для А, В и Р в уравнение скорости поверхностной реакции (24). После элиминирования Су в итоге получаем [c.401]

    Мы уже убедились, что легче всего проводить исследование в тех случаях, когда одна из стадий протекает гораздо медленнее остальных и потому лимитирует скорость процесса. Однако мы рассматривали и случаи, когда две или больше стадий имеют сравнимые скорости. Так было в разделе VI.2, где учет взаимодействия стадий адсорбции, реакции и десорбции привел к кинетическому выражению (VI.20), и в упражнении VI.5, где было принято, что внешняя массопередача, адсорбция, десорбция и реакция идут со сравнимыми скоростями. Исследовали мы и взаимодействие процессов внутренней диффузии и реакции (раздел VI.4), получив наиболее простые результаты т] 1 и т) /2, в случае, когда одна из стадий была лимитирующей. [c.139]

    Kav a2 — константы скорости адсорбции на поверхности раздела из растворов 1 и 2 соответственно К , — константы скорости десорбции с поверхности раздела фаз в растворы 1 и 2 соответственно Сц, ji — концентрации растворов 1 и 2 вблизи поверхности раздела фаз Ь — доля поверхности контакта фаз, покрытая адсорбированными молекулами х , — константы, учитывающие эффект взаимодействия между адсорбированными молекулами. [c.244]

    Катализом называется ускорение химических реакций в присутствии определенных веществ (катализаторов), многократно химически взаимодействующих с реагентами, но не входящих в состав продуктов реакции [1]. Каталитический процесс включает в себя три этапа адсорбцию, химические превращения на поверхности и десорбцию. Каждый из этапов состоит из нескольких последовательных или параллельных стадий физического и химического взаимодействия промежуточных соединений на поверхности друг с другом и с компонентами газовой фазы. Суммарная скорость каталитического процесса зависит от скоростей его отдельных стадий. Несмотря на специфичность каталитического действия, сущность катализа едина и состоит в том, что катализатор, входя в состав промежуточных соединений, увеличивает степень компенсации энергии разрыва старых связей энергией, освобождаемой при образовании новых связей. Этим самым обеспечивается снижение энергии активации химической реакции. [c.8]


    Защита оборудования от коррозии при воздействии среды, содержащей сероводород, может осуществляться ингибитором И-1-А, который растворяется в безводной нефти с концентрацией 5%- Указанным раствором заполнялось оборудование, а затем после непродолжительной выдержки вводилось в эксплуатацию. Ингибитор И-1-А (смесь пиридиновых высших оснований) — весьма эффективное средство защиты от коррозии скорость коррозии замедляется на 90—95%. Высокая защита (последействие) сохраняется в течение 220 сут, что позволяет закачивать раствор ингибитора в установки один раз в 7 месяцев. Защита десорберов ингибитором коррозии И-1-А оказалась неэффективной из-за интенсивной вспениваемости взаимодействующих в процессе десорбции жидкостей, приводящей к большим уносам и потерям ингибиторов. Многие применяемые для защиты от сероводородной коррозии ингибиторы (И-1-А, АНПО, ИКСГ-1, КО, ГИПХ-37, катапин, диамин-диолеат) обладают свойствами поверхностноактивных веществ и воздействуют на среду как стабилизаторы эмульсий типа вода в масле . [c.189]

    Образующиеся в результате адсорбции атомы затем могут вступать во взаимодействие, осуществляя гетерогенную реакцию. С точки зрения теории абсолютных скоростей реакций процесс идет в пять стадий перенос реагентов к поверхности, адсорбция, поверхностная реакция, десорбция реагентов, перенос реагентов от поверх-ности в объем. [c.134]

    Первая реакция протекает в кинетической, вторая — в диффузионной области, так как температурный коэффициент скорости химической реакции всегда в 2—3 раза больше соответствующего коэффициента скорости диффузии. 1.4. Согласно представлениям Баландина, лимитирующими при гетерогенном каталитическом взаимодействии могут быть или адсорбция исходных веществ на поверхности катализатора, или десорбция с этой иоверхности продуктов реакции сам же процесс химического взаимодействия не является замедленным. [c.114]

    Допустим, что химическое превращение фермент-субстратного комплекса ХЕ РV протекает намного быстрее десорбции субстрата с активного центра, т. е. 1,внутр -1- В данном случае значение к определится скоростью диффузии субстрата к активному центру к л к- ) и процесс (2.1) фактически лишен специфики, которую в него вносит взаимодействие Е-Р (вернее, свободная энергия этой сорбции). Поэтому больший интерес вызывает обратное соотношение кон- [c.37]

    Гетерогенный катализ широко применяется в промышленности, например для синтеза аммиака, серной кислоты, метилового спирта, различных углеводородов. Как и в других гетерогенных процессах, здесь можно выделить ряд стадий. Наиболее обычными стадиями являются диффузия, обеспечивающая подвод исходных веществ к поверхности катализатора, адсорбция их на этой поверхности, взаимодействие адсорбированных веществ с образованием продуктов реакции, десорбция продуктов и, наконец, отвод продуктов реакции от поверхности катализатора в глубину соответствующей фазы с помощью диффузии. В тех случаях, когда решающей стадией является диффузия или адсорбция, скорость каталитической реакции определяется этими процессами. С изменением внешних условий роль определяющей стадии может перейти к другому процессу и изменить тем самым область протекающей реакции. [c.349]

    Здесь Уа и Од — скорости адсорбции и десорбции йа и йд — соответствующие константы скорости аир — коэффициенты, показывающие, в какой степени аттракционное взаимодействие между адсорбированными молекулами благоприятствует их адсорбции и, наоборот, препятствует их десорбции. При равновесии, когда ( 0/ =О, Vz = Vf = Vo, где Vo — обменная скорость адсорбции, а потому [c.81]

    Вывод уравнения изотермы адсорбции Ленгмюра для твердых адсорбентов базируется на ряде исходных предпосылок 1) адсорбционные силы подобны силам основных валентностей и действуют на малых расстояниях 2) адсорбционной активностью обладает не вся поверхность адсорбента, а лишь определенные активные центры, расположенные преимушественно на выпуклых участках поверхности выступах, ребрах, углах 3) молекулы адсорбированного газа фиксируются на адсорбционных центрах, не перемещаются по поверхности адсорбента и не взаимодействуют друг с другом. Для упрощения вывода принималось, что все адсорбционные центры энергетически равноценны и каждый такой центр может удержать только одну молекулу адсорбата. В результате такой адсорбции образуется мономолекулярный слой адсорбированных молекул. Поскольку одновременно с адсорбцией протекает обратный ей процесс десорбции, адсорбированные молекулы газа или растворенного вещества через какой-то период времени отрываются от поверхности адсорбента под действием молекулярно-кинетических сил. При равенстве скоростей этих процессов в системе устанавливается динамическое адсорбционно-десорбционное равновесие. [c.334]

    Скорость суммарного процесса зависит от наиболее медленной (контролирующей) стадии. При умеренных температурах скорость травления определяется стадией химического взаимодействия, реже — процессом диффузии. При высоких температурах контролирующей стадией служит диффузия. Адсорбция и десорбция характеризуются малыми энергиями активации, протекают (сравнительно с другими этапами) быстро и поэтому лишь изредка лимитируют процесс. [c.101]


    Число мест на поверхности твердого тела, на которых могут удерживаться молекулы адсорбата — так называемые адсорбционные центры (а. ц.), ограничено. Поэтому при повышении давления адсорбция не может постоянно возрастать, но стремится к некоторому пределу. Эта идея лежит в основе теории, развитой Лангмюром, в которой, кроме того, принимаются следующие положения. На каждом а. ц. удерживается только одна молекула и все а. ц. совершенно одинаковы. На поверхности твердого тела адсорбированные молекулы не взаимодействуют между собой, поэтому адсорбция одной молекулы не изменяет условий адсорбции на соседнем месте. Для вывода уравнения, связывающего величину адсорбции газа с его концентрацией С (парциальным давлением р), т. е. изотермы адсорбции, используем метод, примененный для вывода закона Генри (см. гл. IV). Обозначим долю занятых на поверхности а. ц. через 0, тогда доля незанятых составит 1—9. Элементарный акт адсорбции происходит в том случае, когда молекула газа, ударяясь о поверхность, попадает на незанятое место. Число всех таких ударов пропорционально С (или р), а вероятность попадания на пустое место пропорциональна (1—9) и, следовательно, скорость адсорбции можно выразить уравнением и = 1С(1—9), где — постоянная. Одновременно может происходить десорбция молекул, если их энергии достаточны для отрыва от поверхности. Скорость этого процесса пропорциональна числу уже адсорбированных молекул, т. е. и = 29. При равновесии и 1С(1—9)== 29. Обозначая к /к2=Ь найдем, [c.218]

    Н О к поверхности катализатора проникновение их в поры катализатора физическая адсорбция и хемосорбция молекул СО и Н О химическое взаимодействие молекул СО и Н О, адсорбированных на поверхности катализатора десорбция молекул и СО. и нх отход от поверхности катализатора. Для описания скорости реакции (16.6) используют уравнение [c.186]

    При взаимодействии газов с углеродом могут быть выделены следующие стадии реакции подход молекулы газа к поверхности, адсорбция молекулы газа на поверхности, реакция между адсорбированными молекулами газа и углерода, десорбция продуктов реакции, диффузия продуктов реакции от поверхности в объем газовой фазы. Для кислорода, диоксида углерода и паров воды в соответствии с этими стадиями были предложены различные схемы механизма окисления и их математическое описание [65]. В зависимости от условий проведения опытов (температуры, давления газа, скорости потока) ход реакции углерода с газами лимитируется разными стадиями, и скорость реакции может иметь различную зависимость от концентрации реагентов и температуры. Результатом этого является значительное расхождение в величинах кинетических параметров реакции, определенных различными исследователями ее порядка и энергии активации, в связи с тем, что каждая из вышеописанных стадий имеет свою энергию активации. [c.118]

    При осуществлении процесса в паровой фазе суммарная скорость происходящих реакций в большинстве случаев определяется стадией химического взаимодействия адсорбированных молекул на поверхности катализатора, а не скоростями диффузии, адсорбции исходных соединений или десорбции продуктов реакции. Очевидно, между газовой фазой и адсорбированными компонентами устанавливается равновесие, вследствие чего скорость адсорбции или десорбции любого компонента не может быть стадией, определяющей суммарную скорость реакции. [c.53]

    Вполне точно установлено, что хотя каталитическое гидрирование может протекать по многочисленным различным механизмам, при всех реакциях, вероятно, имеются следующие стадии 1) диффузия реагирующих компонентов-из основного ядра фазы к поверхности катализатора через конденсированную на поверхности или внутри пор пленку 2) адсорбция реагирующих компонентов на активных центрах поверхности катализатора 3) собственно реакция, т. е. взаимодействие адсорбированных молекул с образованием целевых продуктов 3) десорбция продуктов реакции 5) диффузия продуктов реакции через поверхностную пленку и из пор катализатора в основное ядро фазы. Реагирующие формы адсорбируются и образуют на поверхности активированные комплексы, которые в результате еще не выясненного механизма диссоциируют, вновь соединяются и рекомбинируются с образованием новых комплексов, обладающих меньшей энергией. Последние затем десорбируются с поверхности. Изучение многочисленных реакций в паровой фазе приводит к общему выводу, что суммарная скорость подобных реакций в больишнстве случаев определяется стадией химического взаимодействия адсорбированных молекул на поверхности катализатора, а не скоростями диффузии, адсорбции исходных соединений или десорбции продуктов реакции. [c.146]

    Особую разновидность стереоспецифической полимеризации представляют собой катализаторы — оксиды металлов, нанесенные на поверхность инертных веществ (силикагель, оксид алюминия и др). Наиболее часто используются в качестве катализаторов оксиды хрома. При полимеризации а-олефинов формируются стереорегулярные структуры. Днены образуют обычно гране-1,4-полимеры. Основой каталитического действия этих катализаторов является способность хрома менять свое валентное состояние. При этом считается, что начальный акт полимеризации осуществляется соединениями хрома (VI), а за рост макромолекул ответственны соединения хрома (И) и хрома (И1). Скорость полимеризации этилена, например, растет, если восстановление хрома идет быстрее и глубже. После образования промежуточного соединения мономера с хромом (VI) и его восстановления до низших валентных состояний и десорбции продуктов взаимодействия образуется центр роста цепи за счет координационной ненасыщенности хрома [6.  [c.56]

    По-иному ведут себя инертные матрицы в случае полистирола МЭР происходит преимущественная десорбция гликоля - менее активного сомономера - и, таким образом, скорость взаимодействия дихлорангидрида терефталевой кислоты (интермономер) с гексаметиленгликолем возрастает, а с дихлордианом падает из-за различия в их концентрации. В результате длина блоков с гликолем увеличивается, а с бисфенолом уменьшается, что приводит к структуре полимера, близкой к статистической [23]. Для полистирола КДХ этот процесс действует в противоположном направлении, а именно, с поверхности этого сорбента в первую очередь десорбируется бисфенол следовательно, в растворе всегда находится избыток [c.309]

    Массообмен определяет скорость взаимодействия между потоком газа (жидкост1и) и твердыми частицами при осуществлении химической реакции, адсорбции, десорбции, фазового превращения. Познание закономерностей массообмена позволит точнее использовать все возможности для интенсификации процессов. [c.128]

    Лэнгмюровская концепция монослойной хемосорбцни молекул или атомов [1] привела к выводу простых изотерм, связывающих заполненную долю поверхности с давлением адсорбируемого газа. Считая, что скорость гетерогенной реакции определяется скоростью взаимодействия адсорбированных молекул и что процессы адсорбции и десорбции находятся в равновесии, можно предположить, что скорость пропорциональна доле заполненной поверхности. Следовательно, эти скорости можно связать с давлениями газов. Таким путем были выведены выражения для скоростей реакций разложения и простых бимолекулярных реакций на поверхностях металлов, стекла, фарфора и силикагеля. Эти выражения весьма успешно применялись для объяснения скоростей довольно сложных процессов. Некоторые из многочисленных выражений, полученных для законов скоростей поверхностных реакций, сведены в табл. 23—27. Были обнаружены случаи ингибирования скоростей продуктами реакций и даже реагирующими веществами, а также дробные порядки реакций и порядки, изменяющиеся в зависимости от интервалов давления. Эти механизмы называют механизмами Лэнгмюра — Хиншельвуда (ЛХ) [2—4]. [c.241]

    Итак, изменение температуры дегидрирования в пределах 550—590° С и объемной скорости в пределах 500—1000 мало влияет на количество удаляемого кислорода. Однако это не означает, что в данных условиях скорость горения углеводородов и водорода за счет избыточного кислорода не зависит от температуры. Дело в том, что в опытах наблюдается не скорость образования СО, СОг и НгО, а скорость их выделения, которая определяется, как это было установлено, скоростью десорбции этих веществ из катализатора. Для подтверждения этого факта проведены опыты, в которых в течение первых 4 мин катализатор продувался водородом (570° С, объемная скорость 1000 ч" ), а затем 8 мин пода-вался бутан при тех же условиях. После продувки катализатора водородом в продуктах окисления содержится кислорода в 2 раза, а воды — в 3 раза больше, чем в соответствующих опытах без продувки водородом, причем водородом уносится (десорбируется) лишь около 15—20% от количества воды, выделяющейся затем при дегидрировании. Следовательно, скорость взаимодействия водорода с избыточным кислородом больше скорости взаимодействия углеводородов, однако скорость десорбции воды водородом во много раз меньше, чем бутаном или бутиленом. Влажность контактного газа в этих опытах составляла  [c.47]

    Следует отметить, что приборы для детектирования (например, ионизационные манометры и масс-спектрометры) всегда отделены от реакционной ячейки системой трубок, В результате изменение давления в камере детектора запаздывает по сравнению с изменением давления в реакционной ячейке. Ошибка, вызванная таким запаздыванием, тем больше, чем выше скорость нагревания, а время запаздывания тем меньше, чем больше диаметр и чем меньше длина соединительных трубок. Кроме того, ошибки, обусловленные запаздыванием, вводятся электрической схемой, служащей для записи сигнала детектора (усилитель, осциллоскопы, самописцы и т. д.), В дальнейшем мы будем предполагать, что соединительные трубки и электрическое оборудование сконструированы таким образом, чтобы сделать сумму всех времен запаздывания незначительной по сравнению со шкалой времени опыта. На практике выполнить это условие довольно сложно если продукты десорбции сильно взаимодействуют со стенками (как. например, вода со стеклянными стенками прибора), то в обычной флеш-десорб-ционной системе неизбежно будут наблюдаться большие времена запаздывания. [c.222]

    ЩИМ фактором, лимитирующим скорость сорбции, является процесс диффузии сорбируемых частиц (атомов, молекул или ионов) внутри зерен сорбента. В процессе движения частиц через хроматографическую колонку каждая из них последовательно сорбируется и десорбируется. Число актов сорбции на единице длины колонки зависит от суммарного действия физико-химических и геометрических факторов, определяющих статику, кинетику, а тем самым, и динамику сорбции силы сорбционного взаимодействия, скорости внешней и внутренней диффузии, скорости сорбции или десорбции, скорости потока и т. д. Так как расноложепие сорбционных центров и двин ение сорбируемых частиц (наряду с направленным движением потока) имеют хаотический характер, то можно предположить, что даже при приближении к условиям сорбционного равновесия кривые распределения веществ на границах хроматографических зон должны быть близки по форме к кривой вероятности [15—17]. [c.8]

    Скорость массопередачи определяется скоростью массопереноса к внешней поверхности частиц, характеризуемой внешним коэффициентом массоотдачи (Зу и скоростью массопереноса к внутренней поверхности сорбента при адсорбции или в обратном направлении — при десорбции. Скорость внутреннего массопереноса зависит от скоростей диффузии в порах сорбента, на его внутренней поверхности, в самой твердой фазе (для ионообменных смол), а иногда и от скорости химического взаимодействия с сорбентом. Количественно скорость внутреннего массопереноса оценивают либо коэффициентом диффузии в порах Оп, либо эффективным коэффициентом диффузии в твердой фазе Оу, когда сорбент рассматривают как квазитвердое вещество. Для упрощения расчетов скорость внутреннего массопереноса часто приближенно характеризуют коэффициентами массоотдачи в порах Рп или в твердом материале рт- Коэффициенты массоотдачи для массообменных процессов с пористой твердой фазой определяются следующи.ми уравнениями [8]  [c.145]

    С ов1ременная теория физической адсорбции связана с именами Лангмюра, Поляни, Брунгауэра, Эммета, Гибса и др. Лангмюр разработал теорию адсорбции применительно к тазам, в основу которой положены следующие допущения процесс адсорбции заканчивается при образовании мономолекулярного насыщенного слоя адсорбированного вещества адсорбированные молекулы не взаимодействуют друг с другом. Гетерогенная система может находиться как в равновесном состоянии, когда ее состав и термодинамические параметры остаются постоянными во времени, так и в неравновесном. В последнем случае па1ра метры системы самопроизвольно изменяются, (в результате система приходит в состоящие равновесия. Процесс адсорбции всегда сопровождается процессом десорбции. В случае равенства скоростей этих процес- [c.256]

    Гетерогенная каталитическая реакция, осуществляемая в присутствии твердых пористых катализаторов, состоит из следующих стадий внешней диффузии реагирующих молекул из объема к частице катализатора, внутренней диффузии через норы к новерхности катализатора, адсорбции молекул поверхностью, химической реакции между адсорбированными молекулами, десорбции образующихся продуктов реакции и их диффузии в обратном направлении. Скорость всего ироцесса в целом зависит от наиболее медленной стадии, которая и является определяющей. Если определяющей стадией является сам акт химического взаимодействия между реагирующими молекулами, а процесс отвода и подвода компонентов практически ие влияет на ее скорость, то такая реакция протекает в кинетической области. Если определяющей стадией яиляется скорость подвода реагирующих веществ, то в этом случае реакция протекает в диффузионной области. Если скорости как самой реакции, так и процессов диффузии соизмеримы, то и этом случае скорость всего ироцесса является функцией кинетических и диффузионных явлений Рис. 22. 1. Занисимость коп- ц процесс протекает в переходной об-стапты скорости реакции от ттяр-гг, тсмператури. [c.596]

    Определены эффективные константы скорости и энергия активации процесса. Методом тепловой десорбции азота показано, что удельная поверхность шунгита Максово при взаимодействии с озоном возрастает иа 20%. Установлено увеличение степени упорядоченности структуры шунгита после озонирования. [c.77]

    VI, 3). Однако при этом происходит очень медленная десорбция молекулярного водорода, образующегося в результате взаимодействия двух адсорбированных на поверхности атомов водорода. Скорость этой реакции может быть рассчитана на основе теории абсолютных скоростей реакций Эйрннга [159]. [c.102]

    Если взять два коллоидных растрора с таким расчетом, что после их смешения в растворе и взаимодействия ионов Ag с ионами 1 останется заметный избыток одного из вида ионов, например ионов Ag% то на поверхности положительно заряженных частиц сохранится почти неизменным положительный заряд. Заряд отрицательно заряженных частиц уменьшится по двум причинам — вследствие десорбции, вызванной нарушением адсорбционного равновесия, и вследствие взаимодействия ионов 1" на поверхности с ионами Ag оставшимися в избытке в растворе. В результате отрицательный заряд частиц уменьшится до нуля. Далее на незаряженной поверхности начнут адсорбироваться ионы Ag4 которые находятся в избытке в растворе. В результате частицы приобретут положительный заряд, произойдет перезаряд коллоидных частиц, система стабилизируется. Перезаряд коллоидных частиц потребует некоторого времени. Поэтому перезаряд может произойти только в том случае, если его скорость будет больше, чем скорость коагуляции, вызванной встречами частиц, несущих противоположный заряд, и частиц, потерявших свой заряд, не успевших перезарядиться. [c.423]

    Наконец, в лекции 6 было показано, что для органических -пористых адсорбентов (пористых сополимеров), особенно содержащих в самом своем остове много активных по отношению к рассматриваемым молекулам групп, адсорбция в той или иной степени сопровождается объемным набуханием скелета пористого сополимера. Однако и здесь имеют место случаи слабых межмолекулярных взаимодействий (адсорбция перфторалкана, см. рис. 6.3), когда поглощение ограничивается только поверхностью и заметного набухания не происходит. Во всех таких системах адсорбент можно рассматривать как инертный, пренебрегая набуханием. Скорость адсорбции и десорбции, как чисто поверхностных молекулярных процессов, гораздо больше скорости набухания, так [c.128]

    В рассмотренных выше теориях не учитывают существования сольватного слоя жидкости с измененными свойствами на поверхности частиц. Между тем, вряд ли можно представить себе систему с полным отсутствием взаимодействия между веществами дисперсной фазы и дисперсионной среды, даже в случае типично гидрофобных коллоидов (например, золей металлов). Ориентация молекул в сольватных слоях приводит к свойствам, характерным для квазитвердых тел — высокой вязкости, упругости, сопротивлению сдвигу — и препятствующим взаимопроникновению слоев при сближении частиц. Наряду с кинетическими факторами (резкое уменьшение скорости вследствие высокой вязкости), следует учитывать и термодинамические необходимость затраты работы на преодоление упругих сил или на частичную десорбцию молекул сольватной оболочки при утончении зазора между частицами. Затрата работы приводит к увеличению потенциальной энергии, к подъему нисходящей ветви кривой II(Н) в области малых И. Влияние сольватных слоев должно резко искажать потенциальные кривые при к с1 где ё — расстояние от поверхности до границы скольжения жидкости. [c.259]

    Теоретнчеокий вывод у-равиен-ия Ленгмю-ра, подробно излагаемый -в, ку(р-сах физической химии, основан на том, что поверхность твердой фазы рассматривается как своеобразная шахматная доска (рис. II—13), на каждой клетке-ячейке которой с равной вероятностью могут находиться адсорбированные молекулы (не более одной на ячейку). При этом учитывается только обмен молекулами между объемом газовой фазы и ячейками на поверхности и не принимается во внимание переход молекул от ячейки к ячейке (рассматривается локализованная адсорбция). Скорости процессов адсорбции и десорбции молекул с поверхности зависят от доли заполненных молекулами ячеек 0а=Г/Гтах. Если молекулы не взаимодействуют друг с другом в ад [c.61]

    Скорость реакций гидрирования зависит не только от условий процесса, но и от фазового состояния, толщины адсорбированной пленки, активности и физической структуры катализатора. Различают газофазное гидродесульфирование (с рециркуляцией и без рециркуляции образующегося газа) и смешанное жидко-газофазное гидродесульфирование. Механизм реакции состоит из следующих наиболее вероятных стадий диффузия реагирующих компонентов из основного ядра фазы к поверхности катализатора через конденсированную на поверхности или внутри пор пленку адсорбция реагирующих компонентов на активных центрах поверхности катализатора собственно реакция, т. е. взаимодействие адсорбированных молекул с образованием целевых продуктов десорбция продуктов реакции и диффузия продуктов через поверхностную пленку из пор катализатора в основное ядро фазы. Под действием активных [c.52]


Смотреть страницы где упоминается термин Десорбция, скорость с взаимодействием: [c.25]    [c.287]    [c.45]    [c.71]    [c.250]    [c.417]    [c.121]    [c.216]    [c.32]    [c.190]    [c.426]    [c.37]    [c.642]   
Теория абсолютных скоростей реакций (1948) -- [ c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Десорбция

Скорость взаимодействия



© 2025 chem21.info Реклама на сайте