Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакций на катализаторе без носителя

    Изучен процесс гидрирования бензойной кислоты на рутениевых катализаторах с использованием углеродного носителя. Показано влияние температуры, давления, способа перемешивания, концентрации катализатора и воды на скорость реакции. Катализатор на основе рутения отличается высокой стабильностью п избирательностью степень превращения и выход продукта — количественные. [c.94]


    Выбранные размеры должны были позволить исследовать о)гая-" ние скорости потока на скорость реакции и теплообмен в трех режимах— ламинарном, турбулентном и промежуточном. В качестве катализатора применялась медь, нанесенная на поверхность носителя. Диффузия в порах катализатора влияния на процесс не оказывала. После ориентировочного определения размеров аппарата следовало проверить, достаточен ли выбранный объем слоя и не может ли произойти нежелательный рост температуры. [c.179]

    Электронная теория Ф.Ф.Волькенштейна постулирует, что скорость реакций регулируется всей массой имеющихся в катализаторе нелокализованных носителей заряда - электронов или дырок. В настоящее время некоторые авторы больше внимания уделяют свойствам отдельных атомов в твердом теле и влиянию на их электронные свойства ближайшего окружения. [c.86]

    Для каталитической конверсии метана применяют никелевый катализатор на носителе — оксиде алюминия. В присутствии никелевого катализатора равновесие быстро достигается уже при 800°С. Несмотря на то что содержание СН в равновесном газе повышается с увеличением давления, конверсию метана выгодно проводить при повышенном давлении для увеличения скорости реакции. При этом используется естественное давление природного газа, при котором он подается на завод,— 1—4 МПа. При повышении давления уменьшаются объем аппаратуры и трубопроводов. [c.74]

    К сказанному следует добавить, что катализ не сводится всецело лишь к образованию переходных состояний АВ... К, как способу обхода высоких энергетических барьеров. Как было сказано в гл. IV, наряду с этим он обеспечивает селективность реакции за счет специфики химической природы катализаторов и реагентов (химическая ориентация реакций), за счет матричных эффектов (увеличение предэкспоненты в уравнении Аррениуса, геометрическое соответствие, по Баландину, стереоспецифическая ориентация в синтезе геометрических и оптических изомеров). Большие возможности многократного увеличения скоростей реакций с помощью катализа таятся в природе, структуре и даже величине носителей активных центров катализаторов. [c.232]

    Атомы слоя IV — заместители — в реакции не участвуют, но влияют, и иногда очень сильно, на скорость реакции в слое III. Это влияние сказывается на энергии связи, иногда внося лишь небольшую поправку, а иногда и сильно изменяя ее значение. Аналогичным влиянию заместителей является влияние атомов катализатора в слое I, не входящих в активный центр. Слой I является сложным. К нему относятся как глубинные атомы решетки кристаллического катализатора, так и атомы, соседние с активным центром атомы основного вещества катализатора разной степени непредельности, вызываемой разным положением на поверхности, разным числом соседей, и атомы добавок, образующих твердый раствор или отдельную фазу. К ним можно отнести и влияние носителей. Все эти соседние атомы вследствие деформации влияют на активный центр и на энергии связи его с атомами катализируемых молекул. [c.96]


    При гетерогенном катализе исключительно большое значение имеет поверхность соприкосновения реакционной смеси с катализатором, т. к. процесс протекает на поверхности раздела фаз. Так, платина, взятая в виде пластинки, повышает скорость реакции в сотни раз меньше, чем то же весовое количество металла в виде мелкого порошка. Поэтому в каталитических процессах применяют не сплошные массы катализатора, а тонко измельченные порошкообразные катализаторы. Но порошкообразный катализатор легко уносится струей газа или жидкости, а взятый в больших массах создает значительное сопротивление. Поэтому обычно активное вещество осаждают на инертных пористых подкладках — носителях (силикагеле, алю- [c.35]

    Влияние размера зерна катализатора на гидрирование бензола в присутствии никеля на носителе изучали [6] на катализаторе с размером зерна 20—200 меш. Активность возрастает с уменьшением размера частицы, вероятно, вследствие того, что активные центры, находящиеся в норах более крупных частиц, блокируются в результате конденсации бензола. С увеличением степени дисперсности наблюдаемая константа скорости реакции изменяется пропорционально внешней поверхности зерна вплоть до критического размера зерна катализатора, после чего дальнейшее повышение дисперсности [c.148]

    Скорость реакции полимеризации этилена зависит от типа носителя и его структуры, от концентрации катализатора, состава и концентрации активатора (рис. 3.1), от давления и температуры, а также от концентрации водорода в качестве регулятора длины цепи. В случае полимеризации в кинетической области при постоянном давлении и температуре скорость остается постоянной и составляет для катализатора ТМК (0,8% Т1) при 80°С и давлении 1,0 МПа в присутствии 28% водорода [c.92]

    Как известно, основным методом регулирования молекулярной массы полимера является введение в реакционный объем водорода. Влияние водорода на скорость полимеризации этилена зависит от состава катализатора, а в случае нанесенных катализаторов — от носителя. Так, изменение концентрации водорода в пределах от 10 до 40—50% (об.) почти не сказывается на скорости реакции полимеризации этилена при использовании гомогенных ванадиевых катализаторов и катализатора ТМК. Иная картина наблюдается при использовании в качестве носителя хлорида магния скорость реакции полимеризации этилена резко снижается по Мере увеличения концентрации водорода. Подбирая соответствующие носители, можно получать широкий ассортимент продукции при близкой производительности реакторного узла, [c.139]

    Как видно из таблицы, в условиях больших объемных скоростей (3600 ч ) равновесие реакций не успевает устанавливаться на всех катализаторах, за исключением третьего образца, нанесенного на алюмосиликагель, подвергнутый синерезису в течение 6 ч. Следовательно, наибольшей активностью обладает катализатор, носитель которого в процессе формирования подвергался шестичасовому синерезису. [c.147]

    Многие реакции, описанные вьпие, идут не только в присутст-, вин катализаторов гидрохлорирования, но и в их отсутствие. Каталитическим свойствам хлористого водорода обычно не уделяют должного внимания, хотя во многих процессах он проявляет каталитическую активность. Так, при изучении реакции гидрохлорирования ацетилена А. И. Гельбштейном доказана каталитическая активность хлористого водорода, адсорбированного на поверхности угля. Эта активность в условиях опыта пропорциональна величине адсорбции хлористого водорода. Различие в скоростях реакции на угле и силикагеле прн равной степени адсорбции хлористого водорода показывает влияние природы носителя на каталитическую активность хлористого водорода. [c.143]

    Особые требования к пористой структуре силикагеля предъявляются при использовании его носителем катализатора [12]. Для реакций, протекающих с большой скоростью, необходимы силикагели-носители с развитой удельной поверхностью и большим объемом транспортных пор [c.7]

    В тех случаях когда сырьем служат высшие олефины, никаких других растворителей не требуется поток углеводорода сам служит носителем катализатора и суспендирующей средой. Было изучено-влияние ряда растворителей на скорость реакции. Найдено, что растворитель хотя и оказывает некоторое влияние, однако оно не имеет большого значения. Бендер 12 сообщил, что глубина гидроформилирования циклогексена при 110° в этиловом или метиловом спирте на 50/о выше, чем в насыщенных углеводородах. [c.430]

    Скорость реакции обычно значительно уменьшается при агломерации частиц катализатора диспергирование его может быть улучшено изменением природы носителя, pH растворителя или его природы. Однако следует помнить, что изменение свойств жидкой среды может существенно влиять на истинную кинетику реакции. Сокольский [326] рассматривает многочисленные исследования в области гидрогенизации, на результатах которых сказывается диффузия. [c.122]


    В работах Бэрвелла с сотр. [94—96 ] исследована активность и селективность серии катализаторов Р1/8Юг в реакциях гидрогенолиза циклопропана и метилциклопропана при 0°С и гидрирования пропилена при —57°С [95]. Все реакции структурно чувствительны в изученных условиях скорость реакции зависит от содержания Pt на носителе, тогда как энергии активации для этих трех реакций достаточно близки. Показано [96] влияние предварительной обработки катализаторов Pt/Si02 на их активность и селективность в ходе гидрогенолиза метилциклопропана. Число оборотов на каждом из исследуемых катализаторов сильно изменялось в зависимости от условий обработки водородом, температура которой составляла 25—480 °С. Обработка при комнатной температуре обеспечивала высокую активность катализаторов, при 200 °С активность проходила через минимум и с возрастанием температуры реакции выше 250 °С снова повышалась. Таким образом, полученные результаты показывают, что структурная чувствительность реакции гидрогенолиза циклопропанов в присутствии катализаторов Pt/Si02 в значительной степени зависит от условий их предварительной обработки. [c.105]

    При исследовании поведения в присутствии Pt-черни н-гексана и 2-метилпентана в токе смесей гелия и водорода Паал и Тетени показали [114, 115], что скорость реакций Сз-дегидроциклизации — изомеризации при добавлении водорода к гелию сначала увеличивается, а затем, пройдя через максимум, уменьшается (рис. 43). Та же закономерность наблюдается при преврашении н-гексана в бензол. Рост активности катализатора при добавлении водорода в газ-носитель объясняется [114, 115] замедлением дезактивации катализатора за счет удаления с поверхности последнего необратимо адсорбированных образований , являющихся предшественниками углистых слоев на металле. При дальнейшем увеличении концентрации водорода в газовой фазе происходит частичное вытеснение углеводорода с поверхности металла, так как водород расщепляет поверхностные связи С—М, что в свою очередь приводит к уменьшению обшей степени превращения. Таким образом объясняется появление максимумов на кривых конверсия углеводорода — содержание Из в газе-носителе. [c.226]

    Образцы платинированного алюмосиликата, в которые вводились различные количества железа (в виде р02Оз), были испытаны в реакции изомеризации н-гексана (рис. 1.9). Активность катализатора при увеличении содержания Рб2 0з в 15 раз снижалась лишь в 2,4 раза. То обстоятельство, что резкое изменение дегидрирующей активности катализатора обуславливает лишь относительно небольшое уменьшение глубины изомеризации, подтверждается опытами, проведенныл-ш на образцах катализатора, в которых массовая доля платины изменялась от 0,025 до 1%, т. е. в 40 раз. При этом константа скорости реакции изомеризации н-гек-сана возросла лишь в два раза (рис. 1.10). Общность кинетических закономерностей для paзJШЧныx катализаторов [на всех катализаторах наблюдается первый порядок реакции по углеводороду и торможение реакции избытком водорода (табл. 1.5) ] также указывает на то, что лимитирующей является стадия, протекающая на кислотных центрах носителя. [c.18]

    Оксо-синтез—реакция между олефинами, водородом и окисью углерода, проводимая с целью получения окисленных соединений, главным образом альдегидов, которые впоследствии можно гидрировать в спирты. При этом применяются температура 150—205 °С и давление 150—300 ат катализатором служит кобальт (в первоначальном процессе использовали твердый катализатор Фишера— Тропша). Активным агентом является дикобальтоктакарбонил [Со(С04) з. в установке с неподвижным слоем твердого катализатора сырьем может Служить жидкий гептен, который подается с объемной скоростью 0,4 ч . В случае применения пасты ее прокачивают через реактор с объемной скоростью 1,3—3 тогда как объемная скорость газа составляет 250 Катализатором является 2,5%-ный нафтенат кобальта на носителе. Порядок величины константы скорости реакции в жидкой фазе к= =0,02—0,07 мин при температуре 110 °С и давлении около 200 ат. В настоящее время опубликованы обзоры по оксо-синте- [c.330]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Гидрирование этилеиа в этан было впервые осуществлено в середине XIX в. Фарадеем, применившим в качестве катализатора платиновую чернь. Впоследствии для гидрирования олефинов использовали платину, скелетный никелевый катализатор (никель Ренея), никель на носителях, медь, смешанные оксидные катализаторы (медь-хромитный и цинк-хромитный) и многие другие гетерогенные контакты.. Наиболее типичны для промышленной практики металлический никель и никель, осажденный ыа оксиде алюминия, оксиде хрома или других носителях. В их присутствии высокая скорость реакции достигается при 100—200 °С и давлении водорода 1—2 МПа. Если исходное сырье содержит сернистые соеди-Г ения, рекомендуется применять катализаторы, стойкие к сере (сульфиды никеля, вольфрама и молибдена) при 300—320°С и 5-30 МПа. [c.496]

    Значительно большее практическое значение имеет гидрирование ненасыщенных жнрных кнслот и нх сложных эфиров по этиленовым связям с получением насыщенных кислот. Лучшим катализатором для этой цели является восстановленный никель, применяемый в мелкодиснергированном состоянии или на носителе и активный при 125—200°С. Сложные эфиры реагируют быстрее самих ненасыщенных кислот, причем скорость реакции падает с удлинением и разветвлением цепи. При этом двойная связь в кислотах менее реакционносиособна, чем в олефинах, что указывает на дезактивирующее действие карбоксильной группы. [c.507]

    Частичная или полная дезактивация металлической функции алюмоплатинового катализатора в реакции гидрогенолиза ведет к значительному повышению роли кислотно-катализируемой реакции раскрытия пятичленного кольца. Так, авторы [46] для снижения активности платины в гидрогенолизе обрабатывали алюмоплатиновый катализатор (0,65% Р1/т1-Л120з + 0,75% С1) водородом при 482 С в течение 68 ч. После такой обработки скорость кислотно-ка-тализируемой. реакции раскрытия кольца оиетилциклопентана в 11—13 раз превышала скорость гидрогенолиза углеводорода на платине. Были получены также данные, подтверждающие, что скорость реакции раскрытия кольца метилциклопентана на таких частично дезактивированных алюмоплатиновых катализаторах соизмеримы со скоростями той же реакции на кислотных носителях для этих катализаторов [34]. . [c.26]

    С другой стороны, ренин не модифицирует носитель и не влияет на скорость дезактивации катализатора в реакции дегидроизомери-зацин метилциклопентана. [c.103]

    Носитель в катализаторе, с одной стороны, служит для распределения и диспергирования активного металла с целью более эффективного его использования, с другой стороны, он выполняет роль кислотного агента, катализируя целый ряд реакций риформинга. К их числу относятся реакции изомеризации и расщепления. Определенное влияние кислотный носитель оказывает на скорость реакций д гидроциклизации. На носителе протекают та кже реакции уплотнения, приводящие к образованию углистых отложений (кокса) на поверхности катализатора. [c.160]

    Каталитическая активность окислов металлов VI группы нромотируется добавкой щелочных металлов [24]. Промотированные окислы хрома, молибдена,, вольфрама или урана могут применяться в качестве катализаторов и без носи-. телей, но нанесение их на соответствующие носители с большой удельной по--верхностью значительно увеличивает скорость реакции. К таким носителям относятся окиси алюминия, титана, циркония, двуокись кремния, их смеси и природные глины. В качестве промоторов можно применять гидриды щелочных металлов [25], щелочно-земельные металлы [26], гидриды щелочно-земельных металлов [301, борогидриды металлов [29], алюмогидриды металлов [31], карбиды кальция, стронция или бария [89]. Промотирующее влияние щелоч-. ных металлов усиливается добавкой небольшого количества галоидоводорода или алкилгалогенида [62]. [c.287]

    Значительное влияние структуры поверхности и характера обработки катализатора указывает на то, что поверхность играет чрезвычайно важную роль и непосредственно участвует в полимеризации. При осажденных катализаторах изменение физической и химической структуры осадка непосредственно определяет молекулярный вес получаемого полимера и степень его стереорегулярности, При предварительно приготовленных окпснометаллических катализаторах характер и метод приготовления носителя с высокой удельной поверхностью оказывают сильное влияние па протекание реакции полимеризации. Низкие давления, необходимые для получения стереорегулярных полимеров, непосредственно связаны с тем, что олефины хемосорбпрованы на поверхности применяемых твердых катализаторов [96]. Следовательно, мономер концентрируется на этой поверхности даже при сравнительно низком внешнем давлении газа. Поверхность может увеличить скорость реакции роста полимера в результате повышения скорости присоединения мономерных остатков по сравнению с одновременно протекающей реакцией передачи цепи. Движущей силой реакции распространения цепп в этом случае является экзотермическая адсорбция олефпна. [c.298]

    Суммарная скорость реакции в условиях смешаннофазного процесса отчетливо зависит от стадий массонередачи. Это доказывается результатами исследования гидрирования циклогексена в циклогексан в присутствии платины на носителях [60]. Суммарная скорость реакции в сильной степени зависит от массонередачи водорода к поверхности катализатора и не зависит от концентрации циклогексена. Однако нри предельной изучавшейся интенсивности механического неремешивания скорости массообмена и химической реакции приблизительно совпадают по порядку величины. [c.147]

    Влияние пористой структуры катализатора паровой конверсии метана на производительность контакта. Активность нанесенных никелевых катализаторов зависит от температуры прокаливания глиноземного носителя. Эта зависимость проходит через максимум, что объясняется следующим. При испытании катализатора на проточно-циркуляционной установке конверсия метана протекает в кинетической области лишь при сравнительно низких температурах (300—400 С), а при температурах выше 800 С скорость реакции определяется процессом внутренней диффузии. В образцах катализатора, полученного на основе глиноземного носителя, прокаленного при 900° С, содержится значительное количество пор до 1000 А при относительно небольшом количестве транспортных пор. Такой пористой структуре катализатора в условиях конверсии метана соответствует режим кнудсеновской диффузии. Поскольку коэффициент диффузии при таком режиме меньше коэффициента молекулярной диффузии, то активность соответствующего катализатора оказывается ниже, чем у более крупнопористого образца, полученного на основе носи-теля, прокаленного при 1000° С, в порах которого осуществляется молекулярная диффузия. Дальнейшее увеличение температуры прокаливания чисто глиноземного носителя и связанное с этим отклонение пористой структуры контакта от оптимальной приводит к уменьшению его активности. Этим же объясняется отмеченное в производственных условиях снижение активности катализатора ГИАП-3 при увеличении температуры прокаливания его носителя до 1400° С. Повышение температуры прокаливания носителя, способствующее увеличению механической прочности и термостабильности катализатора, в сочетании с применением порообразую-щих добавок, одновременно стабилизирующих пористую структуру контакта, позволяет регулировать ее таким образом, что происходящее при этом улучшение его механических свойств не сопровождается существенным понижением активности контакта. [c.116]

    На алюмоплатиновом катализаторе, промотированном фтором, изомеризащ1я парафиновых углеводородов не происходит в отсутствие водорода. При модификации катализатора хлором реакция в начальный период протекает и в отсутствие водорода, но с течением времени ее скорость постепенно уменьшается. Таким образом, чтобы изомеризация на металлсодержащем катализаторе протекала с постоянной скоростью, реакцию необходимо осуществлять в среде водорода. Это, по-видимому, связано с явле4 нием адсорбции й десорбции водорода на металле и переноса водорода с металла на носитель. Возможно, имеет место также явн ление конкурентной адсорбции водорода и промежуточных нена сыщенных соединений на поверхности катализатора, при этом часть этих соединений вытесняется водородом с поверхности катализатора, что обеспечивает его стабильную работу. [c.786]

    Импульсные микрореакторы. В импульсных микрореакторах существует непрерывный поток газа-носителя через катализатор. Время от времени в поток газа-носителя вводят порцию реагирующих веществ (импульс), которая затем проходит в газовый хроматограф для анализа. Степень превращения реагирующих веществ (импульса) может быть незначительной или большой, но в обоих случаях концентрация реагирующего вещества на слое катализатора плохо определяется из-за смешения с газом-носителем, и введенные реагирующие вещества распределяются в потоке. При специальных условиях, например для реакции первого порядка, константы скорости реакции могут быть получены на основе импульсной методики [18]. В большинстве других случаев адекватная теоретическая обработка затруднена. Таким образом, хотя импульсные мик-рореакторы не подходят для определения кинетических параметров, они могут иметь некоторые достоинства при оценке качества катализаторов, поскольку дают возможность быстрого и гибкого проведения анализа. [c.103]

    Мьюттерти с сотр. нашли, что кластерные соединения осмия и ирридия — Озз(СО)12 и 1г4(СО)]2 — катализируют гидрирование СО в метан [33]. При 140 °С и 0,196 МПа эти катализаторы селективно продуцируют метан с удельными скоростями, вполне сравнимыми со скоростями, измеренными Ванниче на иридии, нанесенном на носитель [25]. Наблюдалось также, что замещение лиганда очень сильно влияет на скорость реакции н распределение компонентов в продукте. Замещение карбонильных лигандов трифенилфосфином увеличивает скорость синтеза в три раза и приводит к получению метана, этана и пропана. Были сделаны попытки обеспечить гомогенность в реакционной системе, но она не устанавливалась достаточно четко. Дальнейшее изучение процесса метанирования с применением гомогенных катализаторов представляется обоснованным. [c.240]

    В состав катализатора помимо основного (базового) металла входят также различные добавки — промоторы. По принципу действия их подразделяют на структурирующие и химические. Структурирующие (или структурные) промоторы способствуют образованию развитой поверхности катализатора и препятствуют рекристаллизации его активной фазы. В качестве таких промоторов чаще всего используют трудно восстанавливаемые оксиды—АЬОз, 2гОг, TiOz, MgO и СаО. Для осажденных катализаторов аналогичную роль играют также носители—-кизельгур, доломит, диоксид кремния, цеолиты, алюмосиликат. Химические промоторы увеличивают скорость реакции и влияют на ее селективность. [c.281]

    С воздухом при псевдоожиженцц последним слоя частиц катализатора широкого гранулометрического состава (в основном 20—60 fi). Катализатор представлял собой окись железа, высаженную на алюмосил,икатном носителе. Величины константы скорости реакции k меняли путем варьирования температуры в слое, причем значения константы были определены в неподвижном слое частиц при тех же самых температурах. Температурный Интервал (от 26,7 до 87,8 °С) был выбран с таким расчетом, чтобы обеспечить изменение k в широких пределах. Это означает, что степень превращения озона в псевдоожиженном слое изменялась от очень малой величины до предельно возможной (близкой к асимптоте) при высоких значениях к. Существование такого предела, подтверждаемое присутствием конечных количеств озона на выходе из слоя даже при самых высоких конечных значениях к, прямо указывает на байпассиро-вание (проскок) газа. [c.127]

    Для определения скорости реакций на поверхности катализатора необходимо знать его удельную поверхность, которую определяют по низкотемпературной адсорбции на катализаторе некоторых инертных газов — азота, криптона. Однажо в сложных катализаторах, как показали микроскопические исследования, активное вещество распределяется неравномерно и занимает небольшую долю поверхности носителя. Поэтому необходимо было разработать методику раздельного определения удельной поверхности носителя и катализатора. Для некоторых металлических [c.30]

    Для высокотемпературных реакций может оказаться необходимым огнеупорный носитель, имеюшдй высокую стабильность и механическую прочность. Такими носителями являются главным образом различные формы окиси кремния и окиси алюминия, полученные плавлением при температуре до 2000 °С в электрических печах. Продукт плавления размалывают из порошка формуют гранулы неправильной формы или сферы, кольца, цилиндры и т. и., которые затем обжигают в печи при температуре около 1400 °С. Готовый носитель имеет удельную поверхность менее 1 м /г и преобладающий размер пор 20—100 мкм. Использование таких носителей целесообразно и в тех случаях, когда высокая скорость реакции на единицу массы катализатора менее существенна по сравнению с такими факторами, как затраты на катализатор или если целевым продуктом реакции является промежуточное соединение. В последнем случае необходимо устранить тонкие поры и тем повысить селективность реакции. [c.35]


Смотреть страницы где упоминается термин Скорость реакций на катализаторе без носителя: [c.35]    [c.152]    [c.194]    [c.56]    [c.56]    [c.204]    [c.324]    [c.472]    [c.271]    [c.95]    [c.4]    [c.330]    [c.314]    [c.154]   
Смотреть главы в:

Теоретические основы получения бутадиена и изопрена методами дегидрирования -> Скорость реакций на катализаторе без носителя




ПОИСК





Смотрите так же термины и статьи:

Катализатора носители

Катализаторы из скоростей реакций

Скорость от катализатора



© 2025 chem21.info Реклама на сайте