Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О механизме каталитической полимеризации олефинов

    О МЕХАНИЗМЕ КАТАЛИТИЧЕСКОЙ ПОЛИМЕРИЗАЦИИ ОЛЕФИНОВ [c.109]

    С главы V излагается уже химическая переработка олефинов. В этой главе подробно рассмотрены термическая и каталитическая полимеризация олефинов, а также алкилирование парафиновых углеводородов олефинами. В конце главы автор разбирает механизм этих реакций с позиции протонной теории. [c.5]

    Л. Г. Гурвич в 1912—1915 гг. открыл и изучил каталитическое действие алюмосиликатов на олефиновые углеводороды. Его работы имели большое значение для понимания механизма каталитических превращений олефинов над силикатными катализаторами при крекинге, способствовали разработке методов очистки нефтепродуктов на силикатных катализаторах и расширили представления о катализаторах полимеризации. [c.7]


    Многообразие гипотез о механизме действия циглеровских катализаторов связано прежде всего с многообразием каталитических систем, используемых различными авторами для исследования полимеризации олефинов. [c.140]

    Механизм реакции ограничения полимерной цепи, так же, как и другие элементарные акты процесса полимеризации олефинов, определяется особенностью АЦ комплексных катализаторов, их сложностью и многообразием. Эти реакции весьма разнообразны по природе и вклад их при полимеризации определяется природой компонентов каталитических систем, растворителем и параметрами процесса. Они включают как реакции передачи, протекающие с образованием нового АЦ, так и реакции истинного обрыва, при которых происходит необратимая гибель АЦ. [c.154]

    Механизм каталитического алкилирования парафинов, очевидно, тесно связан с механизмом полимеризации олефинов. Возможно, промежуточной реакцией является образование эфиров серной кислоты или положительных алкильных ионов (Уитмор) из олефинов. Как будет описано дальше, это дает представление о возможных промежуточных реакциях. Активация изопарафинов — одновременно происходящий процесс, природа которого неизвестна. Образование алкили-рованнах парафинов в конечной стадии является результатом реакции между активированными парафинами и эфирами или положительными ионами алкила. [c.29]

    Реакция полимеризации этилена и других олефинов в полиолефины под влиянием катализаторов, содержащих алюминий-алкилы или другие металлоорганические соединения, гидриды металлов и галогениды титана, протекает по цепному ионному механизму. Механизм этой реакции относится к анионной полимеризации, которая инициируется металлоорганическими соединениями или гидридами щелочных металлов — донорами электронов. Необходимость наличия в каталитической системе, помимо А1(Б)з, еще ТЮ14 или Ti lз несколько осложняет представление о механизме реакции. Механизм анионной полимеризации в присутствии алкилов металлов, например триэтилалюминия, описывается следующей схемой  [c.76]

    Двойная связь С=С очень реакционноспособна также в реакциях гомолитического типа, о чем свидетельствуют многочисленные подробно изученные процессы радикальной полимеризации олефинов, присоединения электрофильных реагентов в присутствии перекисей и других источников свободных радикалов против правила Марковникова и многие другие реакции, реализующиеся в мягких условиях. Они обычно не сопровождаются перестройкой углеродного скелета олефина, поскольку, как отмечалось выше, радикальный путь изомеризации углеводородных радикалов в гомогенных условиях энергетически невыгоден. Однако процессы гетерогенно-каталитического гидрирования и дегидрирования в ряде случаев сопровождаются изменением строения углеродной цепи. Следовательно, в этих условиях создается возможность реализации гомолитического механизма скелетной изомеризации алкильных радикалов. [c.13]


    Натта указывал [617], что катализаторами полимеризации являются хлориды металлов валентности 3+ или ниже Т1, V, Сг, 2п с малой работой выхода электрона (ф < 4 эв). Эти металлы имеют также низкий ионизационный потенциал (-<7эв). В качестве катализаторов полимеризации этилена испытывались хлориды Мп, Ее, №, у, Та, ТЬ, Н , Со, Зс, Pd [186], но максимальная каталитическая активность получается на хлоридах Т1, V, 7г и ТЬ. Если принять, что зарядовое состояние Ti и 2г в комплексных катализаторах 3+, их электронная конфигурация будет т. е. такая же, как в окисных Сг- и Мо- катализаторах полимеризации. Это указывает на возможную общность механизма полимеризации олефинов на катализаторах двух разных групп окислах и хлоридах. В работе [618] сопоставлены скорости полимеризации этилена на окислах [c.189]

    Нельзя считать окончательно доказанными ни теорию катионной полимеризации, ни какой-либо другой из предложенных механизмов реакции. Однако катионная теория нашла наибольшее признание ввиду ее способности объяснять наблюдаемые факты. В какой-то мере со.временная катионная теория является модификацией более ранних теорий образования сложных эфиров. Ранние публикации Ипатьева, Львова и других [49, 84, 95, 100, 113, 132] по полимеризации олефинов в присутствии фосфорной кислоты связывают каталитические процессы с образованием промежуточных сложных эфиров. Считалось, что молекулы сложных эфиров либо взаимодействуют друг с другом, образуя полимер и регенерируя фосфорную кислоту, которые затем взаимодействуют с молекулами сложного эфира, либо другими молекулами олефина с образованием полимеров и регенерацией фосфорной кислоты. В начале тридцатых годов в США уже находился в действии ряд заводов по полимеризации олефинов с целью получения бензинов. В связи с этим возрос интерес к химической природе получающихся продуктов. Проведенные детальные анализы продуктов показали необходимость создания исчерпывающей теории реакции. [c.333]

    А. В. Фрост и его школа изучали кинетику полимеризации олефинов и природу каталитического действия алюмосиликатов. В области изучения механизма алюмосиликатного катализа ряд интересных работ выполнен Г. М. Панченковым и [c.8]

    Крекинг и пиролиз углеводородов. Механизм каталитического крекинга углеводородов выяснен лишь в самых общих чертах, что объясняется прежде всего большой сложностью этого процесса, так как в нем имеют место разнообразные побочные реакции — изомеризация, полимеризация, циклизация, перераспределение водорода и др. Механизм процесса значительно усложняется при крекинге смесей углеводоро дов. С помощью меченых атомов при изучении механизма вторичных реакций крекинга было установлено [66—69] от сутствие изотопного обмена углерода между углеводорода ми. Метан в условиях крекинга обладает весьма малой реакционной способностью, отсутствует его прямое алкилирование непредельными продуктами, образующимися при крекинге, олефинам принадлежит преобладающая роль в образовании кокса на катализаторе и в реакциях полимеризации. [c.21]

    Общепризнано, что полимеризация олефинов в присутствии кислот в качестве катализаторов протекает по карбоний-ионному механизму [22]. Преимуществом этой теории является возможность объяснения весьма широкой группы каталитических реакций углеводородов полимеризации алкилирования, изомеризации и крекинга на единой основе весьма небольшого числа сравнительно простых элементарных реакций. [c.227]

    Надежной основой для понимания различных новых каталитически активных систем при полимеризации олефинов является довольно хорошо разработанный и твердо установленный механизм гомогенной виниловой полимеризации [1], а поэтому весьма краткий обзо ) этой области поможет сформулировать основные идеи для объяснения более сложных случаев. [c.17]

    Полимеризация олефинов в зависимости от механизма может быть двух видов 1) радикальная, или инициированная, 2) ионная, или каталитическая. [c.84]

    Измерение ширины линий при резонансе протонов метана, адсорбированного на двуокиси титана [297], позволило получить определенные сведения относительно вращения и поступательного движения адсорбированных молекул углеводорода. Данные о времени спин-решеточной релаксации протонов в адсорбированной воде показали, как метод ЯМР может быть использован для записи процесса замерзания молекул в тонких порах адсорбента [298—300]. Хотя весьма вероятно, что в будущем ЯМР будет широко использоваться для обнаружения дефектов [301] в твердых телах, проявляющих каталитическую активность, сейчас считают [302], что ЯМР высокого разрешения окажется относительно мало ценным в катализе,, поскольку широкие линии, наблюдаемые в твердых телах, будут маскировать сдвиги резонансной линии (так называемые химические сдвиги [292]). ЯМР может стать, по-видимому, эффективным средством исследования твердых катализаторов, если удастся разработать более сложную методику, например, с механическим вращением образца во время проведения измерений [303, 304]. В относительно новой области исследования каталитических систем Циглера (см. разд. 5.3.4.2) обычные измерения ЯМР на ядрах выполненные Ди Карло и Свифтом [305], дали многочисленные подтверждения гипотезы Косси и сотр. [306—308] о механизме стереоспецифической полимеризации а-олефинов на смесях соединений переходных металлов и на металлалкилах сильно электроположительных металлов. [c.120]


    Том 6 (1958 г.). Алкилирование, изомеризация, полимеризация, крекинг и гидрореформинг. Каталитическое алкилирование парафинов олефинами. Каталитическая изомеризация углеводородов. Механизм образования и разложения полимеров. Полимеризация олефинов. Каталитический крекинг. Каталитический реформинг чистых углеводородов. [c.99]

    Как видно из изложенного, в гомогенных системах, возможны каталитические реакции гидрирования, изомеризации и полимеризации олефинов. Такие реакции характерны, как будет показано ниже, и для гетерогенных каталитических реакций. Поэтому можно предполагать, что механизм гетерогенных каталитических реакций в общем аналогичен механизму гомогенных каталитических реакций. Во многих случаях активные участки [c.389]

    Механизм каталитической полимеризации олефинов на кислотных катализаторах описан в разделе Теория гетерогенного катализа . Применение синтетических алюмосиликагелей как катализаторов полимеризации значительно более активных чем природные, было предложено еще Гайером [235]. Чистый силикагель обладает очень слабо выраженными каталитическими свойствами. Активным началом катализатора Гайера, поБ. А. Казанскому и М. И. Розенгарт [236], является гидроалюмосиликат, образовавшийся в результате хемосорбции гидроокиси алюминия гелем кремнекислоты этот гидроалюмосиликат имеет кислые свойства. Химическое взаимодействие между окислами алюминия и кремния, приводящее к изменению свойств этих компонент, установлено К. В. Топчиевой и Г. М. Панченковым [237]. [c.247]

    Авторы, объясняющие реакцию алкилирования, исходя из предположения об ионизации моле .ул изопарафина с разрывом связи С—Н, используют основные положения карбоний-ио1нного механизма каталитической полимеризации олефинов, разработанного Витмором с сотр. [7] и получившего в настоящее время широкое признание. В основе механизма каталитической полимеризации, предложенного Витмором, лежит электронная теория химического взаимодействия (реакций).. Механизм реакции цепной. Первым звеном в этой цепи при контакте олефина с кислотным катализатором является образование исходного карбоний-иона путем присоединения иона водорода кислоты по двойной связи  [c.11]

    Топчиев, Кренцель, Перельман [40] обсуждают механизм реакции полимеризации олефинов на окисных катализаторах, в качестве которых применяются главным образом окислы металлов переменной валентности V— VIII групп периодической системы на носителях (алюмосиликаты или окись алюминия).Алюмосиликаты оказывают сами каталитическое действие, аналогичное действию серной, фосфорной и других сильных кислот. Существенную роль играет валентность металла в окисле. Окислы хрома, молибдена, вольфрама, урана имеют несколько степеней окисления. В высших окислах металлические ионы не содержат непарных электронов, характерных для более низкой валентности. Такие окислы металлов с незаполненной электронной оболочкой являются электронными акцепторами, что, по-видимому, способствует повышению их эффективности. Электроны, отданные катализатору, возвращаются в процессе полимеризации, результатом чего является понижение энергии системы в целом  [c.181]

    В обзорной статье flj по изучению механизма ионнокоординационной полимеризации олефинов на классических Циглеровских катализаторах подробно описано влияние до-норных и акцепторных лигандов на каталитический процесс, структуру и молекулярную массу полимеров.Электронодонор-ные соединения ослабляют связь Ме-С (металл переменной валентности), которая вместе к координированным мономером является центром полимеризации, а электроноакцепторные стабилизируют эту связь. И чем меньше электронная плотность у металла переменной валентности, тем нИже молекулярная масса получающихся полимеров, т.е.акцептор)-ные лиганды снижают ее. [c.13]

    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    Существует много различных теорий, объясняющих механизм каталитического алкилирования изобутана олефинами в присутствии НР и Н2504. Все эти теории основаны на цепном карбоний-ионном механизме [3, 4]. Ранее исследователи игнорировали возможность изомеризации и полимеризации олефина в общем механизме алкилирования. Образование многочисленных изомеров,, обычно присутствующих в алкилатах разного происхождения, объясняли смещением гидрид-иона или смещением метила . По,-стулировали, что образование побочных высококипящих продуктов связано с протеканием полимеризации, требующей на каждую молекулу изобутана более одной молекулы олефина. Появление диметилгексанов объясняли взаимодействием изобутана с буте-ном-1 [1,3], протекающим через промежуточное образование ди-метилгексильного иона, претерпевающего до своего превращения в молекулы углеводорода Сз различные перегруппировки. В рабо- [c.33]

    Такие ценпые реакции могут протекать с участием либо свободных радикалов, либо ионов кapбoгпIЯ . Ниже будут описэны господствующие в настоящее время представления о механизме упомянутых выше цепньлх реакций. К реакциям, протекающим с участием свободных радикалов, в первую очередь относятся такие процессы, как термическая полимеризация, термический крекииг и термическое алкилирование. В противоположность этому, реакции с участием ионов карбония являются каталитическими и протекают в присутствии сильных кислот (безводного хлористого алюминия, фтористого водорода, серной кислоты, фтористого бора, фосфорной кислоты, гидросиликата алюминия). При этом температуры реакций, как правило, невелики, за исключением температуры при каталитическом крекинге. К последним реакциям принадлежат каталитическая полимеризация, каталитическое алкилирование, каталитическая изомеризация парафиновых углеводородов и часто встречающаяся при различных превращениях олефинов побочная реакция переноса водорода от одпой молекулы олефина к другой. [c.333]

    Такие различия между термическим и каталитическим процессами могут быть объяснены тем, что они имеют разный механизм. Катализатор крекинга способен вызывать образование ионов карбония, так как он является очепь сильной кислотой. Поэтому не удивительно, что каталитический крекинг сопровождается реакциями изомеризации и полимеризации, приводящими к возникновению углеводородов с очень разветвленным скелетом. Способность катализатора крекинга к переносу водорода с насыщением части молекул олефинов следует считать проявлением карбоний-ионного механизма, как уже упоминалось при описании гидрополимеризации олефинов. При этой реакции катализатор способствует передаче водорода от одной молекулы олефина к другой. В результате образуются парафин и диен последний может еще раз явиться донором водорода. В конце концов, олефины либо ароматизируются, либо обуглероживаются, покрывая катали- затор налетом кокса. Эта реакция тоже инициируется олефином, который, присоединяя протон катализатора, превращается в ион карбония. В качестве примера приводится механизм каталитического крекинга к-гексадекана [117]. Образование углеводородов С3 и С4 объясняется тем, что по преимуществу происходит Р-расщепление, связанное с изомеризацией иона карбония. Попы этил- и метилкарбоння возникают с ббльшим трудом. [c.344]

    Таким образом, при полимеризации этилена на циглеровских катализаторах найдены адекватные модели, описывающие процесс полимеризации, которые во многом схожи у различных исследователей. Методами аЬ initio и DFT исследованы маршрут реакции полимеризации, объяснены особенности полимеризации олефинов на циглеровских катализаторах, показаны влияние лигандов в АЦ, противоиона и роль р-агостических комплексов в механизме реакции полимеризации. Однако данные по полицентровости каталитических систем полимеризации этилена [5] еще не были учтены в этих теоретических моделях. [c.310]

    Почти все реакции разложения можно ускорить, если имеется катализатор, способный при разложении или реакции с субстратом служить источником свободных радикалов. Так, например, алкил-перекиси или кислород могут катализировать многие из таких реакций разложения. Галоиды катализируют разложение большинства галоидалкилов, простых эфиров и альдегидов, поскольку они легко диссоциируют. Весьма активными инициаторами реакций полимеризации являются также металлалкилы и азосоединения, фотолиз введенных кетонов и альдегидов тоже может инициировать другие реакции разложения. Однако разложение некоторых галоидалкилов, например я-пропилхлорида, не ускоряется катализаторами, дающими свободные радикалы, и поэтому считается, что они разлагаются только по молекулярному механизму, давая непосредственно олефины и хлористый водород. В общем изучение каталитического разложения не внесло значительного вклада в выяснение механизма разложения. Существование катализа свободными радикалами указывает на возможность протекания реакции по цепному механизму, но не говорит в пользу того, что она будет идти как цепная в отсутствие катализатора. [c.380]

    Координационно-ионные комплексы играют большую роль в процессах каталитической полимеризации. О полимеризации олефинов на катализаторах Циглера — Натта и других соединениях переходных металлов говорилось в главе 1, 6. Координационный механизм доказан также для полимеризации okh ii этилена и окиси пропилена на окислах, пщроокисях и карбонатах металлов П группы, алюминия и железа [280—282]. При разложении гидроокисей и карбонатов в вакууме и превращении их в окислы каталитическая активность возрастает пропорционально числу поверхностных атомов металла, неэкранированных ОН-группами. На окислах Mg, Ве, А1, прокаленных в вакууме при 300—500° С, число этих атомов равно 2-10 — 2-10 на 1 см . Инфракрасные спектры показали, что ОН-группы не возмущаются в процессе полимеризации окиси этилена. На основании изучения механизма реакции предполагалось, что реакция полимеризации (роста цепи) протекает через стадию адсорбции молекулы окиси этилена на атоме металла, удерживающем одновременно растущую цепочку полимера, и последующего шодлезания этой молекулы у основания цепочки, например на MgO  [c.78]

    Исследуя ту часть процесса, которая заключается в каталитической полимеризации метиленовых радикалов, Эйдус и его сотрудники 1В 1946 г. открыли реакцию гидроконденсации окиси углерода с олефинами 82]. В изучении этой реакции принял участие и Зелинский. Основными продуктами этой реакции являются алифатические как предельные, так и непредельные углеводороды и небольшие количества (2—3%) кислородсодержащих соединений. Механизм образования этих соединений авторы выразили тогда мультиплетной схемой [83]. [c.110]

    Реакции парафиновых углеводородов. По мере увеличения температуры полимеризация олефинов и алкилирование парафинов все в большей степени уступают место обратному процессу — крекингу (табл. 8-1). Крекинг был в числе первых каталитических реакций, проведенных на цеолитах. В одной из ранних работ Фрилетт, Вейсц и Голден [133] исследовали крекинг -декана и на основе анализа продуктов, представленных углеводородами С, - g, сделали предположение о существовании двух основных механизмов этой реакции. Состав продуктов, полученных на цеолитах NaX при 500° С и СаХ при 470° С, а также на аморфном алюмосиликате при 500° С при степени превращения 25—30%, приведен в табл. 8-5. Продукты крекинга на цеолите СаХ и алюмосиликате отличаются мало, хотя на цеолите для всех углеродных скелетов заметно более высокое соотношение парафинов и олефинов. Существенно другим распределением отличаются продукты крекинга на NaX среди них очень мало разветвленных углеводородов и очень много низших углево- [c.95]

    Механизм протекания органических реакций с промежуточным образованием карбоний-ионов в кислотной среде был первоначально выдвинут Уитмором [69] в связи с исследованиями полимеризации олефинов. В последующем Шмерлинг [55] опубликовал обзор различных реакций углеводородов, протекающих по ионному механизму, включая каталитический крекинг. Еще позже были опубликованы [24, 66] превосходные детальные исследования механизма каталитического крекинга. Гринсфельдеру на основе обычных термодинамических данных и потенциалов ионизации [19] удалось [29] достаточно надежно обосновать ионный механизм пyтe 5 вычисления сродства протона к различным олефинам. В последующем Гринсфельдер [23, 24] опубликовал дополнительные вычисления этого типа, основываясь на потенциалах ионизации, измеренных методами масс-спектрометрии [60, 61]. Вычисленные величины теоретически подтверждают ранее постулированное предпочтительное образование третичных или вторичных карбоний-ионов по сравнению с первичными или непосредственную изомеризацию последних. Сродство протонов также подтверждает избирательность образования ионов, содержащих не менее трех углеродных атомов. В связи с недавним появлением ряда публикаций [24, 66] механизм, основанный на участии карбоний-ионов, здесь подробно не рассматривается. Следует ограничиться лишь кратким резюме для возможности распознавания первичных и вторичных реакций. [c.139]

    В послевоенное время исследования в области химии и технологии полимеров значительно расширились, в результате чего были синтезированы многочисленные новые типы высокомолекулярных соединений и разработаны новые методы полимеризации. Наиболее выдающимися по свому значению из работ этого периода, вероятно, являются работы Циглера, открывшего специальные катализаторы для полимеризации этилена При низком давлении, и Натта, разработавшего каталитические системы для стереоспецифической полимеризации а-олефинов.. К настоящему времени химики стали глубже понимать механизмы реакций полимеризации, а знание взаимосвязи между структурой и свойствами полимеров позволяет им получать материалы с заранее заданными свойствами. Грандиозные успехи, достигнутые в производстве полимеров, иллюстрируются данными табл. 8.1. [c.231]

    Бортриалкилы в присутствии эфирата ВРз катализируют полимеризацию олефинов по катионному механизму вследствие образования комплексного катиона (ВРз-ОК). Так, Колесников и Федорова [467] показали, что каталитическое действие трибутилбора на полимеризацию акрилонитрила активируется добавками эфирата трехфтористого бора. Выход полиакрилонитрила в присутствии ВРз(С2Н5)гО увеличивается, с 5 до 82%. [c.174]

    Несмотря на то что многие детали механизма альтер-нантной сополимеризации еще не выяснены, приведенные в предыдущем разделе далеко не исчерпывающие данные позволяют сделать несколько довольно четких выводов. Прежде всего совершенно очевидно, что основные признаки, характерные для полимеризации олефинов под действием комплексных металлоорганических катализаторов, в процессе альтернантной сополимеризации не проявляются. Исключением являются, видимо, процессы каталитической альтернантной сополимеризации этилена с 3- или циклоолефинами и пропилена с бутадиеном. По поводу механизма альтернантной сополимеризации высказывались весьма противоречивые, порой даже взаимоисключающие предположения. Не останавливаясь на них, заметим, что в настоящее время различные взгляды начинают сближаться. Недавно эта проблема детально обсуждалась в обзоре Гейлорда [1007]. Здесь мы рассмотрим только те вопросы, которые касаются механизмов инициирования, роста цепи и элементарных актов альтернирования в присутствии упоминавшихся катализаторов. [c.192]


Смотреть страницы где упоминается термин О механизме каталитической полимеризации олефинов: [c.21]    [c.419]    [c.590]    [c.942]    [c.197]    [c.96]    [c.191]    [c.589]    [c.249]    [c.41]    [c.223]    [c.389]   
Смотреть главы в:

Каталитическая полимеризация олефинов в моторное топливо -> О механизме каталитической полимеризации олефинов




ПОИСК





Смотрите так же термины и статьи:

Каталитическая полимеризация

Механизм полимеризации олефинов

Олефины каталитической полимеризацией

Олефины полимеризация



© 2025 chem21.info Реклама на сайте