Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние механизма на продукты

    В свете этого вывода приобретает большой интерес экспериментальное изучение влияния отдельных продуктов крекинга алканов на кинетику крекинга и реакций взаимодействия различных радикалов с этими продуктами. Из Д1е-ние механизма действия различных ингибиторов крекинга является одним из эффективных методов познания процесса глубокого крекинга, которому посвящена вторая часть монографии. [c.158]


    Механизм Конфигурация Влияние заместителя Продукт, куда переходит из Стерический эффект [c.174]

    Механизм Изиенение конфигурации К Влияние заместителя продукт, в который переходит 0 из Н, 0 Стерический эффект [c.228]

    Механизм возникновения наружных (гребневидных) золовых отложений также отличается от механизма возникновения таких отложений на конвективных поверхностях нагрева в пылесланцевых парогенераторах. Поскольку в процессе возникновения золовых отложений при сжигании канско-ачинских углей большое значение имеет нанесение частиц золы на поверхности в пластическом или жидком виде, то здесь существенное влияние на интенсивность загрязнения парогенераторов оказывает температура продуктов сгорания. Многочисленные научно-исследовательские работы и практика сжигания канско-ачинских углей в парогенераторах [Л. 29, 31, 157, 218 и др.] показали, что от температуры продуктов сгорания сильно зависят процессы возникновения быстрорастущих гребневидных отложений. Отметим, что влияние температуры продуктов сгорания на процессы загрязнения конвективных поверхностей нагрева при сжигании канско-ачинских углей более существенно, чем при сжигании прибалтийских сланцев. [c.216]

    Рассматривая влияние механизма превращения на характер образующегося продукта, авторы отметили ... инверсия (конфигурации— В. К.) является правилом для механизмов (5 2) и (5е 2), в то время как сохранение конфигурации может происходить в (5] 1) и (8е 1) [129, стр. 255]. [c.94]

    Таким образом, двойственная природа этих реакций не согласуется с прочими реакциями ионного присоединения к хлортрифторэтилену. Кнунянц 22 предположил возможность свободнорадикального механизма, однако добавка перекиси бензоила к реакционной смеси не оказывает заметного влияния на продукты реакции. Основываясь на соотношениях электроотрицательности и имеющихся сведениях об ориентируемой атаке хлортрифторэтилена другими нуклеофилами, нам удалось предсказать изомер 1, как единственный продукт присоединения хлористого иода  [c.294]

    Однако в настоящее время еще многие детали механизма различных типов старения полиэфиров остаются неясными, в особенности вопрос о влиянии первичных продуктов реакции на дальнейшие процессы деструкции и структурирования. Весьма возможно, что здесь протекают сопряженные радикальные и ионные процессы. [c.67]

    Несмотря на указанные в разделе 5.2 возможности упрощения кинетической схемы при моделировании окисления метана при высоких (> 10 атм) давлениях, разработка адекватных количественных моделей для этих условий остается крайне сложной задачей. Первая и на сегодняшний день наиболее обоснованная и отработанная количественная модель окисления метана при высоких (10 атм и выше) давлениях и умеренных (< 800 К) температурах была разработана в Институте химической физики им. H.H. Семенова РАН в серии работ В.И. Веденеева и соавт. [7-10]. Уточненный вариант этой модели представлен в табл. 5.2. Модель была успешно использована для описания лабораторных и полупромышленных экспериментов по прямому окислению метана в метанол. На ее базе разработаны дополненные варианты [16-18], позволившие проводить более полный учет влияния образующихся продуктов, описывать процессы с участием этана и этилена, в частности окисление метан-этановых смесей и окислительную конденсацию метана, распространение пламени в метан-кислородных смесях и др. Впоследствии в литературе появились другие модели окисления метана при высоких давлениях [19-24], однако они не содержат принципиальных отличий от модели [7-10], и, кроме того, в большинстве случаев не сопровождаются достаточно подробным описанием и обоснованием. В связи с этим приведенное ниже изложение механизма газофазного окисления метана при высоких давлениях базируется прежде всего на результатах работ В.И. Веденеева и соавт. [7-10  [c.174]


    Приведенные результаты показывают, насколько плодотворным может быть применение понятий, приемов и методов физики твердого тела к решению вопросов, связанных с химическими реакциями в твердых телах. На примере реакции термического распада перманганата калия можно видеть, что элементарные стадии распада связаны с электронным переходом от одного анионного узла к другому. С этой точки зрения становится понятным механизм действия каталитических добавок, влияние твердых продуктов, образующихся по ходу реакции термического разложения и механизма влияния предварительного облучения на скорость последующего термического распада. [c.190]

    Кратко рассмотрим системы газ — твердое тело с наличием реакции в пределах твердой фазы. Такие системы представляют интерес в каталитических реакциях, когда катализатор выступает в виде микропористого твердого тела, через которое могут мигрировать реагенты и реакционные продукты под влиянием градиента концентрации, следуя закону диффузии Фика. Эффективный коэффициент диффузии зависит от механизма диффузии через поры (которая может быть обычной газовой диффузией или кнудсенов-ской диффузней, сопровождающейся мобильностью адсорбированных слоев), а также от геометрии пор. Проблемы оценки корректной величины эквивалентного коэффициента диффузии по известным значениям диаметров пор и их геометрии обсуждались в некоторых аспектах Франк-Каменецким [11], а также в работах [12-15]. [c.46]

    Чтобы уменьшить или исключить влияние поверхности металла на образование губчатого полимера, применяют метод пассивации поверхности. Широко используют обработку поверхности металлических аппаратов водными растворами солей, обладающих электронодонорными свойствами (нитритами, фосфитами, сульфитами). Механизм действия пассивации заключается в разрушении перекиси с образованием прочной пленки указанных продуктов на поверхности металлов. [c.297]

    В процессе работы нефтяные масла под действием кислорода воздуха и повышенных температур окисляются, претерпевая при этом в течение времени более или менее заметные изменения. Окисление масел приводит к появлению в них кислот, способных при известных условиях вызывать коррозию деталей двигателей и механизмов. Помимо кислот в результате окисления образуются растворимые и не растворимые в маслах смолистые вещества и продукты их конденсации и полимеризации, которые, отлагаясь в маслопроводах, нарушают циркуляцию масел и загрязняют двигатели и механизмы либо оказывают отрицательное влияние на другие свойства масел (например, понижают диэлектрическую прочность трансформаторного масла). Многие масла (например, масла для двигателей внутреннего сгорания, для паровых машин) в зоне высоких температур подвергаются дополнительно термическому разложению, что в конечном счете приводит к нагарообразованию. [c.212]

    Механизм химических реакций при этих способах сжигания топлива существенно различается. В первом случае сгорание является следствием реакций, протекающих как во фронте пламени, так и в зоне непосредственного контакта свежей смеси с фронтом пламени. Пламя является своего рола реактором, в котором происходит химическое превращение горючей смеси в конечные продукты сгорания. Во втором случае горячее пламя возникает на завершающей стадии процесса горения. Основные химические реакции протекают в большом объеме смеси до момента появления пламени. В этом случае горячее пламя, естественно, не может оказывать влияния на протекающие в смеси предпламенные процессы.  [c.113]

    Выбор механизма реакции облегчается в том случае, если начальная скорость определяется как функция концентраций или общего давления в системе. Эту начальную скорость можно найти экстраполяцией опытных данных, полученных в широком интервале, или непосредственно из опытов в дифференциальном реакторе. Уравнения для начальной скорости реакции не содержат членов, учитывающих влияние продуктов реакции. В таком виде указанные уравнения являются более простыми, но менее ценными, так как не отражают в достаточной мере действительного механизма процесса. [c.226]

    Влияние примесей. Каталитические системы Циглера — Натта весьма чувствительны к ряду примесей, содержащихся в мономерах и растворителе. Наличие их приводит к уменьшению эффективности катализатора и к снижению молекулярной массы сополимера. Влияние некоторых из них показано в табл. 1 [30]. Значительное количество воды, аллена и метилацетилена в мономерах и воды в растворителе не только снижают эффективность катализатора, но и способствуют образованию низкомолекулярных сополимеров, растворимых в ацетоне [31, 32]. Образование низкомолекулярных сополимеров в присутствии воды, по-видимому, связано с одновременным протеканием двух процессов по координационному механизму —с образованием высокомолекулярных сополимеров и катионному — с образованием низкомолекулярных продуктов. Так как в мономерах и растворителе содержится ряд [c.302]


    Как указывалось в гл. 2, обрыв цепей в жидкой фазе происходит обычно по квадратичному механизму. Однако имеются экспериментальные данные, свидетельствующие о том, что и в жидкой фазе в ряде случаев существенную роль в обрыве цепей, или точнее в определении направления цепных реакций, играет поверхность [7, 8]. В работе [91 приводятся прямые экспериментальные доказательства влияния гидродинамического режима на состав продуктов реакции при цепном окислении пропилена в растворе бензола. Вследствие этого при расчете и конструировании реакторов для цепных процессов могут возникать специфические ситуации, поскольку величины поверхности в единице объема реактора и коэффициента переноса к ней определяют направление реакции и интенсивность теплоотвода [c.103]

    В результате присоединения НВг к пропену по двум различным механизмам — ионному и свободнорадикальному — образуется два разных продукта присоединения 2-бромпропан и 1-бромпро-пан. Это яркий пример влияния механизма реакции на строение образующихся продуктов. [c.118]

    Проникновение горения в пору включает 1) воспламенение входного участка поры, подвергаемого действию горячих продуктов горения, 2) распространение фронта горения по длине поры из возникающего очага воспламенения. Первый аспект задачи в принципе может быть решен на основе существующих представлений, изложенных в предыдущем параграфе. Что касается вопроса о распространении фронта горения по поверхности пороха (ВВ), то в настоящее время отсутствует строгая математическая модель процесса и достаточно полное физическое понимание явлени . Данный вопрос не решен для практически важного случая — воспламенения канала порохового заряда в процессе работы ракетного двигателя. Некоторые подходы к решению этого вопроса содержатся в работе [106]. В этой работе скорость распространения 4>ронта горения отождествляется со скоростью перемещения переднего фронта зоны, в которой достигнуты критические условия воспламенения. Предполагается, что воспламенение элемента поверхности происходит мгновенно при достижении некоторой критической температуры поверхности или накоплении критического количества тепла в расчете на единицу площади поверхности прогретого слоя, При таком подходе не рассматривается вопрос о влиянии механизма воспламенения. Математический анализ явления проводится с использованием ряда упрощающих предположений. Результаты анализа не сопоставляются с экспериментом. [c.115]

    Ион карбония может также образоваться в результате переноса ОН-группы молекулы спирта к льюисовскому центру или к многозарядному катиону, хотя эти центры под влиянием другого продукта реакции — воды — скорее всего превратятся соответственно в центры бренстедовского гипа или в катионы М(ОН) . Если принять механизм 2, то следует допустить, что центры основного характера атакуют связь р-С —Н в протонированной молекуле спирта. Одновременно происходит разрыв связи С —О с образованием олефина, а промежуточный ион карбония при этом не образуется [реакция (9)]. [c.136]

    При. эксплуатаиии машин и сооружений практически трудно разграничить указанные разновидности атмосферной коррозии, особенно если увлажнение поверхности изменяется (рис. 7.4). На изменение механизма процесса атмосферной коррозии может оказать влияние рост продуктов коррозии и загрязнения. Последние значительно повышают коррозионную активность пленок влаги на металле. [c.139]

    Одним из примеров влияния механизма реакций на селективность является правило Корнблюма, согласно которому при 5лг1-замещении промежуточный карбкатион преимущественно реагирует с нуклеофилом или с его реакционным центром, имеющим наибольшую электронную плотность или электроотрицательность, а при 5Jv2-зaмeщeнии — с нуклеофилом или с его реакционным центром, имеющим наибольшую поляризуемость. Вследствие этого нуклеофилы, обладающие двойственной реакционной способностью, в разных условиях реакции могут образовывать различные продукты  [c.80]

    С механизмом действия каталитических добавок тесно связан вопрос о механизме влияния твердых продуктов, образующихся в результате термолиза, на скорость процесса или, другими словами, вопрос о природе автокатализа при термическом распаде перманганата. Как следует из общей схемы, при термическом разложении образуются два твердых продукта реакции двуокись марганца и манганат калия. Как при термическом, так и при радиационном разложении двуокись марганца сразу выделяется в виде самосто- [c.186]

    Очень трудно составить кинетическую схему низкотемпературного пиролиза, исходя из данных по элементарным процессам, включающим радикалы СНО и СН3СО. Схема более сложна, чем схема для пиролиза этана, и, как было отмечено раньше, в данном случае образуются более сложные продукты. Интересно отметить, что там, где продукты простые, вследствие большой длины цепи реакция становится чрезвычайно чувствительной к влиянию стенок и примесей. С другой стороны, при более низких температурах, когда длина цепи уменьшается, реакция не так чувствительна к влиянию стенок и образуются сложные продукты, которые трудно анализировать. Несмотря на все работы, которые были сделаны по пиролизу или фотолизу СН3СНО, элементарный механизм известен с некоторой точностью только прп высоких температурах. Но даже и в этом случае процессы инициирования должны специально изучаться . Значительный теоретически1 [ интерес представ- [c.335]

    Следует отметить, что эффективность указанных выше защитных устройств зависит от прочности оборудования, максимального давления взрыва, скорости нарастания давления, положения сбросного отверстия по отношению к источнику взрыва, способности ослабленных элементов к разрыву или смещению, инерции защитных устройств, длины отводящих трубопроводов и др. Вместе с тем способы расчета площади отверстия, необходимой для быстрого сброса давления, основанные на допущениях и упрощенном механизме взрывного процесса, также не учитывают влияния всех факторов на процесс распространения пламени и взрыва. Поэтому важное значение имеют экспериментальные данные о взрывах пылевоздушных смесей, а также статистическо-вероятные методы оценки опасности процессов. Используя эти методы, можно разработать более объективные принципы оценки опасности, позволяющие установить связь процесса воспламенения с надежностью оборудования, устойчивостью технологического процесса и свойствами перерабатываемого продукта. [c.286]

    Особую роль водорода как астехиометрического компонента ряда реакций (конфигурационная изомеризация, миграция двойной связи в олефинах и др.) обсуждает Я. Т. Эйдус [41]. Влияние астехиометрического компонента выражается в инициировании реакции, в изменении ее кинетики, избирательности, механизма и пр. Атомы астехиометрического компонента в отличие от атомов реагентов не входят в молекулы конечных продуктов реакции или входят без соблюдения стехиометрических отношений. Таким образом, эти вещества не входят в стехиометрию реакции, не фигурируют в ее суммарном химическом уравнении и являются как бы посторонними компонентами реакционной системы, почему и получили название астехиометрических. [c.77]

    Предложенная классификапия [89], механизмов гидрогенолиза циклопентанов и циклобутанов весьма условна. Очевидно, что селективность протекания гидрогенолиза по тем или иным связям цикла зависит от природы катализатора, температуры, давления водорода и в существенной степени от характера замещения в исходном циклоалкане. Влияние последнего фактора на кинетику и селективность гидрогенолиза моно-, ди- и по-лиалкилциклопентанОв более подробно рассмотрено несколько ниже. Однако и из сказанного ясно, что с изменением одного или нескольких из названных параметров могут существенно изменяться те или иные кинетические закономерности-, что, естественно, повлечет за собой и изменение распределения продуктов гидроге- [c.133]

    Таким образом, органические соединения серы наряду с наф-тено-парафиновыми и нафтено-ароматическими углеводородами являются одним из основных компонентов в базовых, маслах, получаемых из сернистых нефтей, и влияние этих соединений нельзя не учитывать при оценке эксплуатационных свойств масел и их поведения в двигателях и механизмах. В маслах содержится примерно равное количество сульфидов и компонентов так называемой остаточной серы, куда в основном входят гомологи тиофена, тиофана и гетерополициклические соединения, содержащие серу [83, 84]. Сера входит и в состав смолистых продуктов, присутствующих в масляных дистиллятах и товарных маслах. В маслах имеется небольшое количество дисульфидов и меркаптанов [85]. Содержание ме ркаптанов в глубокоочищен-ных маслах, получаемых из сернистых нефтей, составляет (l,6- 4-3,2)10-3% (масс.). В исходных сернистых дистиллятах содержится (4,5- 5) 10-3% (масс.) меркаптанов. В маслах, полученных из малосернистых нефтей, меркаптаны не обнаружены. [c.67]

    Явления, протекающие на поверхности деталей двигателей и механизмов, как правило, оказывают решающее влияние на обеспечение их надежной и длительной Э1ссплуатации. Так, от способности топлива или масла образовывать на твердой поверхности стабильный смазочный слой и быстро восстанавливать его в случае разрушения зависят скорость износа трущихся деталей и интенсивность их коррозионного поражения. От того, насколько быстро и прочно продукты глубокого окисления масла или специально введенные в него деактиваторы покроют [c.178]

    Анализ полученных продуктов показывает, что вопреки мерам предосторожности побочные реакции все же имеют место, однако принимается, что их влияние на измеряемую энергию активации незначительно. К недостаткам этого метода следует отнести и то обстоятельство, что из-за большой скорости потока определяемое значение температуры газа не вполне достоверно. Наконец, давление реагирующих веществ может меняться лишь в ограниченном интервале, что затрудняет проверку, действительно ли реакция соответствует простой мономолекулярной реакции. Однако, несмотря на все недостатки, метод является весьма эффективным, и Э1]ергии диссоциации связи в лучших случаях могут быть измерены с точностью до 2—3 ккал. В других случаях предполагаемые механизмы реакций недостаточно- хорошо доказаны и результаты вызывают сомнение. Хорошей проверкой результатов определения энергии диссоциации спязи, полученных кинотпческнм нутом, яв гяются данные по взаимодействию электронов. Этот метод [18, 46, 47] состоит в наблюдении потенциалов появления (.4 ) в масс-стгоктрометре для следующих типов реакций  [c.15]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    Имеется ряд сообщений о влиянии добавок на периоды и г . По-видимому, особо важную роль играют добавки соединений, образующихся в качестве промежуточных продуктов реакции, таких как формальдегид и ацетальдегид. Изучение смесей пентан-кислород и гексан-кислород при температурах несколько выше 200° С показало, что добавление умеренных количеств формальдегида оказывает сильнейшее ингибирующее действие [8], Точно так н<е при изучении смесей пропан-кислород было обнаружено увеличение индукционного периода в присутствии формальдегида [15]. В противоположность этому наблюдения над влиянием ацетальдегида на смесь ЮдН а + 20а при температуре 329° С и давлении 200 мм рт. ст, (по-видимому, в период т ) показали, что индукционный период после добавления ацетальдегида уменьшается. Однако следует отметить, что в указанных опытах индукционный период не уменьшался до нуля даже при добавлении 5% ацетальдегида, хотя по данным экспериментаторов [1] это соответствовало приблизительно концентрации ацетальдегида к концу индукционного периода в тех случаях, когда ацетальдегид вообще пе добавлялся к смеси. Поэтому Айвазов и Нейман пришли к заключению, что один ацетальдегид не может бы1Ь причиной мгновенного образования холодного пламени, и предположили, что перекиси, обнаруженные ими в сравнимых количествах, также должны играть известную роль в механизме возникновения холодного пламени. По-видимому, это предположение справедливо, однако возникает вопрос, идентичны ли перекиси, выделяемые из реакционной смеси, тем активным перекисям, которые обусловливают реакцию разветвления цепи в период т . Вероятно, следует различать, по крайней мере, два процесса образования перекисей. Одним из них является окисление формальдегида с образова- [c.256]

    Хотя природа поверхности оказывает несомненное влияние на продолжительность периода Tj и, вероятно, периода г. , она не имеет, согласно данным Дэя и Пиза [9], большого влияния на границы давление—температура областей холоднопламенного и высокотемпературного воспламенений. Эти исследователи, изучая систему пронан—кислород, получили картину, подобную изображенной на рис. 2 в пирексовых сосудах, обработанных азотной или фтористоводородной кислотами или покрытых КС1. В последнем случае наблюдалось значительное удлинение индукционного периода, особенно при низких температурах. Анализ продуктов, полученных в серии опытов с применением аналогичной обработки, показал наличие перекисей во всех сосудах, кроме покрытых КС1. На основании этих фактов Дэй и Пиз высказали сомнение относительно роли перекисей в механизме образования холодного пламени, и одновременно, подняли вопрос о влиянии ацетальдегида в связи с тем, что, согласно более раннему исследованию Пиза [34], покрытие стенок сосуда слоем K I обусловливает значительно более низкую концентрацию ацетальдегида, чем в сосудах без такого покрытия. По нашему мнению, так как реакция не обнаруживает тенденции к достижению стационарного состояния, обрыв цепей на поверхности сосуда мон ет лишь замедлить скорость реакции, но не способен полностью предотвратить достижение критических концентраций альдегидов и перекисей, вызывающих образование холодйого пламени. Эти критические концентрации зависят главным образом от давления и температуры и достигаются спустя более или менее длительное время в зависимости от природы поверхности. То обстоятельство, что в непрерывной системе не обнаружены перекиси в покрытой КС1 трубке, не свидетельствует против их кратковременного существования аналогичным образом при гетерогенном каталитическом окислении ацетальдегида на покрытой КС1 поверхности не требуется достин ения критической концентрации для течения самоускоряющейся реакции. [c.259]

    Карбоний ионный механизм. Под влиянием серной кислоты олефины подвергаются различным реакциям гидратации, образованию сложных эфиров, нолиморизации и конденсации с ароматическими углеводородами. Наиболее просто механизм различных реакций можно понять с точки зрения нродстаплений об образовании в качестве промежуточного продукта карбопнй-иопа [1381. Так, нанример, в разбавленных растворах кислот третичные олофины подвергаются гидратации в третичные спирты [78, 196, 204, 205 . С бо. гое концентрированными кислотами образуется сложный эфир сорной кислоты [170]. В разбавленных водных растворах кислот вода является главным нуклеофильным агентом, в то время как в 67%-ной серной кислоте концентрация свободной воды ничтожно мала и бисульфат-ион присутствует в очень большой концентрации (ЬХХУП)  [c.435]

    На первой стадии происходит диссоциативная адсорбция метана с образованием метильного радикала, на второй стадии метильн1)1Й радикал превращается в ион карбоксила, который мод влиянием кислотного центра соседней ОН-груп-пы может десорбироваться в виде формальдегида (третья стадия). Ион карбоксила может распадаться и в другом направлении - до СО и воды, либо отщепляться в виде формиата. Отрыв частицы продукта реакции и присоединение атомов кислорода по месту освободившихся связей осуществляется в однохм элементарном акте по механизму сопряженного переноса  [c.17]

    Необходимость улучшения противоизносных свойств масла связана также с наблюдаемым иногда повышенны.м износом деталей механизма привода клапанов. В связи с этим многие автомобилестроительные компании пришли к выводу, что минимальная концентрация диалкилдитиофосфата цинка в масле должна соответствовать содержанию в нем 0,1% фосфора или цинка. Таково, в частности, требование спецификации Рог(1 М2С 144А [18]. Однако это противоречит другой тенденции — снижению содержаяия фосфора в моторных маслах в связи с его отрицательным влиянием на работу катализатора, используемого в дожигательных устройствах последние устанавливают на легковых автомобилях в, целях меньшего загрязнения атмосферы продуктами, содержащи- мися в выхлопных газах. В связи с этим к 1985 г. содержание фосфора в. моторных маслах намечается ограничить до 0,04% [20]. [c.19]

    Существенным осложняющим фактором, который необходимо принимать во внимание нрн решении практических задач гетерогенного катализа, является дезактивация, или отравление , катализатора в процессе его промышленной эксплуатации. Под контактным отравлением понимаются все с.пучаи понижения активности катализатора иод влиянием поглощения посторонних веществ. Механизм этого понижения может быть весьма различен. Отравление может быть обусловлено а) невыгодным для катализа изменением адсорбционных и кинетических констант поверхности из-за внедрения яда в поверхностный слой решетки катализатора б) выводом из процесса отдельных участков в силу адсорбции на них яда в) макроскопической блокировкой, обусловленной заливанием пор и капилляров легко конденсирующие мися жидкостями или образованиед корки из твердых продуктов реакции, затрудняющей доступ к активной поверхности. [c.13]


Смотреть страницы где упоминается термин Влияние механизма на продукты: [c.48]    [c.499]    [c.454]    [c.159]    [c.328]    [c.423]    [c.255]    [c.75]    [c.374]    [c.348]    [c.44]    [c.102]    [c.193]   
Принципы органического синтеза (1962) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте