Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная способность ароматических соединений при электрофильном замещении

    С достаточно высокой степенью точности описано количественное соотношение изомеров, а также субстратная и позиционная реакционная способность ароматических соединений в ряде реакций электрофильного замещения. Полученные результаты основаны на предположении о первоначальном образовании л-комплексов, структура которых контролируется электронными факторами, и дальнейшем их превращении в а-комплексы, изомерный состав которых определяется термодинамической стабильностью. [c.86]


    Увеличение числа метильных групп в ароматическом соединении увеличивает электронную плотность в бензольном кольце, и, следовательно, повышает его реакционную способность в реакциях электрофильного замещения. Реакционная способность метилбензолов увеличивается в ряду  [c.331]

    Заключая краткое обсуждение различных подходов к оценке реакционной способности ароматических соединений при электрофильном замещении, можно отметить, что они непосредственно связаны с механизмом реакции и соответствуют различным моделям переходного состояния. Предположение, что на ориентацию атакующего реагента непосредственно влияет распределение электронной плотности, означает, что переходное состояние очень близко к исходному и что ориентация в значительной степени определяется электростатическими силами. Корреляция реакционной способности с граничной я-электронной плотностью предполагает взаимодействие с переносом заряда между реагентом и ароматической молекулой, в которой ароматический характер в значительной мере сохранен. Наконец, корреляция реакционной способности со стабильностью а-комплекса и энергией локализации означает, что переходное состояние не имеет ароматического характера и этим сильно отличается от исходного. Имеющиеся экспериментальные данные показывают, что в большинстве случаев реализуется третья модель переходного состояния, и анализ реакционной способности, выполненный на ее основе, дает наиболее надежные результаты. [c.41]

    Существует совокупность реакций, в которых атом водорода ароматического кольца или иногда галоген, сульфо- или нитрогруппа замещаются другими атомами или группами при этом наблюдается однотипное влияние структурных факторов на реакционную способность ароматического соединения. К этой совокупности относятся реакции Фриделя — Крафтса, изотопный обмен водорода, сульфирование, большинство реакций нитрования, некоторые реакции галогенирования [и, наконец, азосочетание . Так как, по-видимому, во всех реакциях происходит вытеснение одной электронодефицитной частицы другой, такие реакции называют электрофильным ароматическим замещением Ингольд обозначал их Зе- [c.222]

    РЕАКЦИОННАЯ СПОСОБНОСТЬ АРОМАТИЧЕСКИХ СОЕДИНЕНИИ ПРИ ЭЛЕКТРОФИЛЬНОМ ЗАМЕЩЕНИИ [c.175]

    Под влиянием заместителей I рода бензольное ядро приобретает больщую реакционную способность. Ароматические соединения, содержащие заместители I рода, легче и с большей скоростью вступают в реакции электрофильного замещения при этом новые заместители вступают преимущественно в о- или в -положение к имеющемуся заместителю I рода. [c.114]


    ОРИЕНТАЦИЯ ПРИ ЭЛЕКТРОФИЛЬНОМ ЗАМЕЩЕНИИ, СРАВНИТЕЛЬНАЯ РЕАКЦИОННАЯ СПОСОБНОСТЬ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ И МЕТОДЫ ГЕНЕРИРОВАНИЯ ЭЛЕКТРОФИЛЬНЫХ РЕАГЕНТОВ [c.211]

    Реакции введения углеродсодержащих групп в значительно большей степени, чем рассмотренные ранее примеры электрофильного замещения, чувствительны к реакционной способности ароматического соединения. Электронодонорные заместители резко облегчают их протекание, в то время как сильные электроноакцепторные, например нитрогруппа, как правило, полностью исключают возможность их проведения. [c.231]

    Реакционная способность ароматических соединений для электрофильных реакций описывается уравнением Гаммета, но в этом отношении имеется следующая особенность. Поскольку замещение происходит одновременно в орто-, мета- и пара-положения, то, [c.102]

    Количественную оценку региоселективности электрофильного ароматического замещения в С Н Х, учитывающую влияние заместителя X и на относительную реакционную способность соединения С Н Х, и на соотношение получающихся изомеров, дает подсчет факторов парциальных скоростей. Фактор парциальной скорости (ФПС) определяет реакционную способность данного положения в замещенном бензоле С Н Х относительно любого положения в бензоле и рассчитывается по формуле [c.447]

    Механизм реакций электрофильного ароматического замещения уже сравнительно давно привлекает внимание исследователей, как теоретиков, так и экспериментаторов. По-видимому, именно с этими реакциями связаны первые практические успехи квантовой химии в предсказаниях реакционной способности химических соединений. Развитие представлений в этой области шло двумя параллельными, хотя и достаточно близкими друг к другу путями. Первый, эмпирический, путь дал ряд результатов, исключительно важных для понижения механизма рассматриваемых реакций. К ним относятся [c.219]

    Статьи Ионизационные потенциалы в органической химии , Реакции нуклеофильного замещения в ароматических соединениях , Ионы карбония и Исследование уравнений, связывающих строение и реакционную способность органических соединений переведены канд. хим. наук И. Я- Левитиным, статьи Равновесие ионизации и диссоциации в растворах в жидком сернистом ангидриде , Количественное сравнение слабых органических оснований и Реакции электрофильного ароматического замещения переведены канд. хим. наук В. А. Братцевым, статьи Вторичные изотопные эффекты и Механизм и катализ простых реакций карбонильной группы переведены В. Б. Шуром. [c.6]

    Показано, что гидроксильный радикал является первичным окислителем, образующимся при радиолизе воды [10, 22]. Он обладает некоторой электрофильностью [152, 153]. Этот вывод был сделан из данных по его относительной реакционной способности по отношению к замещенным ароматическим соединениям и по относительному выходу изомерных продуктов гидроксилирования. Большая ширина полосы поглощения и низкий коэффициент экстинкции ОН-радикала не позволяют, однако, непосредственно определить скорость изменения его поглощения в экспериментах по импульсному радиолизу в присутствии органических веществ. Тем не менее методом конкурирующих реакций удалось оценить относительные значения констант скоростей реакций радикала 0Н с большим числом органических соединений [105]. [c.143]

    Наличие атомов азота как в кольцевой структуре, так и экзоциклических, конечно, влияет не только на диссоциацию, но и на реакционную способность соединений. Присутствие атомов азота определяет ход реакций электрофильного и нуклеофильного замещения. Например, два гетероциклических атома азота в пи-римидинах вызывают перераспределение электронной плотности в ароматическом кольце, так что С-5 обладает повышенной электронной плотностью по сравнению с остальными углеродными [c.111]

    Особенностью соединений (г) является сопряжение шести р-электронов атомов углерода, которое приводит к значительному выигрышу энергии (энергия резонанса). Этот факт обусловливает сравнительно низкую реакционную способность соединений ароматического ряда и их склонность к реакциям электрофильного замещения (а не присоединения). Своеобразие этих соединений заставляет рассматривать их как отдельный раздел органической химии. [c.43]

    Для этого необходимо вначале изучить строение и свойства ароматических соединений, главным образом, особенности их реакционной способности, рассмотренные в главе 1. Далее изучению подлежат основные реакции, используемые в синтезе соединений ароматического ряда. При этом имеется в виду такое изучение, которое позволило бы читателю сознательно управлять течением реакций. В книге они систематизированы в 13 главах по типам химических превращений как электрофильные, нуклеофильные и радикальные реакции ароматического замещения, реакции в боковых цепях и заместителях, реакции циклизации и реакции окисления — восстановления. Такая систематизация позволяет сделать ряд широких обобщений и облегчает усвоение обширного материала. [c.6]


    Различие в местах преимущественной атаки первичных и вторичных ароматических аминов (по сравнению с фенолами) отражает, по-видимому, различия в относительной электронной плотности соответствующих участков молекулы, которые оказывают решающее влияние на направление этой реакции. Следовательно, в отличие от большого числа других реакций электрофильного замещения ароматических соединений, реакция азосочетания чувствительна к относительно небольшим различиям в электронной плотности. Это связано со сравнительно слабой реакционной способностью иона РИМ как электрофила. Аналогичные различия в электронной плотности имеют место, естественно, и для фенолов, но здесь выбор места атаки зависит в основном от относительной прочности образующихся связей. В случае аминов это различие для двух альтернативных продуктов азосочетания, очевидно, играет гораздо меньшую роль. [c.152]

    Легкость образования а-комплексов и связанную с ней реакционную способность ароматических соединений в реакциях электрофильного замещения можно оценить в качественной и полуколи- [c.39]

    Вторая часть учебника включает два блока проблем совреме>(ной органической химии. Один иэ них охватывает вопросы стереохимии органических соединений, нуклеофильнопэ замещения у насыщенного атома углерода и связанную с ним проблему элиминирования, а также методы синтеза и исследования реакционной способности спиртов, простьк эфиров, оксираиов и их сернистых аналогов. Другой — подробно рассматривает концепцию ароматичности и реакционную способность ароматических соединений в процессах электрофильного, гомолитического и нуклеофильного замешення. [c.2]

    Повышение или понижение реакционной способности ароматических соединений (влияние на легкость замещения), вызванное уже имеющимся в ядре заместителем, ничего не говорит о его влиянии на направление замещения. Объяснение правил ориентации, которое дается во многих учебниках, исходя из мезомерных предельных состояний монозамещенных ароматических соединений, предполагает, что заместители не только влияют на общую основность ядра в основном состоянии, но и у каждого углеродного атома ядра создают различные плотности электронов. Как показывают измерения ядерного магнитного резонанса, различия в электронных плотностях у отдельных углеродных атомов основного состояния монозамещенного ароматического соединения не так велики, как это следовало бы ожидать на основании мезомерного эффекта заместителей. У хлор- и бромбензола, фенола и анизола, например, не наблюдается вообще никаких различий. Следовательно, плотность электронов в нормальном состоянии ароматического соединения не может одна определять ориентацию заместителя при вторичном электрофильном замещении. Разные направления вторичного замещения объясняются тем, что заместители влияют на величину энергии активации реакций, ведущих к орто-, мета- и лара-замещенным продуктам. Именно это и определяет скорости трех электрофильных конкурирующих реакций [см. уравнение Аррениуса (39), ч. П1]. Различие в энергиях активации для орто-, мета- и пара-заместителей основано на том, что разница энергий между основным и переходным состоянием Ai (см. рис. 91) у этих веществ существенно отличается. Так как энергия переходного состояния неизвестна, то вместо нее будет рассматриваться о-комплекс (В на рис. 91), который лежит вблизи переходного состояния. Неточность, связанная с этим упрощением, невелика. [c.282]

    Основная часть органических красителей представляет собой производные трех соединений бензола, нафталйнй и антрахинона. Производные антрахинона занимают особое положение в химии красящих веществ и составляют ведущую группу среди светопрочных красителей разных классов. Этому способствует глубокая окраска многих простых замещенных и устойчивость большинства производных к действию окислителей, в частности к фотоокислению в условиях практической службы окрашенных изделий. По рентгенострук-турным данным плоская молекула антрахинона включает два мало деформированных, бензольных цикла, связанных парными карбонильными группами расстояние между углеродными атомами карбонильных групп и ароматических циклов близко соответствует величине ординарной связи. Строение дифенилендикетона определяет его пониженную реакционную способность в реакциях электрофильного замещения, а также относительную автономию бензольных циклов и облегченный обмен заместителей при действии нуклеофильных агентов. Сопряжение карбонильных групп с участием не локализованных двойных связей, а ароматических циклов определяет особое положение антрахинона в ряду хинонов и малую усхойчивость образующихся при его восстановлении л зо-диоксипроизводных антрацена. ,  [c.3]

    Для нескольких аро.матических углеводородов кинетическим методом была определена сравнительная реакционная способность, которая составила толуол—1,0 этилбензол—1,38 п-ксилол— 1,80 о-ксилол— 3,18 м-ксилол — 14,15 мезитилен — 64,50. Известно, что в реакциях электрофильного замещения, к которым относится и исследуется реакция, реакционная способность ароматических соединений зависит от иуклеофильности, илн основности ароматического ядра. Эндрюс и Кифер [9] предложили в качестве количественной характеристики основности ароматических соединений использовать длину волны максимума поглощения их электроно-донорно-акцеиторных комплексов. В качестве акцептора электронов был использован йод. Увеличение основности ароматического соединения сдвигает максимум поглощения комплекса в длинноволновую область. [c.66]

    ЦТМ был синтезирован Фишером и Йира [3, За] в 1954 г. из дициклопентадиенида марганца и окиси углерода под давлением. Исследование химических свойств ЦТМ показало, что его пятичленное кольцо по реакционной способности в реакциях электрофильного замещения подобно циклопентадиенильному кольцу ферроцена и ароматическому кольцу бензола. ЦТМ можно ацилировать, алкилировать, хлорметилировать, сульфировать, фосфорилировать и меркурировать. Соединения, синтезированные в результате реакций прямого замещения, служат исходными для получения ряда новых производных ЦТМ. Изучены некоторые свойства спиртов, кислот, аминов и галоидных производных ЦТМ. Кроме того, группы С=0 ЦТМ, как у карбонилов металлов, можно заместить на органические производные трех-валентпого азота, фосфора, мышьяка, сурьмы, двух- и четырехвалентной серы, на некоторые непредельные органические соединения, на нитрозоний-катион N0 . [c.5]

    Степень сопряжения можно оценить, исследуя ориентацию реакции электрофильного замещения в замещенных бензолах или сравнивая скорости соответствующих химических реакций. Например, нитрование и бронирование ароматических соединений сопровождается атакой ионов нитрОния NOj или бромония Вг поэтому электронодонорные заместители, например метоксигруппа, содействуют реакции, а электроноакцепторные заместители, например нитрогруппа, замедляют реакцию [7]. Вследствие того, что галогены обладают сильной электроотрицательностью, в галоген-замещенных бензолах атомы галогена оттягивают электроны от бензольного ядра, их реакционная способность в реакциях электрофильного замещения снижается. Однако при атаке такими сильными электрофилами, как NO2 и Вг , вследствие сопряжения атома хлора с бeнзoльны ядром замещение идет в орто- и пара-положения. По своему влиянию на избирательность и скорость [c.111]

    Взаимодействие циклобутадиепжелезотрикарбонила с электрофильными реагентами приводит к замещению водорода в четырехчленном кольце [19, 47, 61, 66, 157, 158]. Эти реакции аналогичны хорошо известным реакциям замещения в ряду ферроцена реакционная способность этого циклобутадиенового соединения сравнима с реакционндй способностью ферроцена. В этом смысле комплекс С4Н4Ре(С0)з можно отнести к ароматически соединениям. Электрофильным замещением в циклобутадиеновом кольце и последующими превращениями введенных заместителей был синтезирован целый ряд циклобутадиеновых комплексов железа (схема 1). n, [c.47]

    Образование а-комнлекса (1) — ионный бимолекулярный процесс, зависящий как от собственной реакционной способности ароматического соединения, так и от эффектов сольватации. Соотношение образующихся продуктов подчиняется обычным правилам ориентации при электрофильном замещении, а сильная сольватация иона нитрония замедляет скорость нитрования. Скорость образования ст-комплекса слишком велика, чтобы эта стадия могла определять скорость реакции. Поскольку потеря протона ст-комплексом также происходит очень быстро, и поэтому данчв частично не может определять скорость процесса, то первичный изотопный эффект при нитровании не наблюдается. Исключение из этого правила наблюдал Мире [1] при нитровании симметричного нитротри-трт-бутилбензола, пространственные препятствия в котором делают реакцию образования ст-комп-лекса обратимой в такой степени, что изотопный эффект становится заметным. [c.6]

    Введены новые индексы статической модели реакционной способности ароматических соединений, аорреляционные уравнения с этими индексами описывают реакционную способность альтернантных поли-циклических аренов в различных реакционных сериях электрофильного замещения лучше, чем уравнение известного подхода локализации и, в отличие от последнего, отражают также влияние факторов природы реагента и реакционной среды. [c.269]

    Можно сказать, что изучение реакционной способности ароматических органических соединений было начато с изучения процессов электрофильного замещения, традиционно используемых для введения заместителей в гетероцикл. Значительное расширение этой методологиии связано с использованием гета- [c.34]

    Последний важный пример, который мы хотели бы проиллюстрировать в этом разделе, касается электрофильного замещения в ароматических производных. В течение многих лет это был единственный тип реакции, который мог быть рассчитан полуэмпирическими квантовомеханическими методами, вследствие чего эта область является одной из наиболее изученных в теории реакционной способности органических соединений. Для корреляции реакционной способности различных ароматических соединений было предложено несколько индексов реакционной способности. Большинство из них коррелируются между собой и, таким образом, дают похожие результаты. Большинство из корреляций вполне удовлетворительны для регулярных альтернантных углеводородов, а наибольшие ошибки возникают при использовании их для неальтер-нантных или гетероциклических соединений. Один из часто используемых индексов, введенный Фукуи, а именно плотность на граничной орбитали, представляет собой квадрат коэффициента атомной орбитали в наивысшей занятой молекулярной орбитали ароматического соединения. Использование этого индекса реакционной способности подвергалось критике [32 ] на том основании, что он не имеет смысла и дает особенно неверные результаты для не- [c.89]

    В заключение этого краткого обзора электрофильной реакционной способности ароматических систем отметим, что некоторые гетероциклические соединения особенно склонны к участию в реакциях нуклеофильного замещения. Так, электроотрицательность азота, которая больите электроотрицательности углерода, приводит к тому, что реакционная способность а- и Y-гало-генопроизводных пиридина по отношению к нуклеофильным реагентам приближается к реакционной способности галогенопроизводных типа I и II (стр. 188)  [c.192]

    НЫХ реакций замещения. Хотя мы часто можем констатировать, что замещающие агенты селективны, мы имеем лишь качественные представления о причинах их селективности или о том, насколько селективность связана с влиянием растворителя [205J. Многие детали еще предстоит выяснить. Для достижения большей ясности в этом вопросе потребуется более систематическая обработка данных, относящихся к зависимости изотопного эффекта от таких факторов, как электрофильность замещающего агента и реакционная способность ароматического субстрата, особенности строения промежуточного соединения, а также от факторов, от которых зависит наличие в реакционной смеси стационарных и нестационарных промежуточных соединений, влияния растворителей и наличия катализа основанием. Потребуется также большее число кинетических исследований по индиви-.дуальным реакциям замещения и по количественной оценке выходов изомеров. Все это необходимо, чтобы заполнить пробел в наших знаниях о переходных состояниях различных реакций замещения, что, вообще говоря, является задачей всех исследований по механизму реакций. [c.493]

    В главе 1, написанной Томсоном, автором известной монографии по природным хинонам, рассмотрены структура и реакционная способность фенольных соединений, важнейшие типы природных фенолов, свойства и реакции фенольного гидроксила (способность к образованию водородных связей, этерификация, окисление и др.), вопросы таутомерных превращений в фенольном ряду. Особо интересен здесь раздел, касающийся основных типов реакций окислительного присоединения как возможной модели свободно-радикальных процессов при биосинтезе природных фенолов. Нельзя, однако, не отметить, что химия фенольных соединений в этой статье освещена весьма поверхностно. Так, например, автор почти не рассматривает вопрос о способности фенолов претерпевать переход ароматической структуры в циклогексадиеноновую, что составляет одно из общих свойств фенольных соединений, которые они проявляют в радикальных и электрофильных реакциях замещения [8]. В общем виде фенол-диеноновую перегруппировку в реакциях фенолов можно описать следующей схемой  [c.6]

    В данной главе мы рассмотрим направленность основных реакций электрофильного замещения тиофеновых соединений, несущих электронодонорные и электроноакцепторпые заместители. При этом особое впилгание будет уделено сильно дезактивирующим заместителям, способным частично или даже полностью преодолеть а-ориентирующий эффект гетероатома. Для оценки влияния гетероатома существенно прежде всего рассмотреть некоторые особенности химического поведения тиофепа и его замещенных, несущих ориентанты I рода. Эти особенности обусловлены не собственно ориентирующим эффектом заместителей, а повышенной реакционной способностью таких соединений, являющихся активированными ароматическими системами по отношению к э.чектрофильным агентам, и структурными факторами, в частности стабилизирующими а-комплексы. [c.20]

    Конечно, на реакционную способность органических соединений, определяемую функциональными группами, большое влияние оказывает структура этих соединений. Эти структурные эффекты могут быть полярными (или индуктивными), резонансными или стерическими. Проявление этих эффектов и их влияние на реакционную способность зависит от механизма реакции. Например, нельзя предсказать влияние нитрогруппы (электроноакцепторная группа) на скорость замещения в ароматическом кольце, не зная механизма этого замещения. Если замещение элек-трофильное (механизм В ), то нитробензол реагирует медленнее, чем бензол. Благодаря наличию полярного (индуцированного) и резонансного эффектов нитрогруппа стремится оттянуть электроны от бензольного кольца и дезактивировать их по отношению к электрофильному реагенту. С другой стороны, если бы замещение было нуклеофильным (механизм В), то благодаря тем же эффектам п-нитро-фторбензол был бы активнее, чем фторбензол. Более подробно эти эффекты обсуждаются ниже. [c.171]

    Различные типы азотистых ипритов изучали в лабораторных условиях в отношении скорости алкилирования ими 4-(/7-нитробензил)пиридина, скорости их гидролиза и противоопухолевой эффективности [12]. У ароматических азотистых ипритов скорость алкилирования и гидролиза зависит от основности азота. Реакционная способность резко снижается при замещении циклически.ми электрофильными соединениями в параположении к азоту и повышается при замещении соединениями, освобождающими электроны. Результаты корреляции между противоопухолевой эффективностью и процентом гидролиза или алки-лнрующей активностью показывают, что биологически значимые реакции ароматических азотистых ипритов более близки к 8[ )1 типу реакций сольволиза, чем к 5 2 типу реакций алкилирования. Хотя в лаборатории скорости алкилирования различны для каждого из богатых электронами соединений, относительное влияние на алкилирующие вещества изменений в замещенных группах будет оставаться одинаковым при условии, что реакция идет по типу 5р 2. Был сделан вывод, что ступенью, определяющей скорость биологически значимых реакций, должно быть возникновение переходного состояния, более сходного с сольватированным диполем ион карбония — азот (А-3), чем с комплексом иоп этиленимина —SN2 (А-2) (см. рис. 6). Поскольку это переходное состояние может реагировать с молекулой воды в большей степени, чем с нуклеофильными группами компонентов клетки, было предложено обозначать алкилирующие вещества как такие, которые будут создавать переходное состояние типа А-3, только в непосредственной близости от желательного места воздействия . [c.186]

    Полученные данные по реакционной способности ароматических кремнийорганических соединений свидетельствуют о наличии ё—я-со-пряжения атома кремния и ароматического кольца в фенилсиланах, приводящего к значительному уменьшению нуклеофильности ароматического кольца. Повышенная реакционная способность к электрофиль-ному замещению триалкибензилсиланов является следствием большого электронодонорного характера группы Кз81СН2. Замена в такой группе трех алкильных радикалов на три атома хлора приводит к уменьшению ее электронодонорных свойств, а следовательно и реакционной способности в электрофильных реакциях соответствующих бензилсиланов. [c.130]

    Обширными исследованиями в настоящее время доказано, что ароматические углеводороды способны образовывать комплексы с большим количеством разнообразных электрофильных веществ. Эти комплексы, несомненно, присутствуют в реакционной смеси, в которой ароматический углеводород претерпевает электрофильное замещейие. Более того, возможно, что они играют важную роль в таких реакциях. Поэтому полезно сделать обзор данных, свидетельствующих в пользу существования этих комплексов и раскрывающих их природу, прежде чем приступить к детальному обсуждению замещения в ароматических соединениях. [c.397]

    Химические свойства ароматических соединений. Реакции присоединения и окислеши. Реакции электрофильного замещения в ароматическом раду. Механизм электрофильного замещения. Влияние заместителей на ориентацию в бензольном кольце и реакционную способность. Цу клеофильное и свободно-радикальное замещение в ароматическом кольце. [c.190]


Смотреть страницы где упоминается термин Реакционная способность ароматических соединений при электрофильном замещении: [c.10]    [c.153]    [c.699]    [c.466]    [c.185]    [c.343]   
Смотреть главы в:

Органическая химия -> Реакционная способность ароматических соединений при электрофильном замещении

Органическая химия -> Реакционная способность ароматических соединений при электрофильном замещении




ПОИСК





Смотрите так же термины и статьи:

Замещение электрофильное

Электрофильное реакционная способность

Электрофильность

Электрофильные соединения



© 2025 chem21.info Реклама на сайте