Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структур образование, влияние давлени

    Влияние давления. Давление в термодеструктивных процессах следует рассматривать как параметр, оказывающий значительное влияние на скорость газофазных реакций, на фракционный и групповой углеводородный состав как газовой, так и жидкой фаз реакционной смеси, тем самым и дисперсионной среды. Последнее обстоятельство обусловливает, в свою очередь, соответствующее изменение скоростей образования и расходования, а также молекулярной структуры асфальтенов, карбенов и карбоидов. Анализ большого количества экспериментальных данных свидетельствует, что в процессе термолиза нефтяных остатков с повышением давления  [c.372]


    Давление. В температурных пределах, обычных для жидкофазного крекинга (400—500°), наиболее летучие углеводороды нагреваются выше своих критических температур, и только менее летучие углеводороды находятся в жидком состоянии под давлением. По мере увеличения давления более летучие углеводороды растворяются в большей степени в сжиженных тяжелых остатках, так что только при очень высоких давлениях мы имеем дело с истинной жидкофазной (или гомогенной) системой. Кроме того весьма сомнительно, чтобы действительно существовал жидкофазный процесс в обычном смысле этого слова. Технические условия, которые обусловили бы существование жидкой фазы для исходного сырья, перестали бы существовать при нарушении структуры углеводородных молекул с образованием низкокипящих фракций. По мере увеличения превращения в жидкие углеводороды (что достигается увеличением фактора времени при постоянных условиях темлературы) отношение количества паров к количеству жидкости возрастает, так что такого рода процессы, несомненно, протекают в гетерогенной системе газ — жидкость. Влияние давления на характер продуктов крекинга находится в тесной зависимости от степени растворения продуктов крекинга в сжиженных маслах. [c.119]

    Считается, что давление благоприятно влияет на бимолекулярные реакции, так как для образования переходного состояния необходимо сближение реагирующих молекул на достаточно близкие расстояния. Исходя из этой предпосылки, давление, конечно, будет увеличивать расход мономера в актах роста и передачи цепи. Мономолекулярные реакции, или реакции диссоциации, тормозятся давлением, так как переходное состояние таких процессов, если только не происходит сольватации, обязательно будет связано с увеличением объема. Поскольку в полимеризационных процессах молекулярный вес и молекулярная структура полимера более важны, чем скорость его образования, то лучше рассмотреть влияние давления, используя зависимости для скорости и среднечисловой степени полимеризации. Удельная скорость полимеризации г для только что рассмотренного механизма, описывается уравнением [c.114]

    Авторы [95] нашли, что с увеличением давления (в интервале от атмосферного до 1000 атм) разложение перекиси водорода каталазой заметно замедляется. Это торможение не обусловлено ни протеканием реакции в диффузионной области, ни эффектами десольватации при образовании активированного комплекса. На основе анализа полученных данных о влиянии давления и температуры на скорость реакции высказывается вывод, что наблюденный эффект объясняется различием структуры белковой части фермента в исходном и переходном состояниях. В этом случае переходное состояние должно обладать большим объемом и в то же время большей жесткостью по сравнению с исходным состоянием. [c.241]


    Так как эти жизненно важные взаимодействия зависят от образования и разрыва слабых химических связей, к ним полностью относятся те данные и соображения, которые мы рассматривали в связи с вопросом о дестабилизации структуры белков под действием давлений. Хотя еще не все эти группы взаимодействий систематически изучены у глубоководных организмов, мы кратко рассмотрим примеры влияния давления на каждую из них, так как исследования, проведенные даже не па морских организмах, создают важную основу для дальнейшего прогресса в области биологии высоких давлений. [c.322]

    Сверхвысокое давление может вызвать интересные изменения как химических свойств, так и структуры полимеров. Хорошо известно, например, что под действием достаточно большого давления графит может быть превращен в алмаз. Давление порядка 4-10 Па убивает вирусы, т. е. сильное сжатие может приводить к стерилизации. Это явление объясняется коагуляцией (образованием сшитой структуры) белка [474]. В результате систематических исследований влияния давления Бриджмен установил, что целлюлоза, синтетический каучук и древесина могут быть превращены в твердые плотные полупрозрачные материалы [98.  [c.92]

    Свердруп и др. [6] и Дитрих [13] рассматривали вопросы образования, перемещения и распределения отдельных характерных водных масс от поверх--ности до дна океана. Ими установлено, что в целом океаны представляют собой сложную смесь, характеризующуюся множеством индивидуальных черт. Кроме того, на больших глубинах структура и свойства воды испытывают явное влияние давления и температуры. К тому же невозможно сделать надежные заключения относительно дальнейшей судьбы каких-либо добавок в глубоководной системе. Хорн [14] обобщил накопленные к настоящему времени данные и констатировал, что морские глубины представляют собой наиболее замечательное и наиболее таинственное в окружающем нас мире . [c.290]

    Существенное влияние на структуру псевдоожиженного слоя оказывает размер, форма и полидисперсный состав частиц. Крупные монодисперсные частицы способствуют образованию крупных пузырей. Увеличение полидисперсности такого слоя добавками более мелких частиц способствует повышению однородности псевдоожиженного слоя. Слишком мелкие частицы, склонные к агрегатированию, образуют при малых числах нсевдоожижения сквозные каналы (рис. ХХ1-5, г), которые при больших скоростях газа могут исчезнуть или сохраняются вблизи газораспределительной решетки. Увеличение давления (плотности) газа способствует повышению однородности псевдоожиженного слоя. [c.362]

    Эффект водородной хрупкости стали наиболее существенно проявляется в интервале температур от минус 20 до плюс 30°С и зависит от скорости деформации [18, 20]. Различают обратимую и необратимую водородные хрупкости. Охрупчивающее влияние водорода при его содержании до 8-10 мл/100 г в большинстве случаев процесс обратимый, то есть после вылеживания или низкотемпературного отпуска пластичность металла конструкции небольшого сечения восстанавливается вследствие десорбции водорода. Обратимая хрупкость стали обусловливается, в основном, наличием водорода, растворенного в кристаллической решетке. Необратимая хрупкость зависит от содержания в стали водорода в молекулярном состоянии, который агрегирован в коллекторах, где он находится под высоким давлением, вызывающим значительные трехосные напряжения и затрудняющим пластическую деформацию стали. Пластические свойства металла при необратимой хрупкости не восстанавливаются даже после вакуумного отжига, так как в структуре стали происходят необратимые изменения [21, 22] образование трещин по [раницам зерен, где наблюдается наибольшее скопление водорода, и обезуглероживание стали. [c.16]

    Когда кривые зависимости поверхностного давления от площади имеют иной характер, чем было рассмотрено выше, и поверхностное давление остается выше нуля, возникает, по-видимому, иное влияние структуры молекул. В частности, площадь, занимаемая молекулой, может зависеть от размеров ее концевой группы. В большинстве случаев группы, размеры которых велики, обусловливают образование большой площади при экстраполяции прямолинейного участка кривой до оси абсцисс. Очевидно, могут существовать и другие причины отклонений. [c.58]

    Понижение температуры может доходить до нескольких сотен градусов. Появление новой полиморфной модификации устанавливается, как указано выше, по излому на кривой сила сдвига — давление, ибо каждое вещество обладает своим специфическим значением сопротивле-ния сдвиговой деформации. Такие явления в каждом конкретном случае связаны либо с влиянием созданных условий на равновесие, так как стабильности различных фаз одного и того же вещества при гидростатических и негидростатических давлениях различны (в негидростатических условиях давление неодинаково в разных областях объема вещества), либо с влиянием этих же условий на скорость превращения, или с тем и другим вместе. Естественно, что в твердых веществах перестройка атомов при образовании новой кристаллической структуры в той или иной степени затруднена сдвиговое же усилие будет способствовать такой перестройке, и поэтому скорость превращения при ВД+ДС увеличится. [c.221]


    В более редких случаях однородные линейные макромолекулы под влиянием изменения внешних условий (например, температуры и давления) или добавок посторонних веществ могут вступать друг с другом в химическую (валентную) связь, устанавливающуюся в отдельных участках цепи на ее длине в виде мостов или перемычек (рис. 115, в). Такие молекулы получили название сшитых молекул ( сшитых структур). Так как такое сшивание происходит в пространстве, то макромолекулы становятся трехмерными образованиями и превращаются в жесткие системы с характерными для них свойствами (нерастворимостью, отсутствием плавкости, эластичности, пластичности и др.). Типичными ВМВ с трехмерными молекулами являются фенолформальдегидные смолы. [c.356]

    Развивая эти положения, А. Ф. Полак пришел к выводу, что внутренние напряжения возникают не только за счет роста контактов срастания, но и в момент их образования и срастания. Поэтому хотя увеличение числа контактов срастания положительно отражается на прочности возникающей структуры, внутренние напряжения срастания оказывают большое влияние и в целом прочность структуры снижается. В связи с этим он считает, что главным условием повышения прочности является обеспечение постоянной скорости процесса срастания кристаллов. Таким образом, прочность системы зависит от соотношения кристаллизационного давления и прочности монокристалла. [c.340]

    Эксплуатационные свойства антифрикционных смазок в сильной мере зависят от их так называемых объемно-механических характеристик. Консистентные смазки, являясь коллоидным образованием, могут проявлять механические свойства, характерные как для твердых тел, так и для жидкостей. Так, при сравнительно небольших нагрузках смазки обладают способностью сохранять свою форму. Под влиянием собственного веса смазки не стекают с вертикальных поверхностей и не выбрасываются из незакрытых узлов трения под действием центробежной силы. Это весьма существенное эксплуатационное качество смазок, присущее твердым телам, оценивается пределом прочности т. Под пределом прочности смазки понимают то минимальное давление в гс/см (напряжение сдвига), которое вызывает разрушение коллоидной структуры, в результате чего происходит сдвиг смазки и она начинает течь, как вязкая жидкость. [c.249]

    При решении различных промысловых задач добычи нефти возникает необходимость определения содержания в нефти асфальтенов и смол. Эти активные компоненты нефти оказывают значительное влияние на ее реологические характеристики. Повышенное содержание их приводит к образованию структуры в нефти, что повышает вязкость при малых градиентах давления и напряжениях сдвига. При фильтрации нефти асфальтены и смолы, адсор-бируясь на поверхности раздела фаз, образуют прочную пленку, что ведет, с одной стороны, к гидрофобизации поверхности нефтеносных пород. Это, в свою очередь, может привести к уменьшению [c.5]

    Наиболее полно в книге освещены физико-химические свойства пленок (глава IV), такие, как толщина и строение, разница между адсорбцией ПАВ в черной пленке и на поверхности раздела объемных фаз (вода—органическая жидкость), равновесных с пленкой, ориентация молекул ПАВ в пленках из органических жидкостей различной природы, межфазное натяжение пленки и краевые углы между черной пленкой и объемной фазой, образование многослойных черных пленок, кинетика возникновения и роста черных пятен, концентрация образования черных пятен и ее зависимость от свойств ПАВ и природы органической фазы, влияние электрического поля на натяжение и устойчивость пленок и др. Обсуждается взаимосвязь различных физико-химических свойств углеводородных пленок с их устойчивостью. На основе термодинамики тонких пленок и теории молекулярного взаимодействия, с учетом реальной структуры черной пленки и различных составляющих расклинивающего давления, авторами разработан точный метод экспериментального определения констант Гамакера и проведено исследование влияния разнообразных факторов на молекулярное взаимодействие в черных пленках. [c.4]

    Вследствие влияния сил вязкости и образования пограничного слоя на поверхности сопла структура течения не вполне соответствует теоретической. Это проявляется и в том, что значение относительного давления я , = р1/ро, при котором достигается максимальный расход, оказывается меньше теоретического я.. Согласно [16] значение я,, возрастает с увеличением числа Re и убывает с увеличением длины сопла при соблюдении условия я..<я . В табл. 1.16 [16] приведены значения я , для различных сопл и соответствующие значения коэффициентов расхода. [c.66]

    Такие молекулы, как жирные кислоты, при переходе в кристаллическое состояние могут принимать одну предпочтительную конформацию, повышая интенсивность тех характеристических полос, которые полезны для определения длины цепи [194]. В веществах, подобных 1,2-дихлорэтану, поворотная изомерия в кристаллическом состоянии часто исчезает, поскольку все изомеры при затвердевании занимают низшее энергетическое состояние, в результате чего спектр упрощается [234]. Явление полиморфизма хорошо известно, и ИК-спектры различных кристаллических форм одного и того же вещества могут часто заметно различаться. Переохлаждение некоторых жидкостей приводит к образованию стекол. Обычно спектр стекла не очень сильно отличается от спектра жидкости. Спектры монокристаллов ряда веществ были исследованы и интерпретированы с точки зрения структуры решетки. Для предсказания активности колебаний кристаллов разработаны правила отбора [85]. Влияние изменения фазы и давления на колебательные спектры рассмотрено Дэвисом [67]. [c.177]

    Породы и минералы, образовавшиеся в земной коре за счет вторичных изменений магматических и осадочных пород, называют метаморфическими. Процесс метаморфизма — это сложный физико-химический процесс изменения структуры и/или химического состава минералов под влиянием температуры, давления, а также окружающей среды. Важную роль здесь играют вода, кислород и диоксид углерода. Вода способствует перекристаллизации минералов с образованием более устойчивых соединений. К метаморфическим породам обычно относят сланцы, гнейсы, амфиболиты и другие [c.21]

    Начальная стадия роста A1N пленки на 6Я-81С(0001) субстрате исследовалась в [29]. В процессе роста наблюдались особенности островкового типа, их слияние сопровождается появлением двойных позиционных границ, определяющих качество таких пленок. В [30] показано, что при статическом отжиге нитрида алюми- ния происходит деградация его структуры процесс протекает в четыре стадии, соответствующих 1) уменьшению плотности в кластерах дислокаций (1000—1200 °С) 2) образованию объемных границ (1400—1600 °С) 3) образованию тонких границ и возникновению ядер первоначальной рекристаллизации границ (1600— 1800 °С) 4) росту зерен, сопровождающемся образованием пор и осаждением растворенных элементов. Авторы [31] рассмотрели эффект влияния полного и парциального давления азота в процес- [c.7]

    Влияние давления. Давление в термодеструктивных процессах следует рассматривать как параметр, оказывающий значит( льное влияние на скорость газофазных реакций, на фракционный и г]руппо-вой углеводородный состав как газовой, так и жидкой фаз реакционной смеси, тем самым и дисперсионной среда. Последнее обстоятельство обусловливает, в свою очередь, соответствующее изменение скоростей образования и расходования, а также молекулярную структуру асфальтенов, карбенов и карбоидов. [c.64]

    Процесс образования первичной структуры и влияние на него фосфогипса изучали путем формования и испытания образцов различного состава. С этой целью были изготовлены две серии образцов а) гипсовое вяжущее Г-4-Б-П (ПГ) — фосфогипс МХЗ (ДГ) б) гипсовое вяжущее Г-4-Б-П (ПГ) — Вольский песок (П). Содержание ПГ изменялось от О до 50 %, водотвердое отношение (В/Т) — 0,22...0,17. Образцы цилиндрической формы прессовали под давлением 20 МПа в течение 30 с и испытывали на прочность при сжатии и на водостойкость через 1 сут твердения при ф = 60 10 % и г = 20 2 С. [c.51]

    Хотя смазки на оксистеарате лития химически сравнительно просты [102], важное промышленное значение и универсальность побудили провести обширные исследования методов их производства. Разработаны условия их производства при низкой, средней и высокой температурах. Ниже 166 °С (максимальная температура при паровом обогреве и минимальная — для первого фазового превращения) хорошее влияние оказывают введение эстолида и медленное добавление масляной основы [80] в сочетании с медленной подачей пара под повышенным давлением во время омыления [34] или эффективной гомогенизацией [339]. В случае производства этих смазок при 166 — 196 °С, когда кристаллы мыла менее прочны и, не растворяясь, диспергируются с образованием гелеобразной структуры, благоприятное влияние оказывает быстрое охлаждение с 193 до 166— 182 °С, после чего следует проводить гомогенизацию в условиях высоких напряжений сдвига [155] или ноддерживать высокое соотношение масло мыло в концентрате во время омыления [125]. Приготовлению смазки при высокой температуре благоприятствует охлаждение со скоростью более 2 °С в минуту от температуры плавления примерно до 150 X [18, 232] или рециркуляция части консистентной смазки при охлаждении холодным маслом [ПО]. Замена 12-оксистеариновой кислоты (вырабатываемой из импортируемого в США касторового масла) жирными кислотами местного производства, например, получаемыми из олеиновой кислоты (окисление до диоксистеариновой кислоты [83], этоксилирование и гидрирование [54] или только этоксилирование [78]) неизбежно сопровождается снижением выхода смазки или температуры ее плавления или ухудшением других свойств. [c.137]

    Измерения для ряда бимолекулярных реакщ1й подтверждают этот вывод А именно, если реакция является нормальной (ср. стр. 17), т. е. если она имеет небольшое положительное значение Д5 , как, например, реакция между этилатом натрия и иодистым этилом или гидролиз монохлорацетата натрия гидроокисью натрия, то увеличение скорости с возрастанием давления относительно мало (рис. 113). Для так называемых медленных реак-Щ1й , имеющих большое отрицательное значение Д5 , куда, например, относятся образование солей четырехзамещенного аммония или этерификащ Я этилового спирта уксусным ангидридом, влияние давления более заметно. Если активированный комплекс имеет значительно меньшую энтропию, чем исходные вещества, как в случае медленных реакций, то он, вероятно, имеет более компактную структуру, чем в случае нормаль-иой реакции. Отсюда следует, что величина К,. — И будет больше для медленных реакций, чем для нормальных, и потому увеличение скорости реакции с возрастанием давления в первом случае будет значительнее, чем во втором. [c.448]

    Но все-таки общее направление движения нефти в конечном счете определяется тектоникой, поэтому, если можно сп-орить о роли тех или иных синклинальных форм на фоне других тектонических структур, то ни в коем случае нельзя отрицать громадного значения и роли больших депрессий регионального характера, названных нами геосинклиналями. Ведь в них-то и происходило накопление первично битуминозного материала — так называемой материнской породы. Здесь под влиянием повышенной температуры и давления и при участии других факторов (анаэробных бактерий) происходило превращение органического материала в диффузно рассеянную в породе нефть, и отсюда началось ее движение вследствие разницы в удельном весе воды и нефти происходит их разделение и подъем последней вверх по восстанию. На своем пути поднимающаяся из геосинклиналей с места своей родины нефть встречала различного рода препятствия тектонического характера в виде литологических особенностей того или иного пласта, и в этих преградах происходило ее накопление и образование нефтяных залежей . Отрицая возможность накопления нефти в некоторых локальных структурных типах синклиналей, нельзя забывать огромного значения и роли геосинклиналей в образовании и аккумуляции нефти. [c.272]

    Выполнено сравнительное экспериментальное исследование удельных сопротивлений осадков, полученных на воронке с поршнем и на рамном фильтрпрессе с 4 рамами размером 0,2X0,2 м, с использованием водных суспензий окиси цинка, карбоната кальция и карбоната магния при концентрации 20— 150 кг-м- и разности давлений 35-10 —170-10 Па [186]. В частности найдено, что для осадка карбоната магния Вп составляет 0,71—0,72, а бф равно 0,64—0,69 соответственно те же величины для осадка окиси цинка находятся в пределах 0,61—0,69 и 0,77—0,81 (здесь Вп и бф — пористости осадка на фильтре с порщнем и на фильтрпрессе). Отсюда видно большое различие в пористости осадков, образованных на фильтре с поршнем и на фильтрпрессе, причем для осадка карбоната магния бп > Вф, а для осадка окиси цинка еп < Еф. В соответствии с сильной зависимостью удельного сопротивления осадка от пористости оказалось, что Гп отличается в несколько раз от Гф, причем для осадка карбоната магния Гп<Гф, а для осадка окиси цинка Гп>Гф (здесь и Гф — удельные сопротивления осадков, образованных на фильтре с поршнем и на фильтрпрессе). Однако отмечено, что значительное различие между г и Гф не может быть объяснено влиянием одной пористости, а также трением осадка о стенки фильтра с поршнем. Указано на различие в структуре осадков на фильтрах обоих типов. Высказано соображение о необходимости усовершенствования методики работы на фильтре с поршнем, без чего значения удельного сопротивления осадка, полученные на этом лабораторном приборе, не могут быть использованы для практических расчетов. Для ясности следует сказать, что рамный фильтрпресс с вертикальной поверхностью фильтрования представляет собой недостаточно подходящий объект для сравнения с фильтром с поршнем, поскольку в фильтрпрессе наблюдаются специфические явления, связанные со сползанием осадка и образование.м мостиков, которые затруднительно учесть в теоретическом сопоставлении. [c.182]

    Исследована структура осадков песка с размером частиц около 600 мкм методом оптического сканирования микрошлифов [187]. Осадки получены на обычном фильтре диаметром 90 мм и на фильтре с поршнем диаметром 75 мм в качестве жидкой фазы использована эпоксидная смола с вязкостью 1,4 Н-с-м- . В опытах на обычном фильтре осадки образованы путем фильтрования при постоянной скорости под давлением сжатого воздуха и путем седиментации. В экспериментах на фильтре с поршнем осадок образован двумя способами разделением суспензии песка в эпоксидной смоле под вакуумо.ч с последующим механическим сжатием осадка поршнем (влажный осадок) сжатием поршнем сухих частиц песка с последующим фильтрованием смолы через осадок (сухой осадок). По окончании опытов через осадок фильтровалось вещество, полимери-зующее смолу, твердые осадки разрезались алмазной пилой в продольном и поперечном направлениях, шлифовались алмазной пастой и шлифы исследовались. Установлена разница в структуре осадков, полученных при обычном фильтровании, седиментации и на фильтре с поршнем. Отмечено, что влажный осадок, полученный на фильтре с поршнем, существенно отличается по своей структуре от осадка, полученного на обычном фильтре при одинаковой разности давлений. Возможность использования результатов опытов на фильтре с поршнем для практических расчетов поставлена под сомнение. Значение приведенного исследования состоит в том, что в опытах на обычном фильтре и на фильтре с поршнем было устранено влияние многих искажающих факторов, поскольку изучался по существу чисто гидродинамический процесс с использованием достаточно крупных частиц округлой формы. [c.182]

    Рассмотрено влияние переплетения нитей в ткани на проницаемость монофиламентных и полифиламентных тканей [436]. Обсуждено влияние структуры пор ткани на характер отложения осадка и условия образования сводиков над устьями пор. Отмечено, что результаты определения эквивалентного размера пор микроскопическим наблюдением, пузырьковым методом и измерением проницаемости для монофиламентных тканей согласуются лучше, чем для полифиламентных в последних тканях пористость более сложная и состоит из пористостей внутри волокон и вне волокон. Применительно к фильтрованию чистой жидкости (воды) через моно-филаментные ткани различного переплетения зависимость скорости потока от разности давлений выражена с использованием коэффициента расхода в особой форме и модифицированного числа Рейнольдса теоретические расчеты проницаемости полифиламентных тканей не достигают достаточного соответствия экспериментальным данным вследствие ряда существенных упрощений при выводе уравнений. Для суспензий с концентрацией более 20% [c.381]

    Формирование дисперсной структуры нефти определяется, в основ-но.м, температурой и при наличии газа - также давлением в системе. Закономерности протекания процессов, составляющих первую стадию, рассматривались ранее. В пределах температур, в которых возможно, образование отложений, гидравлическое состояние системы на протекании процессов, составляющих первую стадию, практически не сказывается. Влияние гидравлической ситуации на состояние нефти как дисперсной системы проявляется лищь при температурах, ниже температуры гелеобразования, когда механическое перемешивание способно разрушить пространственную сетку, составленную из сшитых кристалликов парафина, и поддерживать нефть в свободнодисперсном состоянии. Между тем именно гидравлическое состояние в системе определяет особенности протекания последующих двух стадий. Закономерности перемещения частиц дисперсной фазы к местам формирования отложений, а также баланс сил, обеспечивающий закрепление частиц на поверхности подложки, полностью обуславливаются гидравлической ситуацией в системе. [c.54]

    В свете полученных данных вполне объяснимы результаты, опубликованные Кантцем [38], Кларком [39] и другими авторами, исследовавшими кристаллическую структуру полимеров, перерабатывавшихся литьем под давлением. В поверхностном слое молекулярные цепи, вытянутые в направлении продольного течения, образуют зародыши кристаллизации, на которых растут ламели в плоскости, перпендикулярной направлению потока. В слое, лежащем непосредственно под поверхностным, продолжается образование зародышей кристаллизации, но растущие здесь ламели перпендикулярны поверхности формы и по отношению к направлению течения ориентированы случайным образом. Морфология образующейся при этом структуры определяется, по-видимому, совместным влиянием ориентации за счет сдвигового течения и значительного перепада температуры. Напомним, что как сдвиговое течение, так и растяжение расплава способны привести к значительной ориентации цепей, вызывающей зародышеобразование (см. разд. 3.6). В центре изделия наблюдается сферолитная морфология, характеризующаяся отсут- [c.539]

    Максимальное значение концентрации асфальтенов и соответствующая её достижению глубина карбонизации зависят от природы ДКО и условий их термообработки (рис.5.3 и 5.4). Энергия активации накопления асфальтенов составляет 85 и 184 кДж/моль, а а-фракцин - 102 и 260 кДжУмоль для сернистого и малосернистого ДКО соответственно на участке слева от максимума концентрации асфальтенов, что указывает на существенно более высокую реакционную способность сернистого остатка. В случае малосернистого ДКО при Т <420°С время установления МК.А значительно больше 6ч, а при 440°С составляет З...4,5ч. Для сернистого остатка эти температуры на 20°С ниже. Повышение давления снижает МКА и увеличивает время её достижения. В зависимости от природы остатков, температуры и давления МКА составляет 40...70% и достигается в КМ, содержащих 12...25% а-фракции, которая появляется в КМ при существенно меньших концентрациях асфальтенов (2,9 и 18% для малосернистого и сернистого остатков соответственно), возрастающих с повышением ароматичности остатков. Механическое перемешивание КМ способствует более быстрому достижению предельного выхода дистиллята и увеличению вклада неизотермической стадии нагрева в формирование состава и структуры КМ. При Т, . 2450°С механическое перемешивание по влиянию на выход КМ эквивалентно повышению температуры на 30...50°С. При температурах выше 470°С влияние механического перемешивания на выход КМ незначительно. На изотермической стадии механическое перемешивание влияет на состав и структуру КМ и в меньшей степени на её выход. Зависимость концентрации асфальтенов в КМ от степени превращения ДКО при карбонизации с механическим перемешиванием обнаруживает два максимума [218]. Первый максимум наблюдается на неизотермической стадии как результат физического концентрирования асфальтенов и образования их из наиболее реакционноспособной части мальтенов, второй - на изотермической стадии как результат образования асфальтенов из малореакционно-способных компонентов смол и ПЦА-углеводородов. В области второго [c.155]

    Величина ККМ — важная коллоидно-химическая характеристика ПАВ. Она связана с олеофильно-гидрофильным балансом молекул ПАВ, характеризует их склонность к образованию мицеллярных структур и в известной степени служит мерой олеофильности этих структур. Величина ККМ зависит как от особенностей молекулярного строения ПАВ, так и от внешних факторов — температуры, давления, присутствия в растворе электролитов, полярных и неполярных органических веществ и т. д. Закономерности влияния различных факторов на ККМ и свойства мицелл представляют интерес и с точки зрения развития теории мицеллообразования, и в практическом отношении, поскольку их изучение открывает возможности регулирования коллоидных свойств растворов ПАВ путем направленного изменения их молекулярной структуры, а также за счет различных добавок. [c.58]

    Из ряда работ Б. В. Дерягина с сотрудниками было найдено, что для воды в пристенных слоях толщиной от 10 до 10 см обнаруживается сильное увеличение вязкости под влиянием поверхностных сил, обусловленных ориентацией диполей воды к образованием структур, обладающих прочностью на сдвиг. В работе Б. В. Дерягина и М. М. Кусакова, где пузырек воздуха в воде прижимался к стеклянной плоской поверхности, было установлено, что пристенные слои чистой воды, обладающие сдвиговой прочностью, достигают размеров 1 10 см. Эти наблюдения позволили авторам предположить наличие расклинивающего давления в зазоре между пузырьком газа и стенкой, которое оценивалось по известному уравнению Лапласа  [c.87]

    Возможно дезактивирующее воздействие на катализатор окислителей в концентрациях, значительно превышающих необходимые для частичного или полного окисления метана. Влияние окислителей на снижение активности катализатора может иметь место как прн случайных нарушениях технологического режима, так и при продувке контактных аппаратов водяным паром или воздухом с целью газификации отложившегося углерода, удаления горючих газов. Это явление может наблюдаться и в случае проведения конверсии при повышенном давлении, когда необходимость повышения температуры конверсии стремятся компенсировать увеличением парциального давления водяного пара в реагирующей парогазовой смеси. При избытке закиси никеля, которая взаимодействует с А12О3, образуется шпинель — №А1204, неактивная при конверсии метана [10, 13]. Возможность образования алюмината никеля, трудно восстанавливаемого до металлического никеля, необходимо учитывать и при создании нового катализатора, поскольку технология его получения включает стадию термической обработки. Температура начала образования алюмината никеля колеблется от 300 до 1000° С и определяется физико-химической структурой окисей никеля и алюминия, а также природой газовой среды. На скорость образования шпинели [c.66]

    Влияние ПАВ проявляется как в момент диспергирования латекса, так и во время сушки капель. В зависимости от природы ПАВ сред них имеются пенообразователи (соли жирных кислот) и пеногасителн (жиры, полисилоксановые соединения). Как показали исследования [42], первые способствуют увеличению числа пузырьков воздуха в капельках распыливаемых композиций, вторые - уменьшают число пузырьков в каплях. Натриевые и калиевые соли жирных кислот, алкилсульфаты, алкилсульфонаты, применяемые в качестве эмульгаторов в процессах эмульсионной полимеризации ВХ, являются типичными пеногенераторами и это следует учитывать при разработке технологии сушки латексов ПВХ. Присутствие ПАВ влияет и на кинетику сушки капель, а последняя - на структуру сухих частиц. По данным, полученным при исследовании кинетики сушки капель СМС в присутствии ионогенных ПАВ [38], процесс обезвоживания протекает без стадии капения, что обусловливает получение монолитных частиц. По данным [35] поверхностное натяжение жидкой фазы в латексе ПВХ сильно влияет на плотность высушенных частиц при сравнительно низкой температуре сушки. При уменьшении поверхностного натяжения существенно увеличивается насыпная плотность высушенного ПВХ. Это можно объяснить уменьшением давления на свод оболочки согласно формуле (4.1) и соответственно меньшей степенью образования продавленных горшковидных частиц. [c.124]

    Таким образом, модель р->-а-перехода одновременно может быть моделью образования дофинейских (механических) двойников кварца. Из этой модели ясно, что для образования дофинейского двойника все тетраэдры в структуре исходного индивида должны совершать коллективный поворот вокруг системы осей 2х на угол 26 и небольшой сдвиг вдоль этих осей. При такой трансформации вся двойникующаяся структура должна пройти через конфигурацию р-фазы, что, очевидно, требует затраты энергии. При комнатной температуре угол поворота 26 составляет 32,6°, а сдвиг— приблизительно 0,3 нм. Зависимость угла 6 от 7 вблизи точки фазового перехода объясняет хорошо известное и многократно описанное влияние температуры на образование дофинейских двойников. Столь же естественно объясняется и анизотропия образования механических двойников в кварце. А. В. Шубников и Е. В. Цинзерлинг в работе [38] показали, что при сосредоточенной механической нагрузке на плоскость базиса дофинейские двойники образуются в тех трех секторах, в которых давление от шаровидного индентора направлено приблизительно нормально к плоскостям отрицательного ромбоэдра г. Из структурной схемы образования дофинейского двойника видно, что необходимые смещения и поворот тетраэдров могут быть осуществлены при давлении именно в направлении малого (но не большого) ромбоэдра (рис. 27). [c.110]


Смотреть страницы где упоминается термин Структур образование, влияние давлени: [c.85]    [c.85]    [c.478]    [c.324]    [c.16]    [c.109]    [c.204]    [c.95]    [c.60]    [c.155]    [c.353]    [c.383]    [c.177]   
Структуры неорганических веществ (1950) -- [ c.805 ]




ПОИСК







© 2025 chem21.info Реклама на сайте