Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Относительная шкала времени

    Значения потенциалов полунейтрализации, измеренные в разное время, колебались в пределах 10 мв это значение можно принять за точность, с которой измерены относительные шкалы кислотности исследуемых растворителей. Размеры относительной [c.56]

    Интервал шкалы Время движения нити, сек. Ионизационный ток дел./мин. Относительная чувствитель- ность [c.113]

    Время работы СК при заданном токе интегрирования определяется по положению границы раздела фаз свинец— электролит в измерительной трубке относительно шкалы 10, нанесенной на ее поверхность. Диапазон измерения време >ных интервалов находится в пределах от 100 до 10000 ч. Рабочее положение жестко не лимитируется. Предпочтительным, как и для МК, является вертикальное положение с расположением анодом вверх. Погрешность измерения времени интегрирования при заданном токе около 5%. При горизонтальном положении погрешность прибора возрастает до 10%. В процессе работы СК изменяется расстояние между электродами, вследствие чего внутреннее сопротивление колеблется в пределах от 0,05 до 10 кОм. Окончание процесса растворения свинца на электроде 7 сопровождается скачком напряжения на СК, который может использоваться в качестве сигнала об окончании процесса интегрирования. [c.142]


    Для водородного электрода было принято стандартное состояние, при котором йн+= 1 и Рн, = 1 атм. С учетом этого создавалась шкала стандартных электродных, потенциалов. В настоящее время значения ф° сохранены, но измерение давления в атмосферах не предусмотрено системой СИ. В связи с этим в уравнения для расчета потенциалов газовых электродов следует вводить безразмерное относительное парциальное давление газа, т. е. отношение парциального [c.480]

    Экспрессные методы являются простыми и оперативными, но по точности уступают лабораторным. Они осуществляются специальными приборами — газоанализаторами многочисленных конструкций, как специализированными для различных веществ, так и относительно универсальными. К числу последних относятся универсальные газоанализаторы типа УГ (УГ-2, УГ-3, ГХ-4 и др.), основанные на измерении длины окрашенной части столбика индикаторного порошка, помещенного в стеклянную трубку и меняющего свой цвет при просасывании через него воздуха, содержащего определяемое вещество (рис, 4.2), Длина окрашенного столбика пропорциональна концентрации определяемого вещества в воздухе и измеряется по шкале градуированной в миллиграммах на кубический метр (мг/м ). Применяя соответствующие индикаторные порошки, заранее помещенные в трубки и меняя время (т. е. объем) просасываемого через прибор испытуемого воздуха, можно втечение 10—15 мин определить [c.48]

    Релаксационная спектрометрия полимеров в настоящее время находится в начальной стадии развития, но ей принадлежит, по-видимому, большое будущее. Важны развитие и разработка новейших методов получения непрерывных и дискретных спектров и применение их для расчетов и прогнозирования вязкоупругих свойств полимерных материалов. Очевидно, что разработка современных методов расчета и прогнозирования невозможна без знания всех релаксационных механизмов и их кинетических характеристик для различных полимерных материалов и особенно для тех, которые находятся в условиях длительной эксплуатации. В настоящее время можно считать установленными основные релаксационные пере ходы в полимерах, которые необходимо учитывать при прогнозировании их свойств. В частности, это относится к новым данным по релаксационным переходам (а -, Хг, кз- и ф-переходы), находящимся по шкале времен релаксации между а-процессом (стеклованием) и б-процессом (химической релаксацией). Для прогнозирования эксплуатационных вязкоупругих свойств эластомеров при относительно низких температурах наиболее важную роль играют медленные физические процессы релаксации ( - и ф-процессы), так как в течение длительного промежутка времени (до 50 лет) химической релаксации практически не наблюдается. Однако при высоких температурах для длительного прогнозирования основную роль начинает играть химическая релаксация. [c.144]


    В то же время экспериментальная проверка показывает, что обший ход зависимости ошибки измерения от абсолютного значения оптической плотности очень близок к теоретическому. Он практически не зависит от класса прибора и лишь отличается по абсолютному значению ошибки АЛ чем выше класс прибора и точнее отсчет по шкале, тем меньше абсолютное значение относительной ошибки при сохранении примерно постоянным общего хода зависимости. Так, в работах [c.33]

    Долгое время в качестве единицы атомной массы была принята /16 часть средней массы атомов природного кислорода, состоящего из изотопов 0, и 0. Эта единица составляла основу химической шкалы атомных масс. В основе же физической шкалы лежала 716 часть массы изотопа 0. Переходный множитель от одной шкалы к другой 1,000275. Существование двух шкал атомных масс создавало определенные трудности. Разница между ними намного превышает точность определения атомных масс современными физическими и физико-химическими методами. В 1961 г. Международный конгресс по чистой и прикладной химии (ШРАС) утвердил единую углеродную шкалу атомных масс. Основа ее — атомная единица массы (а.е.м.), равная /12 части массы изотопа углерода С. По углеродной шкале относительные атомные массы водорода и кислорода соответственно равны 1,0079 и 15,9994. Таким образом, атомная (элементная) масса — среднее значение массы атома химического элемента, выраженное в атомных единицах массы. Изотопная масса — масса данного изотопа в атомных единицах массы. Молекулярная масса — масса молекулы, выраженная в атомных единицах массы она равна сумме масс всех атомов, из которых состоит молекула. [c.16]

    В седиментометре Фигуровского (рис. 112) к упругому стеклянному или кварцевому стержню / прикреплена на стеклянной нити 2 с крючком чашечка 3, на которой накапливается осадок суспензии. Прогиб плеча измеряется по шкале при помощи микроскопа. По мере оседания частиц дисперсной фазы прогиб увеличивается вначале быстро вследствие преимущественного выпадения более тяжелых частиц, а затем все медленнее, почти до полного окончания оседания. Седиментационную кривую накопления р = /( ) строят, откладывая по оси абсцисс время седиментации / от О до 1т, а по оси ординат — относительное накопление осадка (в %) р (от О до 100). Если высота столба суспензии равна I м, то при времени оседания i скорость оседания составит и = 111. По уравнению (13.6) можно рассчитать критический радиус Лкр частиц, обладающих этой скоростью соединения. [c.308]

    После заполнения диффузионной ячейки первые и сотые деления контрольной и основной шкал должны совпадать соответственно между собой, так как за это время молекулы в процессе диф- фузии еще не успевают дойти до нижних и верхних делений. При разности показателей преломления раствора и растворителя 0,00450 максимальное смещение может составлять 400—500 мк. А смещения остальных делений шкал будут закономерно уменьшаться по мере приближения к делениям 100 и 1. В дальнейшем относительное смещение всех делений уменьшается тем быстрее, чем больше коэффициент диффузии вещества. [c.58]

    Для установления единой шкалы атомных весов необходимо выбрать условный эталон, с которым можно было бы сравнивать веса всех остальных атомов. В разное время в качестве такого эталона использовались различные элементы в настоящее время все ученые условились использовать общий эталон атомы углерода определенной массы, называемые изотопом углерод-12, которым приписывается атомный вес 12,0000. На этой основе определяются атомные веса всех остальных элементов (и в том числе других изотопов углерода). Например, если с помощью химической реакции или другим способом установлено, что атомы какого-либо элемента имеют среднюю массу вдвое большую, чем масса атомов углерода-12, то этому элементу приписывается атомный вес 24. На форзаце этой книги помещена таблица атомных весов всех известных элементов. Следует отметить, что атомные веса представляют собой безразмерные величины, поскольку они выражают лишь относительные веса атомов. Впрочем, иногда атомные веса выражают в атомных единицах массы (а.е.м.), например, атомный вес водорода равен 1,0080 а.е.м. Единственный смысл такой записи заключается в том, что она указывает выбор условной шкалы атомных весов. [c.43]

    В тех случаях, когда измеряется э. д. с. ячейки, вопрос об электроде сравнения отпадает, поскольку величина э. д. с. численно равна разности двух электродных потенциалов. Когда же с помощью уравнения Нернста рассчитывают электродные потенциалы, нельзя не учитывать потенциал электрода сравнения. Электродные потенциалы всегда рассматривают относительно электрода сравнения. В настоящее время для их вычисления применяют водородную шкалу, в которой за нуль принят потенциал стандартного водородного электрода (СВЭ) с активностью ионов водорода в растворе, равной единице, и давлением водорода, равном 0,1013 МПа. [c.107]


    Испытания чистых соединений показали, что детонационные свойства углеводородов очень сильно изменяются в зависимости от структуры. Относительная антидетонационная способность топлива обычно характеризуется так называемым октановым числом была выбрана произвольная шкала, причем н-гептану, который сильно детонирует, приписано октановое число, равное нулю, а 2,2,4-триметилпентану (изооктану) — октановое число 100. В настоящее время имеются топлива с антидетонационными свойствами, лучшими, чем у изооктана. [c.137]

    Было разработано несколько систем определения величин относительных времен удерживания, отличающихся в основном типом стандартного соединения или соединений. В этих системах регистрируются исправленные времена удерживания (/уд), получаемые путем вычитания мертвого времени из обычного времени удерживания (рис. П.2). Для получения индекса удерживания в системе Ковача исправленное время удерживания данного соединения выражают относительно исправленных времен удерживания я-алканов, выходящих из колонки до и после этого соединения. Так, например, в изотермической хроматографии индекс удерживания (/) я-алкана вычисляют путем умножения на 100 числа атомов углерода в молекуле этого алкана (например, /декан = 1000, /ундекан = 1100) И, если соединение имеет индекс удерживания, равный 1050, то это означает, что его исправленное время удерживания в логарифмической шкале находится в середине интервала между временами удерживания декана (1000) и ундекана (1100) .  [c.438]

    Химические сдвиги измеряют в миллионных долях (м. д.) относительно внутреннего или внешнего эталона и пересчитывают в отношении к стандартному эталону. В настоящее время в качестве стандартного эталона выбран тетраметилсилан (ТМС) и б-шкала сдвигов, означающая, что линии, лежащие в низких полях от ТМС, имеют положительные значения химических сдвигов. [c.77]

    Схема действует следующим образом. Во время установки нуль-индикатора на нуль сопротивление Rs замкнуто при помощи контактов К, управляемых релейной схемой Р2, которая в свою очередь управляется, как ручными переключателями (на схеме не показаны), так и реле Р. По шкале R устанавливают напряжение в точке конца титрования, по шкале R — положение точки замедления титрования относительно точки конца титрования. В начале титрования контакты К размыкают-тся, и в мостовую схему регулировки нулевой точки вводится небаланс, который уменьшает общий небаланс нуль-индикато- [c.160]

    В работе Шаха [161 ] для измерения скорости равновесного обмена молекул воды на поверхности раздела "вода—воздух была использована реакция водородно-дейтериевого обмена. В спектре ЯМР вода дает сигнал (шкала тау) 4,8 м. д. относительно ТМС, в то время как DaO такого сигнала не дает. Для проведения количественного анализа была использована линейная зависимость между площадью резонансного пика и числом протонов. Молекуляр- [c.476]

    Определение достоверностей для непрерывных шкал наблюдений требует оценки меры близости восстановленной и реальной величин параметров аварий. Так если местоположение аварии было определено на расстоянии Ьу от некоторой точки мониторинга, а в действительности аварийный сброс находится па расстоянии от этой точки, то абсолютная ошибка найденного решения составит Ьу — Однако для вычисления относительной ошибки необходимо установить меру для сравнения различных абсолютных ошибок при восстановлении местоположения аварий. Такой мерой может служить величина среднего расстояния от реальной точки аварии Ьзт ДО тех точек мониторинга, которые фиксировали эту аварию за время прохождения загрязнений на участке мониторинга. [c.468]

    Если лее оценивать избирательность неподвижной фазы по относительному удерживанию, у исследователя появляется возможность выбрать подходящий стандарт, адсорбцией которого на границах раздела фаз можно пренебречь. Среди таких веществ наиболее целесообразно выбрать ароматические углеводороды, которые удерживаются в достаточной степени как на неполярных, так и на полярных неподвижных фазах. В зависимости от времен удерживания исследуемых веществ можно использовать следующие ароматические углеводороды в качестве стандартов бензол, о-ксилол, нафталин, антрацен, пирен, бензпирен. Этот набор перекрывает практически всю шкалу удерживания органических соединений в ГЖХ. При необходимости можно пересчитать относительное удерживание от одного стандарта к другому и таким путем проводить исследования с так называемыми промежуточными стандартами, которые выходят из колонки в приемлемое для экспериментатора время. [c.61]

    Наиболее приемлемый метод впервые был описан Шаллером и изменен впоследствии Цшиммером и Твайманом . Стеклянный стержень, подвешенный вертикально в электрической печи сопротивления, растягивают действием груза. Его удлинение измеряют при определенной температуре и времени. Шпете усовершенствовал этот метод, увеличивая нагрузку стержня в определенный момент времени и измеряя время, необходимое для удлинения на 30 мм, которое определялось по смещению отметки на стержне относительно шкалы прибора. Температура поддерживалась постоянной. [c.104]

    Одибер [69] сжимал угольный порошок, увлажненный водой до одинаковой плотности, в стальной форме для получения брикета в виде усеченного конуса. Брикет помещался в цилиндрическую медную или железную трубку немного большего диаметра, которая устанавливалась вертикально в свинцовой или соляной бане. На брикет устанавливался уравновешенный стеклянный штемпель. Верхняя часть штока штемпеля служила стрелкой, которая двигалась относительно шкалы. Было найдено, что для данной навескн угля и данных значений диаметров угольного цилиндра и дилатометрической трубки изменение формы нагреваемого образца зависит от скорости нагревания. Испытания проводились при двух способах нагревания а) быстрое нагревание, при котором заряженный углем прибор опускался в предварительно нагретую баню прп выбранной температуре 370—600° л затем эта выбранная температура Т поддерживалась постоянной во время испытания, и б) постепенное нагревание с определенной скоростью Vs—3° в минуту. Результаты опытов серии а были графически выражены в координатах время в минутах от момента погружения дилатометра (абсцисса)—вертикальное перемещение стрелки, выраженное в процентах начальной длины угольного цилиндра (ордината). Общий характер семейства кривых, полученных при различных выбранных температурах, был одним и тем же. Прп всех температурах ниже некоторого зпаче-пия Т—температура, при которой начиналось плавление при быстром нагревании, или точка размягчения ,—стрелка оставалась [c.150]

    Джексон [79] помещал брикетик из воздупшосухого угля в вертикальн прозрачную кварцевую трубку. Небольшие различия в давлениях при брикетировании не сказывались на результатах опытов. Трубку помещали в другую прозрачную кварцевую трубку с нагревательной обмоткой внутри трубки с двух сторон по образующей были сделаны выступы, которые служили для укрепления трубки на месте. Зта большая трз бка служила тепло-изолятором. На брикетик устанавливали кварцевый или стеклянный поршень. Отсчеты во время опыта производились по положению поршня относительно шкалы. Скорость была равна 10° в минуту. Испытание проводилось в вакууме и заканчивалось в течение одного часа. Все испытанные у1 ли показывали очень постепенное расширение (меньше 1,27 мм) до момента плавления. При температуре плавления происходило весьма резкое расширение, которое быстро протекало до тех пор, пока но исчезала пластичность угля. При последующем нагревании происходила постепенная усадка. В результате исследования четырнадцати углей с содержанием летучих 31,5—35,7% было найдено, что 1) каждый З голь характеризуется известной температурой плавления и температурным интервалом пластичности 2) стандартные условия опыта, в частности скорость нагревания, имеют большое значение, так как они могут обусловить процесс разложения угля до его размягчения 3) окисление угля, если оно зашло достаточно далеко, превращает уголь в неплавкий частичное окисление угля на воздухе не влияло на температуру плавления, но уменьшало интервал пластичности и степень вспучивапия 4) изменение зольности в известных пределах влияло на интервал пластичности и степень вспучивания, но не оказывало влияния на температуру плавления, и 5) угли с малым интервалом пластичности характеризуются небольшим вспучиванием и легко коксуются в вертикальных ретортах, тогда как при коксовании углей с большим интервалом пластичности в указанных условиях возникают осложнения. Отмеченное поведение угля зависит также от степени его измельчения. [c.155]

    В настоящее время существует практически два метода выбора растворителя. Один из них основан на использовании эмпирической (относительной) шкалы кислотности (ОШК) и потенциалов полунейтрализации титруемых кислот и оснований, другой метод — на использовании не ОШК, а единой абсолютной шкалы кислотности (АШК) растворителя наряду с термодинамическими константами, характеризующими растворитель Кз, Да, нм, Дь, нм, Д а. Н2М+, Кь,м-, и термодинамическими константами диссоциации титруемых кислот, оснований и солей (Днап, Дв и Дс). Другими словами, выбор растворителя основывается не на потенциалах полунейтрализации, измеряющихся в широких пределах, а на достоверных значениях термодинамических величин. [c.183]

    Тот же общий подход, основанный на концепции силы анионного поля, был использован Эйзенманом для объяснения сродства различных стеклянных электродов к катионам и распространен затем на ряд химических и биологических систем, включая ионообменные смолы, образование ионных пар и взаимодействие с мембранами [39]. Относительную шкалу энергий взаимодействия различных катионов с анионами переменной силы поля можно построить для галогенных солей эмпирически, сравнивая свободные энергии гидратации со свободными энергиями образования кристаллических галогенидов щелочных металлов. Получающиеся при этом результаты совпадают с зависимостями, представленными на рис. 7, и показывают, что для больших анионов, таких, как иодид, сила взаимодействия уменьшается в ряду Сз" >ВЬ+ >К >Ма в то время как для анионов небольшого размера, таких, как фторид, соответствующий ряд имеет вид >-Na >КЬ+ >Сз . При промежуточных значениях силы поля получают промежуточные ряды, которые согласуются с наблюдаемыми последовательностями специфичност1т стеклянных электродов. Аналогичные сопоставления, основанные на энергиях галогенидов щелочных металлов в виде двухатомного газа, их коэффициентах активности в концентрированном водном растворе и на вычисленных энергиях электростатического взаимодействия как функции ионных радиусов, приводят по существу к тем же результатам. Основность, т. е. энергия взаимодействия с протоном, может рассматриваться как особый случай ионного взаимодействия и лиганды, обладающие высокой основностью, такие, как 0]г1 , также имеют большую силу анионного поля и предпочтительно взаимодействуют с другими небольшими катионами, такими, как и Ка . [c.287]

    Особенности строения полимероз и существование различных форм их молекулярной подвижности приводят к появлению различных релаксационных процессов, каждый из которых связан с тепловым движением тех или иных структурных элементов. Поведение последних в целом может быть описано спектром времен релаксации, в котором за быстрые релаксационные процессы ответственны мелкомасштабные движения макромолекул, а времена релаксации, связанные с подвижностью более крупных участков самих макромолекул (сегментов и субцепей) и с подвижностью различных элементов надмолекулярных структур и частиц активного наполнителя, могут быть довольно большими и распределяться в большом диапазоне временной шкалы. Соответствующие им релаксационные процессы протекают относительно медленно. [c.125]

    Рефрактометр типа РЛ. Данный рефрактометр (рис. 3, б) предназначен для определения показателя преломления жидкости и концентрации веществ в водных растворах — продуктах сахарного производства (масс. %). Пределы измерения а) по шкале показателей преломления от 1,300 до 1,540, цена деления 1 пгу, б) по шкале сахарозы от О до 95%, цена деления в интервале от О до 50% —0,2 и в интервале от 50 до 95% —0,1. Рефрактометр состоит из основания /, на котором установлена колонка 2, несущая корпус прибора. К корпусу крепятся верхняя 7 и нижняя 5 камеры Аббе. Нижняя камера 5, в которую заключена измерительная призма, жестко закреплена на корпусе. Верхняя камера 7, в которой находится осветительная призма, соединена шарниром 6 с нижней камерой и может поворачиваться относительно последней. Обе камеры полые и имеют штуцера 8, на которые надеваются резиновые трубки для соединения камер с термостатирующей установкой. Для контроля температуры служит термометр 10 в о праве, который соединен непосредственно с ниж-ней камерой. Нижняя и верхняя камеры имеют окна, которые закрываются съеглной крышкой или в нижней — крышкой, а в верхней — диафрагмой. Для направления овето вого потока в окно имеется отражательное стекло-зеркало 9, которое можно устанавливать под любым углом к оптичес <ой оси рефрактометра и фиксировать в необходимом положении. На переднюю крышку корпуса выведена шкала 11 и рукоятка 13, несущая окуляр 12, в котором нанесены три визирных штриха. Вращая рукоятку вокруг ее оси, совмещают границу светотени с в-изирной штриховой линией. На одной оси с рукояткой находится головка диаперсионного компенсатора 4, соединенного с оправой призмы Амичи, при помощи которой устраняется спектральная окраска границы светотени. Светотень во время работы должна быть резкой. [c.15]

    Значения химических сдвигов б в помещенных ниже таблицах заимствованы из многочисленных источников, главным образом из [2, г 4]. Данные, указанные в разд. VIII.Г.4, а, часто представляют собой средние значения из нескольких наблюдений и для любого конкретного соединения могут отличаться на 3—4 единицы в последней значащей цифре (в отдельных случаях возможны еще большие отклонения). Данные, помещенные в табл. 136—148, относятся к слабо концентрированным растворам в четыреххлористом углероде или дейтерохлоро-форме и определены относительно внутреннего эталона — ТМС. Очень важно иметь в виду, что влияние растворителя, особенно в случае ароматических соединений, может приводить к значительным изменениям в наблюдаемых химических сдвигах. Отметим, что в последнее время была предложена шкала сдвигов, вызываемых растворителями, которая является независимой от эталона [13]. Как было указано выше, в литературе имеются два обзора о роли растворителей в ПМР [И, а, б]. [c.283]

    Найденное расположение Vl-полос нельзя считать универсальным, так как указанная на рис. 27 взаимная ориентация молекул является далеко не единственной. В то же время все полученные и рассмотренные выше соотношения могут полностью быть применены для анализа спектра реально исследуемого соединения. Сопоставление спектров разных комплексов позволяет обнаружить и некоторые их индивидуальные свойства, которые могут быть использованы в аналитических целях. Из вычисленных спектров видно, что димер имеет две далеко отстоящие одна от другой либрационные полосы поглощения. Три полосы тримера располагаются так близко, что на опыте наверняка будут зарегистрированы как одна линия. Спектры тетрамера и пентамера идентичны между собой и, будучи несколько смещенными друг относительно друга по шкале частот, оба имеют вид двух близко расположенных перекрывающихся полос. [c.92]

    Чтобы убедиться в этом, мы синтезировали на ЭВМ спектры ЭПР спиновой метки в 2-лшллиметровом диапазоне в модели САД в соответствии с параметрами, полученными из эксперимента в 3-сантиметровом диапазоне. При этом, так как в этой модели время вращательной корреляции спиновой метки относительно глобулы не определяется, а считается быстрым во временной шкале ЭПР, то мы синтезировали спектры, задаваясь с,=0,1 и 1 НС, считая последнее время границей быстрого движения. Результаты этого синтеза приведены на рис. 9 (а, б) (правые спектры). Слева приведены аналогичные спектры 3-сантиметрового диапазона. Из приведенных спектров видно, что действительно пики, обусловленные и -компонентами тензора, сливаются в один соответствующий и остается группа линий, связанная с и /4, компонентами тензоров. Причем зта характерная особенность в спектрах сохраняется вплоть до границы быстрого движения. Таким образом, модель САД спиновой метки при регистрации спектров ЭПР в 2-миллиметровом диапазоне может быть легко подтверждена или опровергнута. Причем для этого не нужно проводить весь вязкостный эксперимент, а достаточно зарегистрировать спектр спин-меченого белка в воде. На рис. 9, в (справа) приведен спектр ЭПР спин-меченого БСА в воде, зарегистрированный на 2-миллиметровом ЭПР-спектрометре в тех же условиях, что и 3-сантиметровый спектр ЭПР (слева) этого же образца. Видно, что ни о какой аксиальности тензора не может быть и речи, а следовательно, и модель САД спиновой метки в этом случае нельзя считать удовлетворяющей эксперименту. При этом следует отметить, что эксперимент в 2-миллиметровом диапазоне в отношении модели САД спиновой метки является прямым экспериментом по сравнению с 3-сантиметровым диапазоном. [c.249]

    В рентгеновской спектроскопии дайны волн характеристического излучения атомов традиционно выражают в X единицах, а в кристаллогафии — в ангстремах. Коэффициент пересчета из шкалы Х-единип в шкалу ангстрем равен 0= 1,00202 А/Х. При этом в старых таблицах дайны волн Я. < 1,0 А измеряли относительно стандартной линии МоКд, а дайны волн Я. > 1,0 А — относительно линии СиКд. Несовпадение шкал приводит к относительной погрешности = 0,00002. В настоящее время измерения дойн волн обычно выполняются с относительной погрешностью не хуже 0,000001. В связи с этим в работе [1] бьша проведена переоценка более ранних длин волн. [c.56]

    Ранее комбинированные шкалы светлоты и цветности, использующие функции кубических корней, были предложены Глассером с сотр. [180], Фукуда с Фужи [168]. Относительная простота этих функций и определенный успех в предсказании равноконтрастных цветовых шкал способствовали их популярности. Несколько измененный вариант формулы цветовых различий, первоначально предложенной Глассером [180], одно время обсуждался в Комитете по колориметрии МКО [727]. Хотя эту формулу теперь можно заменить уравнением (2.68), приведенным выше, ее уместно привести здесь для читателей, желающих продолжить изучение этой проб- [c.361]

    Равномерное движение луча по горизонтали на экране индикатора ОИ осуществляется с помощью генератора развертки ГР, подающего на пластины горизонтального отклонения осциллографического индикатора ОИ напряжение, линейно изменяющееся от времени. Генератор развертки ГР после подачи импульса от синхронизатора СХ за один оборот зеркала 3 формирует пилообразное напряжение развертки дважды первый раз — во время сканирования КО И второй раз — в остающееся время для обозначения на экране индикатора ОИ линии уровня отсчета температуры. Этот уровень задается оператором от калибратора уровня КУ и отсчитывается на шкалах по положению ручек его установки. При более подробном изучении распределения температуры в узком секторе (40, 20, 10°) разв тка основного цикла, когда изображается распределение температуры по КО, начинается с задержкой и идет с большей скоростью, что также задает оператор, регулируя ручками блоков указания центра УЦ и сектора сканирования СС. Блок указания центра УЦ создает импульс напряжения, соответствующий положению центра, выбранному оператором на контролируемом объекте и высвечиваемый иа экране индикатора ОИ. Блок указания центра УЦ взаимодействует также с импульсным блоком сектора сканирования СС так, чтобы развертка осуществлялась симметрично относительно выбранного сектора сканирования. [c.197]

    Ртутный и-образный манометр (или открытая трубка, погруженная в резервуар) и манометр Бурдона применяются для измерения давления форвакуума, т. е. давлений от атмосферного и вплоть до 10 мм (см. гл. V, рис. 5 и 14). Эти вакууметры относительно неломки, и точность их вполне достаточна для измерения вакуума в течение цикла эвакуации. Были сконструированы особые вакууметры Бурдона, которые можно применять в пределах от 1 до 20 мм. Если требуется большая чувствительность, то можно применять масляный манометр. В этом случае трубку наполняют невязкой органической жидкостью, имеющей небольшое давление пара, обычно маслом для диффузионного насоса. Фактическая разность уровней, отсчитанная в миллиметрах, может быть переведена в миллиметры ртутного столба, если помножить разность отсчетов по шкале, Д мм, на отношение плотности масла к плотности ртути. Иногда бывает удобным сделать шкалу, калиброванную непосредственно в миллиметрах ртутного столба. В этом случае одно деление шкалы в миллиметрах ртути равно плотности ртути, деленной на плотность масла. Контрольным вакуумом может служить вакуум, даваемый небольшим масляным ротационным насосом, для которого предельный вакуум составляет 25 или еще меньше. На рис. 40, А показана Н-образная модель с краном для выравнивания давления в обоих коленах во время периодов откачки или обезгаживания. На рис. 40, Б объем резервуара значительно больше объема измеряющей трубки, так что можно применять неподвижную шкалу. Манометры, наполненные маслом, долл<ны быть обезгажены каждый раз после [c.485]

    Поглощение сверхвысоких частот используется для определения содержания воды в терпингидрате и в некоторых других фармацевтических препаратах. Бензар и Юдицкий [11] показали возможность применения этого метода для контроля качества продукции в промышленности. Интересная спектроскопическая методика, предложенная Фельнер-Фельдегом [30а], основана на измерении отражения прямоугольных импульсов длительностью от 30 ПС до 200 НС, что соответствует частотам от 1 МГц до 5 ГГц. С помощью этой методики в течение долей секунды можно измерить в тонких слоях изучаемого материала значения диэлектрической проницаемости, соответствующие низким и высоким частотам, времена релаксации и диэлектрические потери. Леб и сотр. [57а] развили этот метод, обеспечив возможность измерения диэлектрических проницаемостей в области высоких частот (10 МГц — 13 ГГц). С помощью разработанной аппаратуры можно измерять диэлектрические характеристики твердых и жидких веществ относительно воздуха. В работе [57а] приведены данные для полярных жидкостей, в том числе для спиртов и водных растворов сахаров. Те же авторы предложили применять при описанных измерениях электронно-вычислительную машину, обеспечивающую сбор и обработку экспериментальных данных и Фурье-преобразование получаемых спектров. Новый импульсный метод нашел применение для определения влаги в молочных порошках. Кей и сотр. [44а ] приводят методику измерений, включающую следующие операции 1) из порошка готовят шарик массой 63 мг 2) взвешивают образец и помещают его в коаксиальную воздушную линию 3) измеряют высоту импульса с помощью осциллоскопа с градуированной шкалой, аналогового или цифрового вольтметра, двухкоординатного самописца или автоматической системы обработки данных 4) устанавливают соотношение между высотой импульса и массой воды в образце. [c.510]

    Как видно из рисунка, область существования кислот и оснований в муравьиной кислоте заметно сжата по сравнению с метанолом и водой. Интервал устойчивости в первом растворителе составляет только 0,52 эв, в то время как в воде он достигает 1,03 эв и в метаноле 1,16 эв. К сожалению, положение полос (интервалов) устойчивости в этих растворителях относительно друг друга не может быть установлено точно. В этом состоит причина того, почему не создана единая шкала кислотности. На рис. VII.1 потенциалы занятых уровней протона в молекулах HsO, СН3ОН и НСООН были произвольно приняты равными нулю в растворителях— вода, метанол и муравьиная кислота, соответственно. Все попытки экспериментальным путем связать кислотные потенциалы в различных растворителях оказывались неудачными из-за неопределенности диффузионного потенциала. Качественное рассмотрение показывает, что уровень протона пары H OOHI НСООН в муравьиной кислоте выше, чем уровень Н3О+, Н2О в воде, и что [c.168]


Смотреть страницы где упоминается термин Относительная шкала времени: [c.191]    [c.39]    [c.451]    [c.96]    [c.15]    [c.248]    [c.315]    [c.139]    [c.121]    [c.86]    [c.226]    [c.110]    [c.43]   
Происхождение жизни Естественным путем (1973) -- [ c.39 , c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Тау-шкала

Шкала времени



© 2024 chem21.info Реклама на сайте