Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разложение органических веществ окислительное

    Самую многочисленную группу составляют химические процессы, из которых наиболее важными в технологии являются следующие процессы горение (сжигание жидкого, твердого и газообразного топлива с целью получения энергии, серы — для получения серной кислоты) пирогенные (коксование углей, пиролиз и крекинг нефтепродуктов) окислительно-восстановительные процессы (газификация твердых и жидких топлив, конверсия углеводородов) электрохимические (электролиз воды, растворов и расплавов солей, электрометаллургия, химические источники тока) электротермические (электровозгонка фосфора, получение карбида и цианамида кальция) плазмохимические (реакции в низкотемпературной плазме, включая окисление азота и пиролиз метана, получение ультрадисперсных порошкообразных продуктов) термическая диссоциация (получение извести, кальцинированной соды, глинозема и пигментов) обжиг и спекание (высокотемпературный синтез силикатов, получение цементного клинкера и керамических кислородсодержащих и бескислородных материалов со специальными функциями) гидрирование (синтез аммиака, метанола, гидрокрекинг и гидрогенизация жиров) комплексообразова-ние (разделение и рафинирование платиновых и драгоценных металлов, химическое обогащение руд, например путем хлорирующего или сульфатизирующего обжига для перевода металлов в летучие или способные к выщелачиванию водой соединения) химическое разложение сложных органических веществ (варка древесных отходов с растворами щелочей или бисульфита кальция с целью делигнизацми древесины в производстве целлюлозы) гидролиз (разложение целлюлозы из отходов сельскохозяйственного производства или деревообрабатывающей промышленности с по- [c.211]


    Окислительное разложение органических веществ с образованием двуокиси углерода, воды и неорганических азотсодержащих соединений (МНз, N2, N0 ). [c.19]

    Разложение органических веществ в процессе биологической очистки может происходить в аэробных и анаэробных условиях. Аэробные процессы обычно используются для окисления загрязнений, остающихся в сточной воде после отстаивания, а именно растворенных, коллоидных и тонкодиспергированных органических примесей, не выделившихся при отстаивании. Окисление осуществляется аэробными микроорганизмами в естественных (биологические пруды, поля орошения и поля фильтрации) условиях и на искусственных очистных сооружениях (аэротенки, био- и аэрофильтры). В аэротенках, окислительных прудах воспроизводятся процессы самоочищения, протекающие в водоемах. В биофильтрах, аэрофильтрах, на полях орошения и полях фильтрации воспроизводятся почвенные процессы самоочищения. Эффективность удаления органических веществ определяется технологическими особенностями очистных сооружений и выбором оптимальных условий для жизнедеятельности микроорганизмов. Оптимальная нагрузка по органическим веществам, температура, pH, количество растворенного, кислорода, отсутствие токсичных примесей определяют эти условия. [c.256]

    Наряду с этим процессом происходит тепловое разложение органического вещества топлива и взаимодействие кислорода и водяных паров с продуктами разложения в результате образуются СО2, СО и На. В зависимости от свойств и состава топлива, подвергаемого газификации, от характера окислительной среды (воздух, обогащенный кислородом смесь воздуха с водяным паром водяной пар или просто воздушное дутье) и от того, все ли органические осколки топлива подверглись воздействию кислорода, состав и, следовательно, свойства получаемых газов могут быть весьма различны. [c.107]

    Элементный органический анализ обычно связан с окислительным или восстановительным разложением органического вещества с целью превращения элементов, входящих в его состав, в простые продукты, удобные для последующего количественного определения.I [c.107]

    В первой половине XIX в. окисление сложных природных веществ с целью их разложения на более простые позволило получить множество новых органических соединений с различным содержанием углерода, тем самым оно способствовало расширению круга объектов, изучаемых органической химией Метод получения новых органических веществ окислительным дроблением — окислительная деструкция — был основным в то время, и это нашло отражение в первой классификации органических соединений — лестнице сгорания Жерара [34, стр. 17— 47]. Под лестницей сгорания Жерар понимал расположение всех веществ в виде лестницы так, чтобы высшие ее ступени были заняты самыми сложными веществами, а низшие — самыми простыми. При окислении ( сгорании ) соединений, стоящих на высших ступенях, получались менее сложные вещества, расположенные ниже. [c.23]


    Метод мокрого озоления достаточно быстр, удобен в использовании, не требует сложной аппаратуры и в большинстве почв дает вполне приемлемые результаты. Исключение могут составлять лишь карбонатные почвы и почвы с избыточным количеством извести. Карбонаты не подвергаются разложению хромовой смесью, но образующийся при взаимодействии карбоната кальция и серной кислоты гипс может обволакивать частицы почвы, препятствуя проникновению окислительного раствора и разложению органического вещества внутри частиц. [c.213]

    Уменьшение содержания Сорг с глубиной зависит от замедления процесса разложения органического вещества по мере углубления в толщу осадка и от продолжающегося его разложения в самом иле (вследствие окислительной среды осадка) до конечных продуктов распада. О количественной стороне уменьшения Сорг. с глубиной можно судить по данным табл. 10. [c.34]

    Мы уже упоминали о том, что разложение органического вещества его окислением было возведено в общий принцип и применялось несравнимо чаще других способов разложения даже в тех случаях, когда это не было оправдано. При разработке методов количественного определения кислорода для разложения органического вещества большей частью применяли окислительные способы. Но так как молекула органического вещества всегда содержит кислород в количестве, недостаточном для полного окисления остальных элементов, то окисление шло либо за счет кислорода окислителей, либо за счет газообразного кислорода. И в том и в другом случае авторы неизбежно приходили к непрямым методам, в которых из общего количества кислорода, измеренного в форме какого-либо одного, а иногда и нескольких соединений, вычиталось количество кислорода, введенного в реакцию для достижения полного окисления вещества. Из сказанного очевидна нецелесообразность использования окислительных методов разложения в случае определения кислорода. [c.56]

    В качестве примера можно привести обобщение сведений о химических реакциях (см. схемы 7 и 8, с. 86 и 87). Основная цель заданий 5 и 6 на с. 81 — помочь вам провести сравнительный анализ изученных ранее типов химических реакций и получить обобщенные знания о них. Учебный материал о реакциях разложения, соединения, замещения, обмена, окислительно-восстановительных процессах, реакциях, протекающих по радикальному и ионному механизму и т. д., вы изучали в курсах неорганической и органической химии. При этом вы, может быть, и не задумались над тем, происходит ли процесс окисления-восстановления в конкретной реакции соединения или разложения, т. е. характерна ли данная реакция только для неорганических веществ или является общей как для неорганических, так и для органических веществ. Чтобы ответить на эти и другие вопросы, следует сравнить большое число конкретных химических явлений и выяснить, что в них общее и чем они отличаются друг ОТ друга, в результате такого сравнительного анализа вы и сможете обобщить знания о них. [c.3]

    Как при разложении сплавлением неорганических материалов, при разложении органических веществ пероксид натрия смешивают с другими соединениями для снижения температуры сплавления, например, с гидроксидом натрия и для повышения окислительной способности, например, с нитратом или хлоратом калия, а также разбавляют для предотвращения протекания очень бурных реакций, в частности, карбонатом натрия [5.1621, 5.1622]. Состав некоторых таких смесей приведен в табл. 5.41. [c.247]

    Проблему нехватки пресной воды для промышленности пытаются решить различными путями. Одним из них является расширение оборотного и повторного использования (рекламации) очищенных сточных вод. Рекламация открывает новые резервы водоснабжения и находит применение в практике работы промышленных комплексов [1]. Решение этой задачи пытаются облегчить применением морской воды в системах оборотного водоснабжения заводов. Это многообещающий путь, поскольку запасы морской воды практически неисчерпаемы. Однако биохимическая очистка загрязненной морской воды связана с большими трудностями (см. гл. 4). Окислительные процессы в морской воде протекают менее интенсивно, чем в пресной. Бактериальная клетка медленнее усваивает необходимые ей питательные вещества. Поэтому биохимические процессы разложения органических веществ, их минерализация протекают в морской воде с незначительной скоростью. [c.93]

    За последнее время все чаще и чаще биологическую очистку ведут не в естественных условиях на полях орошения, а в искусственно созданных условиях, благоприятных для развития жизнедеятельности бактерий. Такая биологическая очистка производится либо в замкнутых резервуарах и отстойниках, либо в открытых биологических фильтрах. При биологической очистке сточных вод протекают окислительные (аэробные) процессы медленного сгорания органических веществ. Для переработки нерастворимых примесей (осадков) сточных вод или ила, образующегося при аэробной очистке, используются бескислородные (анаэробные) процессы, сопровождающиеся восстановительными реакциями разложения органических веществ .  [c.136]


    Необходимая для всякого живого организма энергия может быть заимствована не только из всевозможных окислительных процессов, но также и из других экзотермических химических реакций. В природе такие явления распространены чрезвычайно широко они получили название брожений. Словом брожение обозначают, обычно, разложение органических веществ под влиянием жизнедеятельности микроорганизмов с выделением газов. Это выделение часто бывает настолько сильным, что жидкость приходит в движение и, как говорят, бродит . Так, широко известное спиртовое брожение представляет цепь биохимических процессов, в результате которых происходит распад углевода (глюкозы) с образованием этилового спирта и углекислоты. Во время брожения дрожжевые клетки получают ту энергию, которая необходима им для образования (синтеза) новых веществ, используемых для процессов ее существования, роста и размножения. [c.375]

    Группировка вторичных анаэробов включает организмы с анаэробным окислительным обменом, обусловленным использованием несбраживаемых продуктов первичных анаэробов как доноров электронов и внешних неорганических акцепторов электронов в окислительно-восстановительных реакциях, приводящих к образованию полностью окисленного продукта разложения органического вещества - СО2 - и восстановленного неорганического соединения. Для неорганических соединений четко соблюдается термодинамическая последовательность окислительно-восстановительных потенциалов как предпочитаемых акцепторов наименее выгодные тер- [c.34]

    Нарушение равновесия между фотосинтезом и дыханием ведет к дестабилизации экосистемы водоема и его загрязнению. Когда интенсивность фотосинтеза выше скорости разложения органического вещества, например при избытке биогенных элементов (азота, фосфора), происходит накопление водорослей, что приводит к перегрузке водоемов органическими веществами. Ускорение деструкционных гетеротрофных процессов, например при поступлении больших масс органического вещества, может привести к исчерпанию растворенного кислорода в водной среде, к переходу от окислительных процессов к восстановительным денитрификации, сульфатредукции, метанообразованию при полной смене биоценоза водоема. В таких несбалансированных водоемах первичная продукция не используется или используется недостаточно полно организмами более высоких трофических уровней. В результате накапливаются разлагающиеся органические вещества и происходит так называемое вторичное загрязнение водоема. [c.81]

    Способы сжигания, включающие разложение органических веществ в окислительной или восстановительной атмосфере ил в токе газа при повышенных температурах. При этом образуют ся элементные галогены или простые неорганические соединения" [c.350]

    Окислительная минерализация органических веществ может быть проведена сожжением образцов в токе кислорода в трубке, в лампе, в колбе [1592], наполненной кислородом, мокрым сожжением, сплавлением с твердыми окислительными смесями. Сожжение в трубке с кислородом впервые предложено Преглем [386]. Образец разлагается в кварцевой трубке в токе кислорода, продукты разложения проходят над платиновым катализатором, нагретым до 700° С, и окислы серы поглощаются перекисью водорода, а серная кислота определяется гравиметрическим или титриметрическим методом. [c.169]

    Те ника безопасности в процессах окисления определяется главным образом тем, что окислительные агенты дают с органическими веществами взрывоопасные смеси или являются соединениями, склонными к разложению. Взрывоопасные свойства газообразных смесей углеводородов с воздухом и о температурах вспышки жидких углеводородов приведены в гл. I. Близк I к ним по пределам взрывоопасных концентраций и другие органические вещества (спирты, кетоны, альдегиды), причем эти пределы становятся более широкими при использовании чистого кисло )Ода. При жидкофазных реакциях окисления взрывоопасность тем больше, чем выше давление паров органического вещества, образующего взрывоопасные смеси с воздухом или кислородом. [c.355]

    Принцип работы HN-анализаторов состоит в том, что проба органического вещества подвергается окислительному разложению в реакторе. Это разложение начинается в месте расположения пробы и заканчивается в специальной зоне доокисления. Затем газообразные продукты разложения проходят через восстановительную зону, где поглощается избыток кислорода, введенного в реактор или выделенного реагентами, а также осуществляется восстановление оксидов азота до элементного азота.С целью разделения смеси газов используют обычно газовую хроматографию, селективную адсорбцию или их сочетание. Содержание продуктов окисления измеряют, применяя термокондуктометрический детектор катарометр. Во многих приборах (особенно последних выпусков) предусмотрено также применение современной вычислительной и регулирующей процесс техники (интегратор, микропроцессор, компьютер). [c.816]

    Разрушение хлорной извести при ее хранении протекает медленно. При нагревании разложение идет с выделением кислорода и выше 150° сопровождается взрывом. Смеси хлорной извести с органическими веществами воспламеняются при температурах ниже 100°. Поэтому попадание в хлорную известь органических примесей может привести к ее внезапному и быстрому разрушению. Разложение начинается в точках местных перегревов, вызванных окислительными процессами, и вследствие их экзотермичности быстро распространяется по всей массе продукта. [c.684]

    Прибалтийский сланец — горючее ископаемое органического происхождения. По современным представлениям [5, 152, 154, 186] превращение исходного органического материала — планктона (простейшие микроорганизмы и водоросли) происходило в окислительной среде, в которой не могли сохраниться форменные остатки организмов. Уже на ранней стадии разложения происходило усреднение состава органического вещества и образовывался коллоидный водный гумус [186]. [c.39]

    Для определения количественного содержания в нефтях так называемой общей серы, т. е. серы, входящей во все серосодержащие органические соединения, предложены многочисленные методы. Наиболее надежными среди них считаются окислительные, гарантирующие полное разложение анализируемого вещества с образованием хорошо растворимых и, следовательно, полностью улавливаемых окислов серы. Так как нефти значительно различаются по фракционному составу и физическим свойствам, единых универсальных условий полного окисления сернистых соединений, входящих в их состав, подобрать не удается. Поэтому для различных нефтей и нефтепродуктов применяются различные методы. [c.55]

    В биологических процессах азот используется в состоянии 3-, в основном в виде аминогрупп (см. вставку 2.7) белков. Это окислительное состояние предпочтительно для поглощения водорослями, а также является формой, в которой азот высвобождается в процессе разложения органического вещества, в основном в виде Однажды попав в почвы или воды, N114, будучи катионом, может быть адсорбирован на отрицательно заряженных пленках органического вещества, покрывающих почвенные частицы или поверхностях глинистых минералов. Аммоний потребляется также высшими растениями или водорослями или же окисляется до N0 — этот процесс обычно катализируется бактериями. [c.141]

    При применении газовой хроматографии в элементном анализе появляется возможность создания надежных автоматических приборов. Однако газохроматографические методы в настоящее время в отличие от классических весовых и волюметрических характеризуются обычно меньшей точностью. В большинстве опубликованных хроматографических методов для разложения органического вещества используются классические способы. Известно, что эти способы разработаны с учетом постепенного разложения навески и постепенной подачи продуктов разложения на окислительный или восстановительный слой трубки для сожжения. Такой способ разложения удачно сочетается с весовым или волюметрическим измерением продуктов разложения. Метод газовой хроматографии требует противоположного решения — моментального пуска продуктов разложения на хроматографическую колонку и детектор. Простое сочетание классических способов разложения с хроматографическим методом требует предварительной аккумуляции продуктов разложения. По этому пути и пошло большинство микроаналитиков [1—5]. Однако для сокращения времени анализа процесс разложения проводится в более быстром темпе, что, естественно, ведет к нарушению оптимальных условий разложения [6]. [c.30]

    Для одновременного определения серы и галогенов в органических веществах применяется газовая хроматография (разделение) в сочетании с кондуктометрией (количестванное определение). Навеска органического вещества подвергается окислительному разложению газообразным кислородом в замкнутой системе. По окончании окисления (3—5 мин.) продукты разложения направляются потоком газа-носителя на хроматографическую колонку, где галогеноводороды задерживаются, а двуокись серы поступает в кондуктометрическую ячейку для количественной оценки. После определения серы (4 мин.) включается нагреватель на хроматографической колонке и ННа1 выдуваются во вторую кондуктометрическую ячейку. Точность определения серы и галогенов +0,2% продолжительность 15 мин. Величина навески 1 жз и более. Установлено, что для проведения полного окисления серы и галогенсодержащих органических веществ при навесках 1—3 мг вполне достаточно количества кислорода, находящегося в закрытой кварцевой пробирке размером 200 X 10 мм. Разложение органического вещества проводится автоматически двигающейся печью при 900— 1000° С. Пробирка закрывается мембранным переключателем потока газа, изготовленным из органического стекла или тефлона. [c.37]

    Микроорганизмы — метатрофы,— разлагая в процессе своеч жизнедеятельности органические вещества сточных вод, непрерывно изменяют их окислительно-восстановительный потенции ал. Микробиальное разложение органического вещества ведет к образованию ряда промежуточных восстановительных сое-, динений. Эти соединения, а также выделяющийся водород переходят в сточную жидкость. Этот процесс может непрерывно продолжаться лишь при наличии кислорода, служащего акцептором водорода и поступающего в сточную жидкость из атмосферы. Кислород при этом восстанавливается водородом до перекиси водорода, которая при дальнейшем восстановлении дает воду. Поэтому в неочищенных сточных водах растворен-, ный кислород практически отсутствует. Окислительно-восстано--вительный потенциал неочищенных сточных вод под воздействием микробиологического разложения понижается, а далее при окислении кислородом восстановительных продуктов рас--пада окислительно-восстановительный потенциал начинает повышаться. Обычно в неочищенных стоках окислительно-восстановительный потенциал ЕЬ, измеряемый в вольтах, состав--ляет отрицательную величину (от—0,2 до —0,3 в)  [c.187]

    Комбинируя уравнения (1) и (2), весь процесс восстановления арсената серебра углеродом или продуктами окислительного термического разложения органических веществ, ведущими себя аналогично, можно схел1атически изобразить следующим образом  [c.105]

    Основным, чаще всего применяемым методам разложения органических веществ является окисление. В простейшем оформлении оно заключается в сожжении органического вещества в кислороде [86] без катализатора или в присутствии платины [604] по Копферу [364]. Прегль [555] и другие авторы [63, 236, 306, 595, 648 применили в микроанализе метод сожжения в кислороде в присутствии платинового катализатора. Кариус [98—101] впервые применил окисление органического вещества концентрированной азотной кислотой под давлением. Этот способ, несмотря на многие недостатки, сохранился по сей день как классический метод определения галоидов. Эмих и Донау [171] приспособили этот метод для микроаналитических определений. Бобиньи и Шаванн [26] разработали способ окисления органического вещества концентрированной серной кислотой и бихроматом калия. Эта методика пригодна только для определения хлора и брома, так как иод остается в окислительной смеси в виде нелетучей йодноватой кислоты. В дальнейшем эта методика была лриспособлена для микроанализа [151, 506, 662, 729]. Фольгард [687] окислял органическое вещество, нагревая его с карбонатом натрия и селитрой. Прингсгейм [559] применил нагревание с перекисью натрия. [c.96]

    ОКИСЛЕНИЕ. Присоединение кислорода к окисляющемуся веществу. Процесс обратный восстановлению. Однако в связи с тем, что многие окислительные реакции идут без участия кислорода, О. в более общей форлМе — это потеря электронов окисляющимся веществом, причем элежт-роны присоединяются к окислителю. Процесс О. сопровождается увеличением валентности. При О. веществ происходит выделение энергии. Процессы О. повсеместно протекают в природе горение, ржавление металлов, разложение органического вещества и т. д. Особенно большое значение имеет биологическое О., которое лежит в основе дыхания, благодаря которому поддерживается жизнедеятельность животных, растений и микроорганизмов. При биологичеком О. органических веществ внутри живых организмов значительная часть выделяющейся энергии используется организмами для осуществления синтетических процессов, а часть выделяется в виде тепловой энергии. Наиболее общий процесс биологического О.—это ступенчатый перенос ионов водорода и электронов от окисляющегося вещества на молекулярный кислород. Этот процесс протекает с участием ряда [c.206]

    Для разложения органического вещества путем окисления применяют разложение азотной кислотой в запаянных трубках (микрометод Кариуса), каталитическое сожжение в трубке для сожжения в токе кислорода (метод Прегля), окислительное разложение смесью серной кислоты и бихромата серебра (микрометод Бобиньи ) и, наконец, быстрое разложение в металлической микробомбе перекисью натрия, сахаром и нитратом калия (метод Парра ) или, лучше, перекисью натрия и этиленгликолем (метод Вурцщмитта). Широкому применению в микроанализе изящного метода разложения перекисью натрия мешает неболь-, шое содержание хлора в перекиси натрия, вследствие чего необходимо введение поправки на контрольный опыт с таким же количеством перекиси натрия. При полумикроанализе всегда отдают предпочтение этому способу разложения. [c.143]

    Для определения серы могут быть использованы все методы разложения органического вещества, применявшиеся при определении галогенов, основанные на окислительном разложении вещества, за исключением метода Бобиньи и Шаванна. Все подробности относительно проведения разложения методом Кариуса, сплавлением с едким натром и селитрой и разложением с перекисью натрия в бомбе Парра, приведены при описании определения галогенов. [c.242]

    Разложение органического вещества должно быть выполнено с соответствующими предосторожностями, чтобы избежать потерь мышьяка. Для большинства органических веществ применяют жесткую окислительную мокрую обработку смесью азотной и серной или азотной, серной и хлорной кислот. Следует избегать обугливания или побурения образца, так как это может привести к потере мцшьяка в виде трехокиси или хлорида мышьяка (III), если присутствуют хлориды. В качестве меры предосторожности жидкость, испаряющуюся при кипячении в первой стадии разложения, конденсируют и возвращают в смесь вместе с мышьяком, который может оказаться вследствие улетучивания. Если разложение проведено тщательно, то потери мышьяка ничтожны [c.262]

    В.И. Вернадский назвал газовым дыханием Земли . Понятие бактериальный фильтр по отношению к горючим углеводородным газам миграционного потока из подпочвенных осадочных пород было введено Г.А. Могилевским , в 1937-1939 гг. установившим окисление этих газов в почвенном слое. Впоследствии это явление было использовано им для поиска нефтегазовых месторождений, над которыми особенно активно развивались бактерии, способные использовать высшие гомологи метана. Окисление метана метанотрофами связано с циклом Зёнгена, идущим в местах разложения органического вещества, при котором высшие гомологи метана не образуются. В этом отношении окисление метана не является процессом, приуроченным к газовым аномалиям. Иное дело представляет окисление летучих высших гомологов метана углеводородоокисляющими микроорганизмами, которое оказалось приурочено к глубинным источникам этих газов. В газовых месторождениях с содержанием метана 80-90% углеводороды С2-С5 составляют 1—15%, причем их концентрация возрастает с глубиной. В попутном нефтяном газе сумма тяжелы углеводородов составляет 25 0%. Над газовыми и нефтяными месторождениями образуются аномалии в содержании углеводородов в газовой фазе пород и почвы. Аномалии приурочены к потокам газов из глубины. Массоперенос из глубин на дневную поверхность осуществляется по зонам трещиноватости пород за счет фильтрационного и диффузионного процессов. Необходимым условием развития окислительного бактериального фильтра служит доступ кислорода. В почве и рыхлых породах обеспечивается доступ атмосферного кислорода из почвенного воздуха или же переносимого подземными водами. В этой зоне смешения встречных газовых потоков и формируется микробное сообщество окислительного бактериального фильтра из микроорганизмов, использующих летучие углеводороды. Наиболее благоприятными для жизнедеятельности организмов, окисляющих неметановые летучие углеводороды, служат подпочвенные аэрируемые горизонты до уровня грунтовых вод и зоны неотектонической трещиноватости. Обычные пластовые температуры для нефтегазоносных бассейнов не превышают 100 °С, но область развития окисляющих углеводороды организмов бактериального фильтра находится у нас в стране в зоне температур менее 10 °С, а в подземных водах 4 °С. [c.143]

    Опасность процессов окисления обусловливается главным образом способностью окислительных агентов образовывать с органическими соединениями взрывчатые смеси или нестабильные, склонные к разложению химические вещества. Данные о взрывчатых свойствах газообразных смесей углеводородов с воздухом и температурах вспышки жидких углеводородов приведены в гл. I. Пределы взрываемости паро- и газовоздушных смесей значительно расширяются при использовании в качестве окислительного агента, чистого кислорода. Характеристика взрывоонасности некоторых газов в смеси с воздухом и кислородом приведена в табл. 9. [c.106]

    После работ Омелянского проводились систематические исследования механизма образования метана из органических и неорганических веществ. Сложность изучения метанообразующих микроорганизмов связана с тем, что оии являются строгими анаэробами, поэтому их чрезвычайно трудно изолировать. Кроме того, метановые бактерии очень медленно развиваются в культурах. Ряд исследователей связывают медленное развитие метановых бактерий в питательной среде с ее окислительно-восстановительными условиями. Установлена прямая зависимость механизма преобразования органического вещества от гНз среды. Так, при значении Ж2=12—12,9 разложение кальциевой соли муравьиной кислоты протекает с образованием водорода по следующей схеме (НС00)2Са-1-Н20->СаС0з + С02 + 2Н2. А при введении в систему газообразного водорода и значения гНг = 6—7 муравьиная кислота минерализуется с образованием метана по уравнению НСООН-Ь + ЗН2 >СН4 - - 2Н2О. [c.314]

    Разработан также метод [144, 145] определения обхцего содержания азота в нефтях и нефтепродуктах, который основан на окислительной деструкции органических веществ в статическом режиме в слое оксида никеля. Окисление в слое термически устойчивого Ni О при статическом режиме обеспечивает количественное превращение связанного азота в элементный. Этому благоприятствуют отсутствие кислорода (соответственно локальных перегревов, способствующих образованию оксидов азота) и статический режим, в котором оксиды азота, появляющиеся при термическом распаде нитро- и нитрозосоеднненпй, восстанавливаются, выступая в качестве активных окислителей углеродсодержащих продуктов термического разложения. [c.190]

    Проверявщие синтез применяли баню с расплавленным парафином (температура вспышки 325°). Эту операцию следует проводить в вытяжном шкафу, так как пары и продукты разложения, которые выделяются из масляной бани при высокой температуре, вредны. На тот случай, если масляная баня загорится, под руками должен быть огнетушитель. Более безопасно в пожарном отношении (хотя оно и более дорогое) высококипя-щее силиконовое масло, применяемое в качестве теплоносителя. Можно также применять смесь нитрита и нитрата натрия и нитрата калия, также используемую в качестве теплоносителя (температурные пределы применения 150—450°). Такая баня не может загореться, но она обладает тем недостатком, что является, по существу, окислительной смесью, так что при пользовании ею следует принимать меры предосторожности, чтобы в баню не попало органическое вещество последнее может подвергнуться мгновенному окислению, что сопровождается разбрызгиванием горячей расплавленной соли. При применении бани с расплавленными солями следует принимать меры для защиты от возможного разбрызгивания. [c.118]

    Начальные стадии биохимических процессов, процессов разложения и окисления называются оторфянением. Эти процессы протекают в основном за счет наличия кислорода, входящего в состав клетчатки (целлюлозы), содержание которой в древесине доходит до 70%, и межклеточного вещества — лигнина. Наиболее легко разлагается клетчатка. Продукты ее разложения в значительной мере рассеиваются в виде выделившихся газов, или, растворяясь, уносятся почвенными водами. Из компонентов органического вещества многоклеточных растений лигнин наиболее стойкий к биохимическим реакциям, но весьма нестоек к окислительным процессам. В древесине лигнин содержится в количестве от 20 до 30%. [c.7]

    Следует учитывать, что состав морской воды является весьма нестабильным. Он зависит от географического положения моря или океана, времени года, температуры, присутствия представителей микро- и макрофлоры и большого числа других факторов, которые трудно поддаются учету. Особенно непостоянны физико-химические характеристики воды прибрежной зоны. Вода этой зоны, из которой обычно осуществляется водозабор, оказывается, к сожалению, и наиболее коррозионно-аг-рессивной вследствие увеличивающегося загрязнения промышленными и бытовыми отходами. В морской воде имеется также много органических веществ — продуктов жизнедеятельности или разложения живых организмов. С их присутствием связано наличие в воде НгЗ. Деятельность живых организмов может изменять окислительно-восстановительные условия среды и pH. В результате фотосинтеза, требующего СО2, представители морской флоры повышают pH окружающей среды, а представители фауны, для которых диоксид углерода является продуктом метаболизма, напротив, могут уменьшать pH воды. Кроме [c.15]


Смотреть страницы где упоминается термин Разложение органических веществ окислительное: [c.134]    [c.245]    [c.156]    [c.410]    [c.29]    [c.167]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.80 , c.84 , c.89 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.80 , c.84 , c.89 ]




ПОИСК







© 2024 chem21.info Реклама на сайте