Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пути синтеза некоторых сложных веществ

    Традиционно сложившимися областями использования тонкого органического синтеза являются производства красителей, лекарственных и душистых веществ. В более поздние годы применение тонкого органического синтеза значительно расширилось. Сформировалась потребность в продуктах тонкого органического синтеза для получения кинофотоматериалов и средств защиты растений. В настоящее время расширяется ассортимент продуктов тонкого органического синтеза в пищевой промышленности, открываются пути использования методов тонкого органического синтеза для получения аналогов некоторых природных волокон. С развитием биотехнологии тонкий органический синтез используют для воспроизведения структур генетического аппарата в связи с этим возникли новые аспекты обеспечения надежного выделения в индивидуальном состоянии сложных органических веществ. [c.4]


    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]

    Регуляция метаболизма в микробной клетке имеет сложную взаимозависимую систему, которая включает и выключает определенные ферменты с помощью самых различных факторов pH реакционной среды, концентрации субстратов, некоторых промежуточных и конечных метаболитов, кофермента, металлов и т.д. Изучение путей регуляции определенных продуктов обмена веществ в клетке открывает неограниченные возможности для определения оптимальных условий биосинтеза микроорганизмом требуемого целевого соединения в промышленном производстве различных продуктов микробного синтеза. [c.38]


    Вся органическая химия посвящена установлению строения органических соединений и синтезу их на основании знания-строения и типичных реакций образования различных связей. Мы познакомились уже с идеей установления строения соединений химическими методами, которые и сейчас являются основными, но все больше дополняются физическими методами. Пытаясь сформулировать сущность химических методов установления строения в одной фразе, можно сказать, что они состоят в констатации родственных связей серии веществ (веществ с родственной структурой) и в выяснении строения одного или нескольких узловых веществ этой серии путем их постепенной деструкции (или, как ее иногда называют, деградации). Такой химический путь позволяет установить строение любого сколь угодно сложного вещества, однако ценой большого труда. И этот большой труд все более облегчается благодаря новым физическим методам разделения и идентификации продуктов деградации, особенно благодаря различным видам хроматографии (стр. 38). Одновременно и методом деградации и методом идентификации осколков молекулы (по их молекулярному весу) служит масс-спектрометрия (стр. 589). Разнообразные, все более развивающиеся физические методы в состоянии сильно облегчить задачу химика. Некоторые из этих методов дают возможность установить такие важные детали структуры, как характер связи, межатомные расстояния и углы, наличие или отсутствие того или иного рода взаимодействия электронных орбиталей, подобного сопряжению, наличие [c.341]

    Существует относительно немного путей синтеза сложного спирта имеется относительно немного методов получения реактива Гриньяра, илн альдегида, или кетона и т. д. до исходных веществ на последней стадии синтеза. С другой стороны, спирты вступают в такое большое число различных реакций, что если выбрать иной путь решения синтетической проблемы, то обнаруживается много путей, из которых только некоторые могут дать положительный результат. [c.514]

    Колли, один из пионеров биосинтетических исследований и синтезов природных соединений по биогенетическому образцу, писал в 1893 г.. .. попытка искусственно получить существующее в природе вещество и имитировать в лаборатории отдельные из множества процессов, беспрестанно происходящих вокруг нас в природе, была всегда одной из важнейших целей химика-органика . Тем не менее примерно 70 лет спустя Ван Тамелен был вынужден отметить практически полное отсутствие сходства между синтетическими процедурами, используемыми химиками-органиками при синтезе сложных природных молекул, и методами и путями, которые предположительно реализуются в природе при создании тех же соединений. Знаменитый теперь синтез тропинона, осуществленный Робинсоном, в противоположность очень длинному обычному синтезу этого же вещества, описанному Вильштеттером, явился первым примером, продемонстрировавшим внутреннее изящество синтети> ,еских методов, основанных на идеологии построения природных молекул в мягких условиях из компонентов, которые являются реальными или предполагаемыми аналогами соединений, реально используемых в природе. Богатые возможности, заложенные в этой идее, использовались пока лишь в незначительной степени и сравнительно скромные успехи, достигнутые в этом направлении, были обобщены Ван Тамеленом в 1961 г. [6]. Однако с 1950 г. была накоплена значительная информация о путях биосинтеза, что логично привело к возрастанию активности исследователей в этой области. Некоторые из последних примеров применения этих идей в планировании и осуществлении органических синтезов обсуждаются ниже. [c.17]

    Пути синтеза некоторых сложных веществ [c.225]

    Спирты и фенолы получаются как синтетически, так и путем выделения из природных продуктов. Несмотря на громадные успехи органического синтеза некоторые сложные оксисоединения до сих пор выгоднее получать из органических веществ природного происхождения. [c.165]

    Некоторые из этих путей включают реакции, сопровождающиеся выделением энергии, запасаемой в виде АТР, большая часть которой используется в дальнейшем для энергетического обеспечения восстановительных процессов биосинтеза. В ходе этих восстановительных процессов образуются менее реакционноспособные гидрофобные липидные групировки и боковые цепи аминокислот, которые так необходимы для сборки нерастворимых внутриклеточных структур. Структурная организация природных олигомерных белков, мембран, микротрубочек и волокон является результатом агрегации, обусловленной сочетанием гидрофобных взаимодействий, электростатических сил и водородных связей. Главный результат метаболизма состоит в синтезе сложных молекул, которые весьма специфическим образом самопроизвольно взаимодействуют друг с другом, образуя требуемые для организма структуры— богатые липидами цитоплазматические мембраны, регулирующие вместе с внедренными в них белками поступление веществ в клетки. [c.502]


    С термодинамической точки зрения органический синтез может быть уподоблен сложному и опасному путешествию в горах со многими подъемами, спусками и обходами препятствий, имеющему своей конечной целью достижение некоторой точки, расположенной на более высоком уровне, чем исходная. Схематический профиль пути, ведущего от стартового вещества А к конечному продукту Р, представлен на рис. 2.1. [c.67]

    Наряду с полными синтезами простейших органических соединений химикам удавалось получать в лаборатории некоторые более сложные вещества, в том числе и встречающиеся в природе, путем соединения двух более простых веществ, обычно тех, на которые сложное соединение разлагается при гидролизе или обработке его различными реагентами с целью аналитического из ения свойств. Впоследствии Бертло назвал это частичным синтезом в отличие от полного синтеза из элементов. [c.30]

    Наиболее важными для жизни органическими соединениями являются белковые вещества. Повсюду, где мы встречаем жизнь, мы находим, что она связана с -каким-либо белковым телом (Энгельс). В состав белков, кроме углерода (50—55%), водорода (6,5—7,5), кислорода (19—24) и азота (15—19), входит обычно сера (до 2,5%), а иногда и некоторые другие элементы (Р, Fe, u и т. д.). Структурные формулы природных белковых веществ известны только для отдельных их представителей. Изучение продуктов их распада показало, что основную роль при образовании белковых молекул играют органические соединения, содержащие в своем составе группы NH2 и СООН, так называемые аминокислоты. Соединения эти, характеризующиеся одновременным наличием у них функций основной (из-за группы ЫНг) и кислотной (из-за группы СООН), способны присоединяться друг к другу, образуя сложные частицы, приближающиеся по свойствам к молекулам простейших белков. Таким образом, искусственный синтез важнейших натуральных белков еще не осуществлен, но на пути к нему уже сделаны некоторые важные шаги. [c.541]

    Исследователи настойчиво ищут новые синтетические вещества и наиболее совершенные методы синтеза ранее найденных материалов, непрерывно увеличивая число способов получения самых разнообразных веществ. Известно, что один и тот же продукт можно получить различными способами. Одновременно тот же самый продукт мож.ет быть получен из различных видов исходного сырья, причем из каждого вида (в свою очередь) — множеством различных путей. Наряду с этим, из тех же исходных веществ многими методами можно получить совершенно другие вещества. Наконец, из полуфабрикатов или побочных продуктов одних производств создаются другие, и эти последние тоже образуют продукты, подлежащие дальнейшей переработке. Причем, некоторые вещества в результате побочных реакций превращаются в те соеди нения, из которых они сами образовались, т. е. в своих родителей или пра родителей , являющихся сырьем для других установок данного химического комбината. Таким образом, превращения следуют одно за другим, вытекают одно из другого. Все это создает сильное переплетение потоков. Возникает сложный, запутанный лабиринт. В промышленной практике создается целая цепь очень сложно взаимосвязанных, сопряженно работающих установок, в большинстве из которых многократно циркулируют и контактируют колоссальные массы материалов — либо в виде сырья-рециркулята, подлежащего многократной повторной переработке, либо в виде растворителя, либо в виде катализатора или инициирующего вещества. Понятно, что в этих условиях очень трудно выбрать экономически наиболее целесообразный вариант использования природного сырья. Теория рециркуляции позволяет решить эту задачу и определить любой оптимальный вариант. [c.3]

    Как видно из табл. 11.17, реакции дегидрирования эндотермичны, а реакции окисления экзотермичны. Если соответствующим образом скомбинировать эти два типа реакций, то можно добиться равенства их энтальпии при некоторой температуре процесса. Осуществляемый но такому принципу технологический процесс обычно проводят при некоторой оптимальной температуре и контролируют его путем подачи реагирующих веществ, взятых в соответствующем соотношении. Из табл. 11.16 видно, что константа равновесия реакции окисления (3) в области рассматриваемых температур имеет значение порядка 10 —10 . Это указывает на полноту протекания реакции окисления в сложном процессе производства формальдегида и на ее необратимость в области рассмотренных температур. Однако ввиду того, что константа равновесия реакции дегидрирования (1), приведенная в табл. 11.16, имеет значения от 10 до 10 , при всех температурах процесса в состоянии термодинамического равновесия в газовой фазе вместе с избытком метанола будут находиться продукты этой реакции метанол, формальдегид, водяной пар, водород и азот. Если отношение количества формальдегида к избытку метанола в продуктах выразить через (1 4- х) у, то суммарный процесс синтеза можно представить в виде реакции [c.206]

    При выделении органических веществ из смесей могут применяться крайне разнообразные методы. Тут будет иметь место и отделение твердых тел от твердых и жидких путем извлечения при помощи растворителей, а также осаждения, высаливания, кристаллизации, диализа, возгонки, фильтрования, выпаривания растворителя при разных условиях и пр., и разделение друг от друга жидких тел механическим путем, а также дробной перегонкой, перегонкой в вакууме, с водяным паром и пр. Всех этих манипуляций много, и рассмотрение обязательно каждой из них в отдельности, с подробным описанием необходимой для этого аппаратуры, входит в задачу специальных руководств при практических работах по синтезу органических препаратов. Здесь следует остановиться только на некоторых из них и познакомиться с ними лишь в таком объеме, чтобы иметь достаточное понятие о ходе изолирования веществ и их очистки и таким образом прийти к признанию необходимости общепринятых манипуляций и ясно себе представить, как иногда из чрезвычайно сложных смесей путем часто длительной и кропотливой работы удается, наконец, изолировать вполне индивидуальное соединение. Произведенный после тщательной очистки качественный и количественный анализ такого вещества скажет нам о его составе, а определение величины молекулярного веса даст, наконец, и формулу последнего. [c.15]

    Именно это открытие проломило брешь в стене предубеждений, разделявших органическую и минеральную химию, и убедило химиков, что и органические вещества могут быть получены искусственно, без участия гипотетической жизненной силы. Насколько прочно все же держалось это предубеждение, следует из высказывания французского химика Жерара, установившего некоторые основные понятия органической химии, например понятие гомологии, и являющегося одним из авторов закона Авогадро — Жерара. Жерар в 1842 г., когда многие простые органические соединения были уже получены искусственным путем,. ысказал мнение, что синтез столь сложного вещества, как сахар, никогда не сможет быть осуществлен. Это скептическое предсказание было опровергнуто в 1861 г., когда А. М. Бутлеров впервые получил синтетически сахаристые вещества (из формалина). Наряду с этим быстро росло число синтезированных углеродсодержащих веществ, не встречающихся в природе. Так, в 1825 г. Фарадей получил бензол, еще ранее стали известны этилен, бромистый этилен, а также ряд производных бензола. В 1842 г. Зинин из нитробензола получил анилин, а в 50-х годах того же столетия из анилина были синтезированы первые анилиновые красители — мовеин Перкина и фуксин. [c.12]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]

    Ключевым продуктом для всех этих веществ служит аммиак. По методу Хабера-Боша его синтезируют из азота воздуха и водорода при температуре 500°С и давлении 300 бар в присутствии катализатора железа, загрязненного щелочным металлом. Хотя принвдш метода имеет почтенный возраст-60 лет, его производительность постоянно возрастает и сейчас она в 25 раз выше, чем была во времена создателей метода. Однако процесс требует больших затрат энергии и сложной техники контроля, измерения и управления, а также сложных в техническом отношении и дорогих установок. Несмотря на это синтез Хабера - Боша-один из самых значительных в большой химии. По этому методу ежегодно изготовляется более 60 млн. т аммиака (почти 94% мирового производства связанного азота). Быстрый подъем производства аммиака особенно заметен в странах СЭВ. Наряду с этим усиленно развивают его выпуск Венесуэла, Индия и некоторые другие страны. Крупные установки мощностью 1000-1300 т КНз в сутки относятся сегодня к стандартным, а вскоре войдут в эксплуатацию объекты, мощность которых почти в 2 раза выше. В 1966-1967 гг. в мире имелось всего девять подобных установок, на которые приходилось 8,5% общего выпуска продукции. В 1972-1973 гг. таких крупных объектов было уже 60, а их производительность составляла 30% мировых мощностей. Эта ярко выраженная тенденция развития позволяет предположить, что синтез Хабера-Боша и в оставшиеся 20 лет до конца тысячелетия сохранит свои ведущие позиции в качестве одного из основных элементов мирового химического хозяйства. И все же важной исследовательской задачей является поиск новых путей синтеза аммиака. [c.289]

    Ряд интересных вопросов привел нас к исследованию пентана в адсорбированном состоянии. Первым из них является рассмотрение возможности образования углеводородов нефти в результате облучения некоторых органических веществ. Ранние наблюдения Линда и Бардуэлла [4] показали, что при облучении органических соединений образуются углеводороды, подобные по своему составу имеющимся в нефти. Вычисления Белла, Гудмэна и Уайтхеда [5] и дальнейшие опыты [6, 7] показывают, что жидкие и газообразные углеводороды могут образоваться путем облз чения сложных органических веществ в нефтеносных осадках. Во всех этих исследованиях полученное отношение водорода к метану, образующемуся при облучении органическмх соединений в объеме, очень велико, в то время как газы нефти содержат фактически много метана и мало водорода. В связи с этим мы пытаемся выяснить влияние диспергирования на минеральных поверхностях органического соединения на отношение количеств водорода и метана. Другим доводом в пользу постановки этого исследования было предположение о том, что если распределение органического соединения на минеральном порошке вносило бы существенные изменения в продукты радиолиза, то это исследование могло бы открыть новые пути к практическому химическому синтезу. Более отдаленным соображением было желание пролить свет на основные процессы, заключающиеся в переносе энергии от твердой поверхности к жидкости. [c.135]

    В течение длительного времени химики называли органические соединения по случайным признакам. Чаще всего название отражало историю, происхождение вещества из природных продуктов (яблочная, винная и мочевая кислоты, молочный сахар, толуол, стирол) или его свойства (кассиев пурпур, гремучая кислота, свинцовый сахар), иногда способ получения (серный эфир, пировиноградная кислота), или место получения или открытия (берлинская лазурь, борнеол). По мере развития органической химии расширялось число индивидуальных органических веществ, полученных синтетическим путем. Возникло довольно много названий, отражающих путь синтеза вещества (пирослизевая кислота, пирогаллол, хлорпикрин). Многие сложные вещества были названы по имени открывшего их ученого (кетон Михлера, комплекс Иоцича, реактив Гринь-яра). Углеводород коронен получил такое название потому, что его структурная формула похожа на корону. Изучение источников тривиальных названий, особенно некоторых устарелых имен, увлекательно и забавно , — говорит Феркаде [1], приводя пример, что иногда такие названия даже отражают мысли или чувства их авторов удивительным примером такого случая является барбитуровая кислота, если верно, что она названа в честь некоей Барбары . [c.9]

    Асимметрический синтез. Если при химических синтезах из веществ с симметричными молекулами создаются вещества с асимметрическим атомом углерода, то они получаются в виде недеятельных соединений. Однако, пользуясь оптически деятельными веществами, можно в некоторых случаях из веществ, не содержащих асимметрического атома углерода, получить оптически деятельные вещества. Для этого исходное вещество связывают с оптически деятельным веществом и удаляют последнее после того, как путем химической реакции получен новый асимметрический атом. Так можно синтезировать оптически деятельную молочную кислоту СНз—СН(ОН)—СООН из пировиноградной кислоты СНз—СО—СООН, в молекуле которой нет асимметрического атома. Для этого из пировиноградной кислоты и природного левовращающего спирта борнеола СщН ОН (стр. 567) получают сложный эфир. Восстановлением переводят этот эфир в бор-неоловый эфир молочной кислоты. При этом в молекуле создается новы 1 асимметрический атом и получаются два вещества—сложный эфир левовращающего борнеола и левовращающей молочной кислоты и сложный эфир левовращающего борнеола и правовращающей молочной кислоты. Эти вещества не являются один по отношению к другому оптическими антиподами, в связи с чем и скорости образования их неодинаковы первое вещество образуется в несколько большем количестве, чем второе. Поэтому омыление продукта реакции дает молочную кислоту, обладающую слабым левым вращением. [c.297]

    Синтезированы и применяются некоторые содержащие серу аминокислоты, например СИ ,— 5— Hj—СН. —СН(К Нг)—СООН (метионин). Но особенно широко в области срганическсй химии и биохимии применяются разносбразьые всщестга с радиоактивным изотопом углерода С. Исходным веществом для синтеза в этих случаях часто является Oj (из Bai Og). Очень многие синтезы проводят с использованием реакции Гриньяра получение кислот, сложных эфиров, кетонов, алкоголей и др. Таким образом, приобретают большое значение такие синтезы, которые казалось бы никогда не было смысла применять в практике. Так, например, описан путь получения толуола по схеме  [c.399]

    В некоторых интересных работах использовались более сложные предшественники, синтезированные лабораторным путем. Осуществление такого синтеза представляет не намного меньше трудностей, чем работа с радиоактивными изотопами, уже хотя бы из-за того, что сходные вещества, как правило, берутся в гораздо больших количествах. Успехи метода, несомненно, приведут к значительному расширению круга применяемых предшественников. Одним из следствий требованвд о необходимости для успеха эксперимента соблюдения определенной степени разбавления будет, несомненно, расширение наших знаний о кинетических аспектах биосинтеза и повышение интереса к этой проблеме со стороны исследователей. [c.479]

    Из того, что сказано в этой части книги, видно, какое огромное роистине революционизирующее влияние на развитие аналитической органической химии, а тем самым и всей органической химии оказали современные физические методы исследований. Совершенно очевидно, что они на некоторых участках аналитического исследования вытеснили, а на других продолжают теснить химические методы. Приведет ли этот процесс к полному изгнанию из аналитической органической химии этих методов Этот вопрос не раз обсуждался в печати. Указывалось, например, на то, что по-настоящему универсального (физического) метода структурного анализа ие открыто и на пути современных способов подхода к решению структурных проблем встречаются подводные рифы, еоли исследование ведется узким фронтом и предпочтение отдается одному какому-либо спектроскопическому методу , и что в случае сложных природных соединений исследования физическими методами и теоретические соображения должны быть дополнены деструктивным структурным анализом и в качестве последней решающей инстанции, подтверждающей все прежние выводы, — синтезом [56, с. 230]. Не в этом ли ценность занявших столько лет труда знаменитых синтезов Вудворда и, в частности, синтеза витамина В12 Терентьев указал на другую сторону того же вопроса о взаимоотношении физических и химических методов анализа. Эти методы дополняют друг друга хотя бы потому, что исследуемое вещество должно быть сначала подготовлено для анализа. Пример для того чтобы подвергнуть данное вещество спектрополяриметрическому изучению, в нем должна быть проведена химическим путем избирательная модификация определенной функциональной группы (метод меток, о котором шла речь в гл. XI, 3). Иногда химический метод может дать ответ быстрее, чем требуется времени на специальную подготовку [c.319]

    ТОЙ структурной и функциональной организации, какой располагает бактериальная клетка. Поэтому его можно считать аналогом, а быть мо5кет, даже предшественником сложных и высокоспециализированных мембранных элементов более высокоорганизованных клеток. С этой гипотезой согласуются следующие наблюдения 1) аппарат окислительного фосфорилирования бактериальной клетки включен в ее мембрану или связан с ней 2) рибосомы, прикрепленные к мембране, очевидно, являются местом наиболее интенсивного и эффективного синтеза белков 3) наследственное вещество бактерий (т. е. их ДНК), видимо, структурно связано с определенным участком мембраны 4) в некоторых быстро растущих растительных клетках мембрана способна, по-видимому, создавать путем образования перетяжек структуры, сходные с митохондриями 5) для всех мембранных элементов характерна определенная строгая упорядоченность, касающаяся состава, структуры и некоторых свойств. [c.249]

    До того как был выяснен в общих чертах механизм синтеза белков — основных структурных элементов жизни,— можно было, пожалуй, спорить о целесообразности очень сложных расчетов скоростей образования веществ в клетках с помощью статистических представлений и учета всевозможных осложнений. Но в настоящее время бесспорные данные о том, как образуются белки и нуклеиновые кислоты, не оставляют сомнений в относительно малой ценности упрощенных трактовок, построенных на аналогиях с хаотизированными коллективами. Развитие реальных динамических структур шло по пути постепенного вытеснения признаков хаоса и превращения самой структуры в некоторое подобие механизма, отличающегося необыкновенной точностью. -Поэтому обычные кинетические приемы годны только по отношению к небольшим участкам клетки и то при условии, что множество факторов стабилизировано во время измерений. [c.120]

    Получаемые путем ацилирования сложные эфиры фенолов применяются для самых разнообразных целей в качестве инсек-тисидов, душистых веществ, для различных органических синтезов, а некоторые из них являются лекарственными веществами (например, аспирин и др.). Ацильные производные фенолов частично имеют значение и для анилино-красочной промышленности примером может служить получение так называемых индигозолей и кубозолей, представляющих собой кислые сернокислые эфиры лейкосоединений кубовых красителей, получившие в последнее время большое применение в ситцепечатании (см. стр. 197). [c.36]

    Роль толстостенных сосудов во многих областях промыщлен-ности, в частности химической и военной, весьма значительна. Достаточно вспомнить о колоннах синтеза разных типов, пушечных стволах, многочисленных типах резервуаров для хранения жидких и газообразных веществ под высоким давлением и т. д., чтобы убедиться в большом значении толстостенных сосудов. Давления, под которыми работают такие сосуды, достигают в некоторых случаях 1000 Ksj M и даже больше. В связи с этим почти все толстостенные сосуды очень металлоемки, и вес их доходит до 200 и более тонн. В соответствии со столь большим весом весьма сложно и изготовление этих сосудов, требующих сложного и дорогого кузнечного оборудования (за исключением, впрочем, мелких сосудов, изготовляемых путем отливок или другими более простыми способами). Если к сказанному прибавим, что технология процесса часто требует для толстостенных сосудов специальных сталей, то станет понятным, насколько сложно, дорого и ответственно их проектирование и изготовление. [c.209]

    Большинство процессов химической переработки целлюлозы основывается на реакциях гидроксильных групп целлюлозных макромолекул. Получающиеся производные целлюлозы могут быть разделены на три основных класса молекулярные соединения, продукты замещения и продукты окисления. Молекулярные соединения являются нестабильными продуктами, образованными за счет водородных связей между гидроксилами целлюлозы и некоторыми сильно полярными реагентами. Продукты замещения образуются путем химической реакции между гидроксилами целлюлозы и реагентами, которые связываются с кислородом гидроксила ковалентной связью. К ним относятся сложные и простые эфиры целлюлозы. Эти продукты имеют наибольшее техническое значение. Продукты окисления целлюлозы обычно деструктированы. Они долгое время не имели широкого практического применения. В настоящее время в промышленных масштабах уже производится целлюлоза, окисленная двуокисью азота. Этот продукт применяется в медицине, в первую очередь, как хорошее кровоостанавливающее средство, а также в текстильной и других отраслях промышлен- ности. Окисленные целлюлозы, кроме того, представляют интерес как волокнистые ионообменники. Ведутся интенсивные исследования с целью введения в целлюлозные макромолекулы новых реакционноспособных функциональных групп, использования их для химических превращений, описанных в классической органической химии, синтеза привитых сополимеров целлюлозы и так называемых сендвич-полимеров целлюлозы с другими полимерными веществами. Исследования в области модификации целлюлозы в ближайшие годы безусловно приведут к широкому использованию препаратов модифицированной целлюлозы в различных отраслях народного хозяйства. [c.322]

    Меченые атомы в органические соединения можно вводить либо химическими, либо биологическими методами. Например, меченую никотиновую кислоту можно получать как путем химических реакций 15], так и при помощи биологических процессов. В последнем случае табак выращивают в атмосфере Ю2 и из растения экстрагируют никотин, который затем окисляют до никотиновой кислоты. Следующие факторы ограничивают эффективность биологического метода 1) неизбежные потери радиоактивного изотопа вследствие реакций элиминирования, происходящих в процессах обмена веществ 2) возможный биосинтез побочных соединений 3) нежелательное разбавление меченого соединения немеченым, которое присутствует в организме 4) биосинтез соединения, меченного изотопом с коротким периодом полураспада, не всегда возможен ввиду фактора времени 5) выделение меченого соединения из сложной биологической системы обычно затруднительно 6) некоторые соединения синтезируются живыми организмами очень медленно или только лишь на определенных стадиях своего развития. Очевидно также, что слишком большая радиоактивность может привести к гибели организма. Вообще к биологическому синтезу следует прибегать лишь в тех случаях, когда меченое соединение невозможно получить иным методом. Несмотря на эти недостатки, биосинтез-привлекает большое внимание. Отделение изотопов Ок-Риджской национальной лаборатории в 1950 г. опубликовало отчет о биологическом методе введения меченых атомов в органические соединения. В отчете имеются данные о большом числе органических соединений, которые были уже получены или могут быть получены в будущем путем биосинтеза. [c.312]


Смотреть страницы где упоминается термин Пути синтеза некоторых сложных веществ: [c.210]    [c.14]    [c.461]    [c.315]    [c.11]    [c.11]    [c.373]    [c.219]    [c.324]    [c.170]    [c.6]    [c.232]    [c.103]    [c.219]    [c.444]   
Смотреть главы в:

Микробиология -> Пути синтеза некоторых сложных веществ




ПОИСК





Смотрите так же термины и статьи:

Вещества сложные



© 2025 chem21.info Реклама на сайте