Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерного магнитного резонанса ЯМР молекулярные изменения

    Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердо.. агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов импульсный и щироких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров. [c.231]


    При выборе метода исследования необходимо учитывать оснащенность лаборатории приборами (в случае, если имеется инфракрасный спектрофотометр, спектрометр ядерного магнитного резонанса, не позволяющий проводить измерения при повышенной температуре). Поэтому ядерный магнитный резонанс возможен для анализа проб, растворимых при нормальной температуре. Вследствие ограниченной растворимости полиоксиметилена и сополимера, содержащего большие количества полиоксиметилена, для определения количественного состава сополимера останавливаются на ИК-спектроскопии твердого вещества. Аналогично поступают и при определении среднего молекулярного веса, но здесь возникает трудность в приготовлении соответствующих эталонов (изменение интенсивности при смешивании). В крайнем случае можно получить данные, характеризующие растворимую часть сополимера. При определении структуры цепи ЯМР-спектроскопия, обладающая большей селективностью, дает лучшие результаты, чем ИК-спектроскопия. Метод ЯМР-спектроскопии также можно применять только для растворимых сополимеров. [c.419]

    Можно сравнительно просто определить, какую природу — химическую (т. е. обусловленную пигментом) или физическую (обусловленную структурой) — имеет данный цветовой эффект. Идентификация и характеристика пигмента обычно является стандартной задачей в органической химии. В последующих главах первой части этой книги приведены основные химические свойства наиболее крупных групп природных пигментов. Гораздо более сложной является проблема взаимодействия молекул пигмента с их ближайшим микроокружением, напри-ме с белками в мембранах. Применение сложных современных физико-химических методов, таких, как резонансная рамановская спектроскопия, линейный и круговой дихроизм и ядерный магнитный резонанс, позволяет решить эту проблему, а также получить информацию о молекулярных изменениях, которые претерпевают некоторые пигменты при их функционировании. Вторая часть этой книги представляет собой обзор функций природных пигментов как в роли окрашивающих агентов, так и в роли участников гораздо более сложных процессов, таких, как фотосинтез, зрение и другие фотореакции, которые могут протекать за время порядка пикосекунд. [c.30]

    Сведения об изменении молекулярной подвижности в граничных слоях полимеров могут быть получены также с применением метода ядерного магнитного резонанса. Имеются многочисленные данные [230], показывающие, что исследования релаксационных процессов в полимерах, проведенные методами диэлектрической релаксации или ЯМР, дают в общем аналогичные результаты. В ряде наших работ на объектах, уже рассмотренных выше, была исследована спин-решеточная релаксация протонов в полимерах и олигомерах, находящихся на поверхностях частиц наполнителей [215—218]. Для примера рассмотрим данные о температурной зависимости времени спин-решеточной релаксации Г] для полистирола и образцов, содержащих аэросил и фторопласт-4 (рис. III.27). Наблюдаются две области релаксации — высокотемпературная и низкотемпературная. Для высокотемпературной области минимум Ti смещается в сторону высоких температур по мере уменьшения толщины поверхностного слоя, и сдвиг достигает 20 °С. В то же время низкотемпературный процесс смещается в сторону низких температур. Для ряда исследованных систем были установлены [c.129]


    Полное понимание молекулярных процессов, имеющих место [при фазовых превращениях, в общем требует экспериментальных исследований различного рода. Исследования структуры кристаллов, диэлектрической проницаемости, изменений объема и плотности, спектров ядерного магнитного резонанса, термических свойств — все представляет интерес. К сожалению, информация, необходимая для интерпретации фазовых изменений органических кристаллов, редко бывает получена более чем одним или двумя методами. Однако иногда может оказаться достаточным изучение только термических свойств, для того чтобы охарактеризовать некоторые виды фазовых изменений. Термодинамические данные особенно ценны при [c.78]

    Для того чтобы идентифицировать и синтезировать сложные молекулы, химик должен научиться осуществлять химические изменения, а затем устанавливать состав и трехмерную структуру продуктов реакций. Сегодня наши возможности таковы, что позволяют химикам работать над биологическими проблемами. Мы надеемся раскрыть химическую природу жизненно важных процессов на молекулярном уровне. Это стало возможным благодаря тому, что физики изобрели, а химики усовершенствовали новые методы, с помощью которых можно устанавливать состав и строение необычайно сложных молекул. Наиболее важными среди таких новых методов являются ядерный магнитный резонанс, рентгеноструктурный анализ и масс-спектрометрия. [c.219]

    Точно так же, как электроны обладают спином, который определяется спиновым квантовым числом и который диктует, что данную молекулярную орбиталь могут занимать только два электрона с противоположными (т. е. спаренными ) спинами, ядерные частицы — протоны и нейтроны — также обладают спиновыми свойствами. В любом данном ядре некоторые из спинов могут быть спарены, однако имеются остаточные неспаренные спины. Ясно, что это характерно для ядер с нечетным массовым числом (нечетным суммарным числом протонов и нейтронов). Вращающееся заряженное тело можно рассматривать как маленький магнит, который при помещении в магнитное поле может принять две разные ориентации в направлении поля или против поля. Эти ориентации имеют разную энергию. При нормальных условиях ббльшая часть ядер занимает низший энергетический уровень. Облучение с энергией, соответствующей энергетической щели между двумя уровнями (в радиочастотном районе), поглощается, промотируя ядра с одного уровня на другой, и это поглощение можно зарегистрировать. Точная частота (т) зависит от типа ядра ( Н, и т. д.) и электронного окружения, в котором оно находится, а также от силы магнитного поля. Схема спектрометра ядерного магнитного резонанса (ЯМР), применяемого для регистрации этих изменений, приведена на рис. 3.10. [c.70]

    Структурные данные можно получить также методами, которые используют энергии в радиочастотной области. К ним относится ядерный магнитный резонанс (ЯМР), ядерный квадруполь-ный резонанс (ЯКР) и электронный парамагнитный резонанс (ЭПР). Ядра, которым присущ магнитный момент, могут существовать в различных квантовых состояниях при наложении внешнего магнитного поля. Явление ядерного магнитного резонанса состоит в переходах между энергетическими уровнями, соответствующими различным ориентациям ядерных магнитных моментов по отношению к внешнему полю. Разность между энергиями квантованных состояний очень мала и лежит в области частот от 10 до 60 Мгц (т. е. в области длин волн от 30 до 5 м). Так как поле, которое определяет разность в энергиях, зависит от распределения электронов вокруг ядра, то изменения в этом распределении вследствие изменения связи или молекулярного окружения вызывают сдвиги положений резонансных пиков, называемые химическими сдвигами. Они и дают информацию о структуре молекулы. [c.293]

    Для получения дополнительных данных об изменении структуры и молекулярного движения при деструкции поликарбоната был использован метод ядерного магнитного резонанса (ЯМР). Для [c.253]

    Ядерный магнитный резонанс, диэлектрическая релаксация и динамические механические свойства полимеров связаны с молекулярным движением. Ранние несистематические исследования [46, 47] изменений [c.272]

    В настоящей главе рассматриваются -спектральные методы исследования полиолефинов инфракрасная спектроскопия, метод ядерного магнитного резонанса, измерение механических и диэлектрических потерь. Все эти методы позволяют исследовать такие процессы в полимере, как колебания атомов и их групп и конфор-мационные превращения макромолекул. Поэтому везде, где это возможно, мы будем стараться объяснять экспериментальные факты особенностями молекулярного строения исследуемого полимера. Различные спектральные методы позволяют по-разному подойти к выяснению особенностей данного полимера и имеют, в сущности, очень мало общего. В соответствии с классической теорией методы инфракрасной спектроскопии и ядерного магнитного резонанса относятся к так называемым резонансным методам, а измерения механических и диэлектрических потерь связаны с явлениями релаксации или запаздывания. Общим между различными методами является то, что воздействие на исследуемый материал фактора X приводит к возникновению реакции этого материала, выражаемой фактором X. Если X изменяется по гармоническому закону, то и л изменяется по такому же закону, но в общем случае с отставанием по отношению к изменению X. Это положение может быть записано следующим образом  [c.279]


    Для возникновения резонансной абсорбции существенно наличие инерционного фактора, причем влияние этого фактора зависит от величины константы т и от квадрата частоты. Максимум потерь примерно совпадает по положению на частотной оси с собственной частотой незатухающих колебаний осциллятора, а положение максимума почти не зависит от температуры. Положение максимумов в спектрах потерь определяется относительной ролью тех или иных релаксационных процессов, и поэтому в значительной степени зависит от сил внутреннего трения при молекулярных перегруппировках в материале, которые в свою очередь резко изменяются с изменением температуры. Измерения инфракрасного спектра отвечают цели идентификации молекулярных групп или связей, а релаксационные спектры используются для изучения молекулярных движений. Метод ядерного магнитного резонанса занимает промежуточное положение между этими двумя крайними случаями. [c.284]

    Из этих данных, а также из данных работ по изучению механизма разрушения полимеров с использованием методов рассеяния рентгеновских лучей, ядерного магнитного резонанса, ИК-спектроскопии и др. [15, 18, 19] следует, что за прочность полимеров ответственны химические связи. Вероятность процесса разрушения определяется величиной 11= По—уст. Чем больше напряжения, тем меньше величина энергетического барьера и более вероятен процесс разрушения. Предполагается, что благодаря межмолекулярным связям достигается определенное распределение механических усилий по цепям полимера. С этих позиций коэффициент у является количественной мерой микронеоднородности в распределении напряжений. Наименьшая величина коэффициента у, а следовательно, и высокая прочность полимеров соответствует более равномерному распределению напряжений по полимерным цепям. Эта закономерность сохраняется также при изменении молекулярной массы полимера. На основании этих исследований было сделано заключение о том, что уравнение временной зависимости прочности [c.11]

    Объем книги и общий уровень изложения в ней не дают возможности систематически изложить основы квантовой химии, на автор стремился познакомить студента с основными методами ее необходимыми для понимания выводов и квантовомеханических представлений, используемых в книге. В дополнениях дана характеристика волнового уравнения Шредингера, основы квантовомеханической теории атома водорода и элементы квантовомеханической теории химической связи. Расширено рассмотрение молекулярных спектров. Значительное внимание уделено методам электронного парамагнитного резонанса, ядерного магнитного резонанса, нашедшим широкое применение при исследовании разных вопросов и уже на данной стадии развития подводящим к пониманию особенностей тонких и сверхтонких изменений в состоянии частиц. Введены основные сведения об элементах симметрии молекул и кристаллов. Описаны расчетные методы статистической термодинамики и основные понятия термодинамики необратимых процессов. Введено вириальное уравнение состояний и другие соотношения, используемые для расчета свойств неидеальных газов в широкой области температур и давлений. Приведен дополнительный материал, характеризующий особенности свойств веществ при высоких и очень высоких температурах. Описаны особенности внутреннего строения и свойств полимерных материалов. [c.12]

    Органические соединения могут иметь широко меняющиеся химический состав, формулу и структуру молекул, различное расположение отдельных молекул в пространстве. Во многих органических молекулах, особенно с малым молекулярным весом, отдельные атомы молекулы, например в СвИв, взаимно расположены определенным образом. Эти атомы при обычных температурах совершают только небольшие колебания вокруг положений равновесия. В органических молекулах с большим молекулярным весом, таких, как винильные полимеры (— СНг — СНХ—) , отдельным атомам не всегда можно приписать определенные положения в пространстве относительно друг друга. Помимо колебаний, имеют место гораздо более сложные виды движения, например внутреннее вращение и изменение ориентации группы атомов относительно соседних групп, в зависимости от структуры твердого тела, пространственных препятствий движению и температуры. Действительно, при механических релаксационных исследованиях, так же как и в методе ядерного магнитного резонанса, фиксируются те или иные возможные виды внутреннего движения различной природы [221]. [c.341]

    Методы исследования продуктов деструкции полимеров. Часто возникает необходимость оценить термическую стабильность полимерных материалов по количеству и составу газообразных и жидких продуктов деструкции, образующихся при переработке и эксплуатации полимерного материала, а также исследовать деструк-тированный полимер. Качественный и количественный состав летучих продуктов термической и термоокислительной деструкции изучается методами газо-адсорбционной и газо-жидкостной хроматографии. Идентификацию продуктов деструкции проводят с помощью эталонных веществ и другими методами масс-спектроскопическим, ядерного магнитного резонанса высокого разрешения, химическими анализами. Изменение химического строения полимера в процессе термического и термоокислительного старения изучают методами ИК- и УФ-спектроскопии. Для получения более полных данных об изменении структуры и молекулярной подвижности при деструкции полимеров может быть использован метод ядерного магнитного резонанса (ЯМР) широких линий. Для установления строения стабильных радикалов, образующихся в процессах деструкции полимеров, применяется метод электронного парамагнитного резонанса (ЭПР). [c.8]

    Структурные изменения воды в ГС подтверждаются спектральными методами [479—484], а также согласуются с результатами расчетов структуры тонких прослоек методами молекулярной динамики и Монте-Карло. Изменение структуры воды на больших расстояниях от поверхности частиц прямо подтверждено методом ядерного магнитного резонанса [66, 71, 73, 315]. Таким образом, во многих экспериментальных исследованиях обнаружено существенное отклонение структурно-чувстви- [c.170]

    За последние годы внедряются и быстро распространяются методы электронно-парамагнитно1 о и ядерно-магнитного резонансов для исследования водоро (ных связей, ионных и молекулярных реакций, для оценки молекулярного строения и изменения конфигураций молекул. Известно, что электронно-паромагнитный резонанс (ЭПР) вызывается свободными связями углерода, находящимися преимущественно в конденсированной ароматической структуре асфальтенов. Повышение температуры (выше 380°С) [82], воздействие ультрафиолетовой радиации и волновая обработка продукта увеличивают число свободных радикалов и, следовательно, повышают скорос ть окисления. [c.35]

    За последние годы внедряются и быстро распространяются методы электронного парамагнитного и ядерного магнитного резонансов для исследования водородных связей, ионных и молекулярных реакций, для оценки молекулярного строения и изменения конфигураций молекул. Эти новые и перспективные методы магнитохи-мии применяются для изучения фракций битумов — определения структуры их соединений. [c.23]

    Элементный К. а. можно проводить хим. методами с испольэ. р-ций обнаружения, характерных для неорг. ионов в р-рах или атомов в составе орг. соединений. Эти р-ции обычно сопровождаются изменением окраски р-ра (см. также Капельный анализ), образованием осадков (см., напр.. Микрокристаллоскопия) или выделением газообразных продуктов. К. а. неорг. в-в часто требует систематич. хода, при к-ром с помощью хим. р-ций иэ смеси последовательно выделяют небольшие группы ионов (т. н. аналит. уш ы элементов), после чего проводят р-ции обнаружения. В дробном К. а. каждый элемент открывают непосредственно в смеси по специфич. р-ции. Хим. методы имеют практич. значение при необходимости обнаружения только 1—2 элементов. Многоэлементные фиэ. методы, напр, эмиссионный спектральный анализ, активационный анализ, рентгеноспектральный анализ (см. Рентгеновская спектроскопия), позволяют обнаружить ряд элементов после проведения небольшого числа операций. Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, масс-спектрометрии, ядерного магнитного резонанса и хроматографии, Используют также хим. методы и методы, основанные на измерении таких физ. характеристик в-ва, как, напр., плотность, р-римость, т-ры плавления и кипения. [c.250]

    Среди других аналитических методов, характеризующих пе-рерабатываемость каучуков, в первую очередь следует назвать дифференциальную сканирующую калориметрию (ДСК), ядерный магнитный резонанс (ЯМР) и термогравиметрический анализ (ТГА). Их применение ограничено тем, что наблюдаемые различия в молекулярной структуре каучуков не во всех случаях свидетельствуют о различиях в технологических показателях. Это связано с различиями в чувствительности, с которой отдельные показатели реагируют на изменение свойств. Однако одновременное использование нескольких методов представляется весьма плодотворным. [c.457]

    При промежуточных температурах или частотах, обычно называемых интервалом стеклования, полимер не является ни стеклообразным, ни каучукоподобпым. Он обнаруживает промежуточные значения модулей, является вязкоупругим телом и может рассеивать значительные количества энергии нри растяжении. Стеклование проявляется многими путями, например, в изменении объемного коэффициента термического расширения, который может применяться для определения температуры стеклования Т . Явление стеклования в значительной мере является центральным при рассмотрении механического поведения полимеров по двум причинам. Во-первых, существует концепция, связывающая принцип температурно-временной эквивалентности вязкоупругого поведения с температурой стеклования Т . Во-вторых, стеклование может быть изучено на молекулярном уровне такими методами как ядерный магнитный резонанс и диэлектрическая релаксация. Таким путем можно получить представление о молекулярной природе вязкоупругости. [c.24]

    Для молекулярной физики представляет интерес понять Стеклование механизм, обеспечийающий изменение конформаций, с точки зрения его связи с молекулярными движениями, т. е. установить, относительно каких связей в структуре происходит внутреннее вращение с ростом температуры. Одним из наиболее результативных подходов к решению этой проблемы является сравнение вязкоупругого поведения полимеров с их диэлектрическими релаксационными свойствами и в особенности с явлением ядерного магнитного резонанса. [c.128]

    Ясно, что и для электрона, и для ядер различным спиновым состояниям соответствуют разные проекции магнитного момента Цег и nnz следовательно, магнитные энергии электрона и ядер ЦегН и ЦпгЯ в магнитном поле Н разные в различных спиновых состояниях. Магнитные энергии спиновых состояний называются зеема-новскими энергетическими уровнями этих состояний. Напомним, что на регистрации переходов между электронными спиновыми состояниями (т. е. между электронными зеемановскими уровнями) основан метод электронного парамагнитного резонанса (ЭПР). Переходы между ядерно-сниновыми состояниями (и ядерными зеемановскими уровнями) фиксируются методом ядерного магнитного резонанса (ЯМР). Эти переходы сопровождаются изменением проекции спина и индуцируются переменными магнитными полями на частоте прецессии электронов или ядер. Переменные поля могут быть приложены извне (как в ЭПР или ЯМР), или создаваться молекулярным движением. Движение молекул окружающей среды (решетки) хаотично и создает случайные магнитные поля разных частот и амплитуд ( белый шум ), однако всегда имеется компонента этого шума на частоте прецессии электрона или ядра, которая индуцирует переходы между спиновыми состояниями. [c.12]

    Молекулярные спектры немногих известных мономолекулярных неассоциированных алюминийорганических соединений явно отличаются от спектров ассоциированных соединений в области низких частот (связи Л1—С 400—700 сж" ). Вполне понятно, что частоты, характерные для мостиковых связей, исчезают [98—100] эти частоты, естественно, также исчезают после присоединения электронодонорных молекул. Однако не удалось достаточно надежно установить те особые частоты в инфракрасных спектрах и спектрах комбинационного рассеяния, которые обусловлены новой биполярной связью между алюминием и электронодонорным атомом. Особую поляризацию, которая приводит к высокой интенсивности полос поглощения связей Л1—С, можно отчетливо распознать по химическим сдвигам в спектрах ядерного магнитного резонанса [93, 100]. Сигналы от СНг-протонов у этилалюминиевых соединений и у диэтилового эфира появляются по разные стороны [9, 93, 100] от находящегося почти на том же месте сигнала СНз-протонов в соответствии с обратной поляризацией групп 8 5+ г+. 6-—О—СН и Л1—СН. Спектры ядерного резонанса с особой отчетливостью показывают изменения в электроотрицательности атома алюминия, вызываемые замещением и образованием комплексов [100]. Кроме того, эти спектры подтверждают существование очень быстрого обмена алкильными группами между различными молекулами триалкилалюминия 97] например, [Л1(СНз)з]2 дает один-единственный сигнал для протонов всех метильных групп  [c.254]

    Известны многочисленные данные, свидетельствующие о подвижности групп в белковых молекулах и многообразии конформационных состояний белков в целом (см. обзоры [1375-1379]. Во многих случаях изменение конформации происходит при изменении внешних условий (pH, температура и т.п.) или же при присоединении лигандов. Однако и при фиксированных условиях белки, по-видимому, существуют в нескольких или многих состояниях, взаимопревращения между которыми происходят достаточно быстро. Это следует, во-первых, из экспериментов по изотопному обмену протонов в белках, выявляющему наряду с быстрой стадией обмена также и более медленную стадию, которую относят к обмену протонов внутри глобулы, скорость которой лимитируется скоростью конформационного изменения белка [138О]. Во-вторых, такие изменения можно проследить, используя "репортерные группы , введенные в белок, и исследуя спектральные или иные физико-химические изменения, происходящие с белком. Например, в случае модифицированной карбоксипептидазы удалось обнаружить рН-не-зависимый конформационный переход с кажущейся константой скорости около Б с [1381]. Далее конформационная подвижность в белках прослеживается методами ядерного магнитного резонанса высокого разрешения [1382] по положению и форме сигналов от отдельных атомов и групп. Существует много других способов констатации конформационных изменений в белках [1383-1385], рассматривать которые здесь не представляется возможным. Единственно хотелось бы упомянуть о принципиальной возможности априорного расчета относительно небольших белковых молекул, дающего сразу сведения об энергиях большого набора состояний белка и, следовательно, о его конформационных возможностях [153,1386], а также о возможности компьютерного моделирования подвижности белков методами молекулярной динамики [1387,1388]. [c.96]

    Адсорбционное взаимодействие с поверхностью наполиител единой как(й-либо молекулы,входящей в пачку,вызывает связывание поверхностью всей пачки в целом, в результате чего ограничивается подвижность не только непосредственно контактирующей с поверхностью цепи,-но и всех цепей, входящих в данную пачку. Только при таком рассмотрении могут быть поняты заметные изменения свойств термопластов при введении в них небольших количеств наполнителей. С этой же точки зрения,неплотность упаковки в присутствии наполнителя может носить не только молекулярный, но и надмолекулярный характер. С другой стороны,взаимодействие. молекул с поверхностью наполнителя в ходе формирования наполненного полимера должно изменять условия возникновения надмолекулярных структур и характер их взаимного расположения. Волее детальные исследования изменений молекулярной подвижности отдельных структурных элементов цепей в полимерах в присутствии поверхности наполнителя,проведенные методами ядерно-го магнитного резонанса, диэлектрической релаксации,объемной релаксации и другими, показали, что взаимодействие с поверхностью наполнителя оказывает различное влияние на подвижность различных структурных элементов цепей.Адсорбционное связывание цепей поверхностью наполнителя, происходящее при взаимодействш части функциональных групп полимера с наполнитеяеи,снижает подвижность сегментов цепей и всей молекулы в целом. Но в адсор( > [c.12]

    Явление импульсного ЯМР [1] состоит в изменении суммарной ядерной намагннченностн образца, помещенного одновременно в однородное постоянное магнитное поле и импульсное радиочастотное магнитное поле соответствующей частоты. Пре-цесспрующий вектор макроскопичсскоп ядерной намагниченности индуцирует в приемной катушке переменное напряжение, которое пропорционально концентрации исследуемых ядер н является функцией продольного времени (спин-решеточной) релаксации Ti и поперечного времени (спин-спиновой) релаксации T a. Из параметров сигнала ЯМР можно установить а) вид ядер — из напряженности магнитного поля и резонансной частоты б) число ядер, дающих вклад в резонанс,— из амплитуды сигнала в) связь между ядрами и их окружением и молекулярную подвижность — пз времен релаксации. [c.100]


Смотреть страницы где упоминается термин Ядерного магнитного резонанса ЯМР молекулярные изменения: [c.250]    [c.42]    [c.99]    [c.359]    [c.746]    [c.102]    [c.102]    [c.216]    [c.12]   
Органическая химия (1974) -- [ c.427 , c.430 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс г ядерный магнитный



© 2022 chem21.info Реклама на сайте