Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление дегидратации

    Было найдено, что при низких давлениях в интервале температур от 200 до 400° скорость дегидратации имеет первый порядок по спирту и она не превышает скорости сорбции. Такие результаты можно объяснить, если предположить, что единственная стадия, определяющая скорость реакции, протекает на поверхности катализатора. Предполагается, что эта стадия состоит в ионизации молекулы сорбированного спирта с образованием положительного иона карбония и иона ОН". При этом ион карбония быстро разлагается на адсорбированный нротон Н"" и олефин  [c.541]


    В работе [121] сделан вывод, что причиной существования граничного слоя воды на поверхности мусковита является гидратация катионов — компенсаторов отрицательного заряда структуры. Их дегидратация связана с затратами энергии и приводит к возникновению структурной составляющей расклинивающего давления. Проявление структурных сил с большой длиной корреляции объясняется сдиранием гидратных оболочек с ионов (отделенных от твердой поверхности) молекулами воды с малым значением I, т. е. дегидратацией ионов, в первую координационную сферу которых наряду с молекулами воды входят и поверхностные атомы кислорода слюды. [c.43]

    Рассмотренная модель, названная нами капиллярно-фильтрационной [158], позволяет заключить, что обессоливание водных растворов электролитов обратным осмосом есть не что иное, как дегидратация ионов—отбор воды, наименее прочно связанной с ионами солей, мембраной под воздействием приложенного давления. [c.204]

    Концентрация гликоля, в свою очередь, зависит от эффективности его регенерации. В промысловых установках обычно применяется регенерация гликоля при атмосферном давлении. При температуре в ребойлере около 204,4° С можно получить. 98—98,7%-ный ТЭГ. На рис. 155 показана зависимость депрессии точки росы газа от скорости циркуляции ТЭГ различной концентрации. Эти данные получены на промышленной установке осушки газа, в абсорбере которой имеется четыре тарелки. При обычной температуре контакта в таком абсорбере можно понизить точку росы газа на 30,6—39° С. Такая депрессия предотвращает гидратообразование в газосборных сетях и зачастую является достаточной для нормальной транспортировки газа по магистральным газопроводам, если газ перед подачей на осушку в абсорбер был охлажден до обычной температуры. Предварительное охлаждение газа с помощью атмосферного воздуха или воды в градирнях — самый дешевый способ дегидратации газа, если в результате охлаждения удается понизить температуру газа на 5—6° С и более. [c.230]

    Полиэтилен —полимеризационная термопластичная пластическая масса. Исходный мономер — этилен — получают из природных или нефтяных газов он может быть также получен дегидратацией этанола или гидрированием ацетилена. Получение полимера может быть осуществлено при высоком, среднем или низком давлении. В СССР выпускается полиэтилен ВД низкой плотности, получаемый по методу высокого давления, и полиэтилен ИД высокой плотности, получаемый по методу низкого давления. Полиэтилен ВД с молекулярным весом 18 000— 25 000 условно называется по- [c.419]


    Процессы дегидрирования, как правило, проходят с высоким выходом продукта и при увеличении объема реакционной смеси они характеризуются также эндотермичностью. Большая часть таких процессов проводится при одном прохождении газа через слой катализатора под атмосферным давлением или даже в вакууме. Так, например, необратимый процесс одновременного каталитического дегидрирования и дегидратации этанола в производстве бутадиена происходит в промышленных условиях в одном слое трубчатого реактора под разрежением 50 мм рт. ст. при непрерывном подводе тепла для компенсации эндотермического эффекта. Для проведения такого процесса в изотермическом кипящем слое, по-видимому, целесообразно применение трубчатого реактора тина, изображенного на рис. 59. [c.208]

    В целом получение карбамида — гетерогенный процесс в системе Г—Ж, протекающий в кинетической области, причем скорость его лимитируется протекающей наиболее медленно стадией дегидратации карбамата аммония в расплаве. На равновесие и скорость синтеза карбамида влияют давление, температура и состав системы. Поскольку карбамат аммония обладает высоким давлением паров и, кроме того, синтез в целом протекает с уменьшением объема газа, то равновесный выход карбамида растет с увеличением давления (рис. 59). Скорость процесса и фактический выход карбамида также резко увеличиваются с повышением давления в результате возрастания движущей силы процесса, т. е. возрастания концентрацин газообразных реагентов. Скорость процесса, в частности скорость лимитирующей стадии (б), резко возрастает с повышением температуры, в результате чего растет фактический выход карбамида. Из рис. 60 видно, что выше 180°С кривые выхода проходят через максимум. При дальнейшем увеличении времени пребывания реакционной смеси в зоне нагрева выход карбамида падает из-за усиления побочных реакций. Выход продукта можно также увеличить применением избытка аммиака в исходной смеси по отношению к стехиометрическому соотношению [c.157]

    Насыщенный хемосорбент (нижняя фаза из Е-1) вначале поступает на колонну-дегазатор К-2, где выделяются физически растворенные углеводороды С4, которые возвращаются в процесс. Стабилизированный поток направляется на колонну-регенератор К-3. В нижнюю часть этой колонны подается острый дар, играющий одновременно роль теплоносителя и разбавителя. В колонне К-3 происходит гидролиз изобутилсерной кислоты и дегидратация ТМК. Из нижней части колонны выходит 45— )%-ная кислота, которая подвергается упарке под атмосферным давлением или под вакуумом в концентраторе К-4 (содержание кислоты доводится до начального— 60— 65%). Выходящие с верха колонны пары, содержащие кроме изобутилена воду, ТМК, олигомеры и унесенную кислоту, промываются горячим водным раствором щелочи в скруббере К-5 и частично конденсируются в теплообменнике Т-3, откуда конденсат поступает в отстойник Е-3. Жидкая фаза из Е-3, представляющая собой водный раствор ТМК с примесью олигомеров, направляется на колонну выделения ТМК (на схеме не показана), откуда ТМК возвращается в регенератор К-3. Пары изобутилена из емкости -5 проходят дополнительную водную отмывку в скруббере и поступают во всасывающий коллектор компрессора Н-3. Сжиженный продукт подвергается осушке и ректификации, после чего используется по назначению. На практике извлечение изобутилена проводится как в две, так и в три ступени. Вместо насосов-смесителей Н-1 и Н-2 могут применяться реакторы с мешалками, в том числе типа Вишневского, а также смесители инжекционного типа. Существенную сложность представляет узел концентрирования серной кислоты, аппаратура которого изготавливается нз тантала, графита, свинца или хастеллоя (в % (масс.) N1 — 85 Л — И Си — 4]. Остальное оборудование практически полностью изготовляется из обычной углеродистой стали. [c.299]

    В последующем на примере изобутанола будет описана дегидратация спиртов в олефины и показано, что ее можно проводить и под давлением. Дегидратация иод давлением имеет то преимущество, что при этом можно простым охлаждением водой превращать обра-зовавши11СЯ газообразный изобутилен в жидкость. Отщепившаяся от спирта вода образует нижний слой. Схема процесса представлена на рис. 28 [c.130]

    Окисление этилбензола в ацетофенон протекает при 125° и 2 ат. Превращение этилбензола за один цикл составляет 25—30%. Реакция экзотермическая. Сырые продукты реакции, состоящие примерно из 73% этилбензола,. 17% ацетофеноиа, 8% метилфенплкарбинола и 2% побочных продуктов, разделяют разгонкой. Полученную таким образом смесь, состоящую из 68% ацетофенона и 32% метилфенолкарбииола, гидрируют при 14 ат водорода и 130—170° над медно-хромо-железным катализатором. При гидрировании получается практически чистый метилфенилкарбинол. Дегидратация его в стирол производится над нанесенной на боксит окисью титана, в отсутствие давления при 250°. [c.236]


    Из жидких алифатических углеводородов наилучшим исходным материалом для сульфохлорирования являются н-парафины типа н-додекана и октадекана. Правда, и средние члены гомологического ряда, как н-гексан и н-октан, реагируют легко и сравнительно однозначно. Однако подобные углеводороды не являются подходящим промышленным сырьем, так как в чистом виде они мало доступны и слишком дороги. Они могут быть получены из соответствующих спиртов нормального строения каталитической дегидратацией последних в олефины, которые з.атем под давлением гидрируют, например в присутствии никелевого катализатора, в соответствующие парафины, или восстановлением спиртов нормального строения в одну ступень в насыщенные углеводороды, которое осуществляется, например, пропуска-нояем их в смеси с водородом над сульфидными катализаторами, лучше всего над смесями сульфидов никеля и вольфрама при температуре 300—320° и давлении 200 ат. [c.396]

    Упражнение 1Х.8. Лабораторные исследования дегидратации этилового спирта показывают, что реакция С2Н5ОН —> С2Н4 -Ь Н2О протекает-по первому порядку. Константа скоростп реакции при 150° С равна 0,52 л (моль-сек). Предложено сконструировать небольшой лабораторный реактор, который работал бы прп давлении 2 атм и температуре 150° С и давал бы 35%-е превращение спирта при массовой скорости потока 9,9 кг/ч. Если диаметр реактора 10 сл, то какова должна быть его длпна Предполагается, что газ идеален, реактор работает в режиме идеального вытеснения, а теплотой реакции можно пренебречь. [c.265]

    Обе реакции — синтез метилбутанднола и его дегидратация проходят в мягких условиях в жидкой фазе (температура 60— 120 °С, давление 0,6—1,5 МПа) с использованием гомогенного кислотного катализатора, который рециркулирует в процессе. Этот процесс по сравнению с получением изопрена через диме-тилдиоксан, характеризуется меньшим расходом сырья, позволяет упростить аппаратурное оформление, устранить сложную [c.175]

    Безводный сгульфат меди. Сообщалось [90], что нагревание или перегонка третичных спиртов над безводным сульфатом меди при 180—210° вызывает их дегидратацию. Этот метод, однако, не является общеупотребительным. Он был применен для дегидратации триизопропилкарбинола [62] и высококипящих третичных спиртов при 200° и давлении около 200 мм рт. ст. [91]. [c.415]

    Дегидратация при гидрировании. Некоторые вторичные и третичные спирты в присутствии никеля Ренея при 250° и 200 ат подвергаются одновременно процессам дегидратации и гидрирования 13]. Этот метод не нашел широкого применения, поскольку олефины — продукты предварительной (егидратации — обычно очень легко гидрируются при низких давлениях над никелем Ренея или с катализатором Адамса из окиси платины. Метод был применен для синтеза четырех метилнонанов [23]. [c.415]

    Дегидратация путем нагревания с иодом. Нагревание с иодом или же перегонка с небольшой добавкой иода как метод дегидратации впервые были предложены Хяббертом [54]. Этот метод обычно очень эффективен и удобен для дегидратации третичных спиртов и только редко может быть применен к вторичным или первичным спиртам, но даже в случае третичных спиртов часто приходится повышать температуру до 125—170°. Например, при кипячении с иодом трет.-амилового спирта с обратным холодильником при 102° дегидратации не происходит, но при 128° (и 12 ат) реакция идет быстро. Кипячение с обратным холодильником три-н-амилкарбинола при 170° (пониженное давление) быстро приводило к его дегидратации [27]. Выход 6-м-амилундецена составил при этом 95%. Во время дегидратации при помощи иода 2,2,3-триметилпентанола-3 и 2,3,4-триметилпентанола-3 около 20% спирта претерпевает структур- [c.416]

    Кромо того, обра. ующаяся при высоких давлениях гидроперекись может давать значительные количества ацетона в результате дегидратации на поверхности. [c.337]

    Уббелоде получил измеримые количества продуктов, кипящих выше температур кипения карбонильных соединений от С до С4 при окислении н-пентана при атмосферном давлении. Он проводил окисление в системе с циркуляцией при температурах от 320 до 350° С, отделяя к-пентан и низкокипящие продукты от конденсата и возвращая их в реактор [63]. Во фракции конденсата 65—95° С он выделил 2-метилтетрагидрофуран и обнаружил несколько ненасыщенных соединений, вероятно, дигидро-пиранов. Предположение Уббелоде относительно образования циклической окиси путем внутренней дегидратаций гидроперекиси является, по-видимому, наиболее удовлетворительным объяснением из всех, которые могут быть предложены. [c.339]

    Пентены и пентеновые смеси. Опыты по полимеризации проводились со смесью 2-метидбутена-1 и 2-метилбутена-2 [35], полученных дегидратацией трет-амилового спирта на окиси алюминия при 427° и атмосферном давлении, а также с чистым З-метилбутеном-1, приготовленным путем аналогичной же дегидратации изоамилового спирта с последующим трехкратным промыванием 70 %-ной серной кислотой, чтобы удалить с кислотным слоем небольшие количества 2-метилбутена-1 и -2. [c.198]

    Затем кислый аль-доль подается на крото-низацию в кротониза-ционную колонну.Здесь при температуре около 130°С и давлении 3,25 ат в присутствии уксусной кислоты происходит дегидратация альдоля с образованием кротонового альдегида. Последний в виде водного азео-тропа выделяется на отпарной колонне и после отделения от воды направляется на гидрирование. Гидрирование ведут в газовой фазе в трубчатых контактных аппаратах в присутствии медного катализатора. Конверсия кротонового альдегида в к-бу-ТИЛ0ВЫ11 снирт осуществляется при 160° С и 12-кратном избытке циркуляционного водорода. Экзотермическое тепло отводится испарением парового конденсата в межтрубном пространстве аппарата гидрирования. [c.66]

    Выделить жирные кислоты из реакционной смеси довольно трудно. Существует несколько епссобов. Сначала экстрагируют теплой водой низшие кислоты (муравьиную, уксусную, проиионовую), затем омыляют оставшиеся кислоты и гидролизуют сложные эфиры и лактогы щелочами под давлением при 150 °С. Из продуктов гидролиза Еыделяют отстаиванием и возвращают в сырье неомыляемую фракцию — верхний слой нижний представляет собой водный раствор мыл, в котором кроме натровых солей жирных кислот содержатся соли оксикислот, а также спирты, кетоны и растворенные парафиновые углеводороды. При нагревании раствора (300—350°С и 80—120 ат) в трубчатой печи происходит дегидратация оксикислот с образованием ненасыщенных кислот [c.155]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Лишь при дегидратации под давлением с фосфорной кислотой, и то в количестве 3%, Уайтмору и Менье удалось получить нормальный продукт дегидратации. Метил-этил-неопептил-карбинол при дегидратации давал главным образом нормальный продукт (за счет этильной группы) — 2,2,4-триметил-гексеп-4. [c.54]

    Кетоны. Крэкинг кетонов иод давлением, а также в присутствии глинозема, был изучен Ипатьевым п Петровым. Разложение проводилось при различных температурах, начиная от весьма низ-101Х, с целью фиксирования первичных продуктов термической диссоциации. Оказалось, что в первую фазу (при более низких температурах) идут преимущественно различные реакции. дегидратации. Ацетофенон например, при нагревании до 270—зоо дает [c.260]

    Для получения металлических катализаторов на носителях требуется восстановление окислов или солей газом (водородом, парами спирта) либо восстанавливающим раствором. В первом случае через катализатор, предварительно прокаленный для перевода солей в окислы, пропускают газ-восстановитель при повышенной температуре. Очень часто процесс восстановления ведут непосредственно в реакторе. Примером металлических катализаторов на носителе, восстанавливаемых из солей растворами, являются платиновые катализаторы на окиси алюминия и па силикагеле. Для восстановления соединений платины используют аммиачный раствор формальдегида [19 ]. При приготовлении платино-силикагелевого и аналогичных катализаторов надо иметь в виду, что неносредственная пропитка геля раствором часто приводит к растрескиванию геля. Причина этого, вероятно, кроется в возникновении при быстрой гидратации внутренних напряжений в геле, аналогичных возникаюнщм во время ускоренной дегидратации, или в более простом эффекте за счет давления сжимаемого в капиллярах зерна воздуха. Для устранения растрескивания гель перед пропиткой насыщают водой, пропуская через него сильно увлажненный воздух [16]. [c.184]

    Этиленгликоль получается преимущественно прямым каталитическим окислением этилена в этиленоксид с последующей ее гидратацией. Этиленоксид может быть превращен в гликоль каталитической или екаталитической гидратацией. В каталитическом процессе требуется большой избыток разбавленных водных кислот, обычно серной, а в некаталитическом — избыток воды. Реакция каталитического процесса проводится при 180°С и 21,5-105 11а, а некаталитичеокого процесса — при 95 °С и (15—20)-10 Па. Побочными продуктами реакции являются ди- и триэтиленгликоли, составляющие соответственно 9% и 1% (масс.). При этом выходы этих гликолей могут быть повышены увеличением температуры и небольшим понижением давления в реакторе. Небольшие количества полиэтиленглико-лей образуются также при обычных условиях, но выход их может быть увеличен при использовании в качестве катализатора аОН. Для разделения и очистки гликолей проводят дегидратацию реакционной смеси с последующей вакуумной перегонкой. [c.272]

    Давление водяного пара при одинаковом содержании воды в геле зависит от его структуры, а последняя может несколько изменяться во времени (явление старения геля). На рис. 177 представлены изотермы дегидратации образцов геля кремневых кислот различного возраста, причем для сопоставления показана также изотерма дегидратации гидрофана, природного минерала группы опалов, образующихся при твердении гидрогелей кремнезема в при1юдных условиях. [c.526]

    Внутримолекулярная дегидратация имеет более высокую энергию активации по сравнению с образованием простого эфира. По этой причине, а также из рассмотрения приведенной выше схемы следует, что дегидратацию с образованием ненасыщенной связи надо осуществлять при повышенной температуре и низком парциальном давлении или концентрации спирта. Дегидратацию с образованием простого эфпра проводят при более низкой температуре, более высоких концентрации и парциальном давлении спирта (например под некоторым давлением) и при неполной коиБсрсии спирта в реакторе. [c.187]

    Эти реакции эндотермичны, и пх равновесие смещается вправо только прп высокой температуре 500—600°С в случае образования ангидрида и 700 °С в случае 0бра 10вания кетеиа. Отметим, что при образовагни кетена на равновесное превращение положительно влияет н пониженное давление. Обе реакции протекают в присутствии гетерогенных катализаторов кислотного типа (фосфаты и бораты металлов) илн паров фосфорной кислоты, которую можно вводить в исходную смесь в виде эфиров, легко гидролизующихся в свободную кислоту. Механизм реакции в общем подобен другим процессам дегидратации  [c.200]

    Жидкофазная дегидратация используется в тех случаях, когда продукт или исходные реагенты недостаточно стабильны при повьи ленных температурах газофазного процесса. Это относится к синтезу хлорекса, диоксана и морфолина, но в жидкой фазе часто дегидратируют также нитроспирты, оксиальдегиды и оксикетоны, которые можно превращать в соответствующие ненасыщенные ве-щестпа и в газовой фазе. В качестве катализаторов используют серною кислоту (концентрацией до 70%), фосфорную кислоту, кислые фосфаты кальция или магния, сульфокатиониты (последние при температуре до 150°С). Процесс ведут при температуре от 100 до 160—200 °С и обычном давлении. [c.201]

    Газофазная дегидратация используется для получения стирола (из метилфенилкарбинола), изопрена (из изопентандиолов или изопентенолов), изобутилена (пз трег-бутанола), дизтилового эфира (из этанола), тетрагидрофурапа (из бутандиола-1,4), уксусного ангидрида (прямо из уксусной кислоты или через кетен) и других продуктов. Наиболее употребительными катализаторами являются фосфорная кислота па пористых носителях, оксид алюминия, кислые и средние фосфаты кальция или магния. Температура колеблется от 225—250 °С (получение дпэтилового эфира) до 700— 720°С (дегидратация уксусной кислоты в кетен). Давление чаще всего обычное, но прп получении диэтилового эфира оно может составлять 0,5—1 МПа, а при дегидратации в кетен 0,02—0,03 МПа. [c.202]

    Синтез аминов проводят в газовой фазе при 380—450 °С и —5 МПа. Давление применяют для повышения производитель-юсти установки, уменьшения габаритов аппаратуры и подавления юбочной дегидратации спирта. Катализатором служит активный с ксид алюминия или алюмосиликат, иногда с добавками промото- [c.280]

    Фосфорная кислота — более слабы " катализатор в сравнении с серной кислотоиГВ ее присутствии реакция протекает при повышенных температурах практически без образования побочных продуктов и смолы. Кислота после регенерации используется повторно. Процесс алкилирования бензола олефинами проводят при температуре 473 К и давлении 2,8—4,2 МПа. Срок службы катализатора в таких условиях — 3 года. Ядами катализатора являются органические соединения азота, нейтрализующие кислоту, и кислород, вызывающий отложение смолистых веществ на поверхности. Для предотвращения дегидратации и дезактивации катализатора в реакционную смесь добавляют небольшое количество воды (>0,1% масс, в расчете на сырье) или изопропилового спирта. Регенерируют катализатор обработкой три-этилфосфатом, растворенным в бензоле. Для продления срока службы катализатора реакционную смесь (бензол, олефин) предлагается пропускать над слоем аморфного кристаллического алюмосиликата. [c.22]

    При гидрировании фенола в циклогексанол основным побочным продуктом является циклогексанон, выход которого увеличивается при повышении температуры и снижении давления. Образование циклогексанона происходит как зл счет дегидратации циклогексанола, так и, вероятно, главным образом из фенольной формы циклогексанона, изомеризующейся в кетонную форму [c.44]

    Гидрирование ацетиленового спирта в диметилвинилкарбинол осуществляется на суспендированном в воде катализаторе, представляющем собой коллоидальный палладий, осажденный на носитель, с добавкой модификатора. Реакция протекает в системе из двух реакторов 6 (на рисунке показан один) при 30—80°Си давлении 0,5 — 1,0 МПа. Гидрирование происходит с выходом, близким к теоретически возможному. Продукты реакции проходят газосепаратор 7. Непрореагировавщий водород возвращается на гидрирование. Водная суспензия катализатора отделяется от органических продуктов с помощью центрифуги 8 и также возвращается в реактор 7. Сырой 2-метил-3-бутен-2-ол испаряется в теплообменнике 9 и поступает в реактор дегидратации 10. Превращение изоамиленового спирта в изопрен осуществляется в стационарном слое высокочистой окиси алюминия при атмосферном давлении и 250—300 °С. Цикл контактирования длится более 100 ч, после чего катализатор подвергается окислительной регенерации. Степень превращения изоамиленового спирта достигает 97%. Контактный газ конденсируется и подвергается водной отмывке в промывной колонне 11, в сочетании с отпарной колонной 12. Отмытый изоамиленовый спирт возвращается на контактирование Изопрен-сырец направляется на систему колонн экстрактивной ректификации Ы и 14, пройдя которые мономер достигает степени чистоты 99,9%. [c.382]


Смотреть страницы где упоминается термин Давление дегидратации: [c.413]    [c.515]    [c.334]    [c.343]    [c.729]    [c.171]    [c.366]    [c.526]    [c.184]    [c.184]    [c.371]    [c.192]    [c.614]    [c.35]    [c.42]   
Введение в термографию Издание 2 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидратация



© 2025 chem21.info Реклама на сайте